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Chapter 1

Problems

L.

10.

Chapter 1

(a) By the generalized basic principle of counting there are
26-26-10-10-10-10-10=67,600,000

(b) 26-25-10-9-8-7-6=19,656,000

6" = 1296

An assignment is a sequence iy, ..., oo where i; is the job to which person is assigned. Since

only one person can be assigned to a job, it follows that the sequence is a permutation of the

numbers 1, ..., 20 and so there are 20! different possible assignments.

There are 4! possible arrangements. By assigning instruments to Jay, Jack, John and Jim, in
that order, we see by the generalized basic principle that there are 2 - 1 - 2 - 1 =4 possibilities.

There were 8 - 2 - 9 = 144 possible codes. There were 1 - 2 - 9 = 18 that started with a 4.

Each kitten can be identified by a code number i, j, k, | where each of i, j, k, 1 is any of the
numbers from 1 to 7. The number i represents which wife is carrying the kitten, j then
represents which of that wife’s 7 sacks contain the kitten; £ represents which of the 7 cats in
sack j of wife 7 is the mother of the kitten; and / represents the number of the kitten of cat £ in
sack j of wife i. By the generalized principle there are thus 7 - 7 - 7 - 7 = 2401 kittens

(a) 6! =720
(b) 2-31-31=T72
(c) 413! = 144
) 6-3:-2.2-1.1=72
(a) 5!=120
b 7! = 1260
(b) o1
|
(©) — = 34,650
414121

a1 —1260
@ 2o~

2! = 27,720
614!

(a) 8!=40,320
(b) 2-7!=10,080
(c) 5!4!=2.880
(d) 412% =384



11.

12.

13.

14.

15.

16.

17.

18.

19.

(a) 6!
(b) 312131
(c) 314!

(a) 30°
(b) 30-29-28-27-26

2)
)

10)(12 . . .
There are ( 50 j( 5 j possible choices of the 5 men and 5 women. They can then be paired up

in 5! ways, since if we arbitrarily order the men then the first man can be paired with any of

the 5 women, the next with any of the remaining 4, and so on. Hence, there are 5 !(150 J[lj j

possible results.

6 7 4 — g eqe, e
@) [zj + (J + [2] =42 possibilities.

(b) There are 6 - 7 choices of a math and a science book, 6 - 4 choices of a math and an
economics book, and 7 - 4 choices of a science and an economics book. Hence, there are
94 possible choices.

The first gift can go to any of the 10 children, the second to any of the remaining 9 children,
and so on. Hence, there are 10-9 -8 - - -5 -4 = 604,800 possibilities.

5\6)\(4)
HHHE
(a) There are @)@j + @jﬁ)@j = 896 possible committees.

There are @j@j that do not contain either of the 2 men, and there are @jﬁj@j that

contain exactly 1 of them.

6)(6 2\(6)(6) . .
(b) There are (J(J + (J(J(J = 1000 possible committees.

Chapter 1



20.

21.

22.

23.

25.

27.

28.

29.

30.

Chapter 1

75 75 7\(5 . . 7Y\5) .
(c) There are (3J(3j+(2j(3j+(3J[2j =910 possible committees. There are (3}[3} in

which neither feuding party serves; (;j (5

:J in which the feuding women serves; and

3

SR EA

instance the arrangement r, r, u, u, r, r, u specifies the path whose first 2 steps are to the right,
next 2 steps are up, next 2 are to the right, and final step is up.

[q[;j in which the feuding man serves.

=35. Each path is a linear arrangement of 4 »’s and 3 u’s (» for right and u for up). For

! !
There are % paths from A to the circled point; and % paths from the circled point to B.

Thus, by the basic principle, there are 18 different paths from A to B that go through the
circled piont.

312}

52
13,13,13,13

12 ) 12!
3,4,5) 31415

Assuming teachers are distinct.
(a) 4°

8 8l
(b) (2’ 2 2J=W = 2520.

(a) (10)1/31412!

3y 7!
(b) 3&}@

29! —2°8! since 2 - 9! is the number in which the French and English are next to each other
and 2°8! the number in which the French and English are next to each other and the U.S. and
Russian are next to each other.



31. (a) number of nonnegative integer solutions of x; + x, + x3 + x4 = 8.

Hence, answer is (l;j =165

(b) here it is the number of positive solutions—hence answer is [Zj =35

32. (a) number of nonnegative solutions of x; + ... + x4 =8

answer = 13
5

(b) (number of solutions of x; + ... + x4 = 5) x (number of solutions of x; + ... + x¢ =3) =
10)(8
5)\5
33. (a) X1+XQ+X3+X4:20,X122,X222,X323,X424
Letylle_15y2:x2_1,y3:.X3_2,y4:)C4—3

Vitym+ys+ys=13,y,>0

12 . .
Hence, there are ( 3 J = 220 possible strategies.

15
2

1
th
ereare |

(b) there are investments only in 1, 2, 3

o

investments only in 1, 2, 4

2

13

there are
2

investments only in 2, 3, 4

there are (13j investments only in 1, 3, 4

1) (1) o 12)(12 -
+ + _
[ 2J ( 2) 2( 2 j J{ 3 ) 552 possibilities

4 Chapter 1



Theoretical Exercises

10.

z:'il”i
nn—1)---(n—r+1)=nl/(n-r)!

Each arrangement is determined by the choice of the » positions where the black balls are
situated.

n
J
characterized by a selection of j of the n indices whose values are then set equal to 1. Hence

There are [ j different 0 — 1 vectors whose sum is j, since any such vector can be

there are Z e k[’;} vectors that meet the criterion.
n
k
- - —1! —1!
[n lj+(n 1) _ (=D N (n-1!
r r—1 rin—1-r)! (n—-r)!(r-1!

_ n! [n—r r} (nj
e J’__ =
ri(n—=r)!l n n r

n+m . n\ m : .
There are [ j gropus of size . As there are [ j[ j groups of size r that consist of i
r i\r—i

men and 7 — i women, we see that

[")-200n)
(201020

Parts (a), (b), (c), and (d) are immediate. For part (e), we have the following:

(nj _ kln! n!
™| = -
k) =ikl (n—k)l(k—1)!
B n\_  (n—k+Dn! _ n!
(n kﬂ)(k—lj =k +DIk=D)!  (n—k)(k 1!

[n—lj _ n(n-=-1! n!
n = =
k-1 (n-O(k-D! (n-k)!(k-1)!

Chapter 1



11.

12.

13.

14.

The number of subsets of size & that have i as their highest numbered member is equal to

[llc_—llj , the number of ways of choosing k£ — 1 of the numbers 1, ..., i — 1. Summing over i

yields the number of subsets of size k.
Number of possible selections of a committee of size k£ and a chairperson is k(Zj and so

Zk(Zj represents the desired number. On the other hand, the chairperson can be anyone of
k=1

the n persons and then each of the other n — 1 can either be on or off the committee. Hence,
n2" "' also represents the desired quantity.

o (i

(ii) 72"~ since there are n possible choices for the combined chairperson and secretary and
then each of the other n — 1 can either be on or off the committee.
(iii)n(n — 1)2" 2

(c) From a set of n we want to choose a committee, its chairperson its secretary and its
treasurer (possibly the same). The result follows since

(a) there are n2" ' selections in which the chair, secretary and treasurer are the same
person.

(b) there are 3n(n — 1)2""~ ? selection in which the chair, secretary and treasurer jobs are
held by 2 people.

(c) there are n(n — 1)(n — 2)2" > selections in which the chair, secretary and treasurer are
all different.

(d) there are (Zjlf selections in which the committee is of size .

(1-1y'= Z(’Zj(—l)”‘l

i=0

@ (-G
o rem . 330 CRIS)CR
o Zo

n n—i
i

k

M:
o R
~. S
[
. ~.
N——
T
—
=
S
<

)(_l)n—i—k =0

Chapter 1



15.

16.

17.

18.

Chapter 1

(a) The number of vectors that have x; = is equal to the number of vectors x; <x, < ... <xp g
satisfying 1 <x; <j. That is, the number of vectors is equal to H;_(j), and the result follows.

(b)
Hy(1)=Hy(1)=1
Hy(2)=H\(1) + Hi(2)=3
H3)=H\(1) + Hi(2) + Hi(3) =6
Ho(4) = Hy(1) + Hy(2) + Hi(3) + Hy(4) = 10
Hy(5) = Hy(1) + Hy(2) + Hy(3) + Hy(4) + Hy(5) = 15
Hy(5) = Hy(1) + Hx(2) + Hy(3) + Hy(4) + Hy(5) = 35

(a) 1<2<3,1<3<2,2<1<3,2<3<1,3<1<2,3<2<1,
1=2<3,1=3<2,2=3<1,1<2=3,2<1=3,3<1=2,1=2=3

(b) The number of outcomes in which 7 players tie for last place is equal to (7) , the number

of ways to choose these i players, multiplied by the number of outcomes of the remaining
n — i players, which is clearly equal to N(n — i).

© Z(’ZJN(n -1 = Z(n’i JN(n —i)

i=1
n-1
n .
= Z( .jN ()
=N/
where the final equality followed by letting j =n —i.

d) N3)=1+3N1)+3N2)=1+3+9=13
N(4) =1+ 4N(1) + 6N(2) + 4N(3) = 75

A choice of r elements from a set of n elements is equivalent to breaking these elements into
two subsets, one of size r (equal to the elements selected) and the other of size n — r (equal to
the elements not selected).

Suppose that  labelled subsets of respective sizes ny, n,, ..., n, are to be made up from

r n—1

elements 1, 2, ..., n where n = Zni . As (nl,...,ni —1,...n,] represents the number of
i=1

possibilities when person # is put in subset i, the result follows.



19.

20.

21.

22.

By induction:

(e +xp+ .. +x)

- n i n—i : :
= E ( (%, +...4+x,)""" by the Binomial theorem
i
i=0\'1

n .
_ n il ZZ Vl—ll iz iz
= . . R S o
=\ ; Iyyensd,

25ee

27 r
iy toti =n—i
222 [
= X X
. . 1 1
l1 ..... lr 1» s by
i, +i,+ .+ir:n

where the second equality follows from the induction hypothesis and the last from the
n—i n

identi b= .

aen lty( j(zzlj [il,...,i,]

The number of integer solutions of

n
i

1

X1t ...tx.=n,x;2m;

is the same as the number of nonnegative solutions of

nt..ty.=n- Zmi,inO.
i

.\ . n—>) m+r—1
Proposition 6.2 gives the result 21: ! .

r—1
There are [Zj choices of the £ of the x’s to equal 0. Given this choice the other » — k of the

x’s must be positive and sum to 7.

. n—1 n—1 .
By Proposition 6.1, there are (r e J = (n - kj such solutions.

Hence the result follows.

[n ;il_ 1) by Proposition 6.2.

Chapter 1



+n—1 . .
23. There are (] n j nonnegative integer solutions of
J

+n—1
Hence, there are z ’;0(] . j such vectors.
J

Chapter 1



Chapter 2

Problems

L. (@) S=1{(,1),(r, 8, D), (g 1), (& &), (g b), (b,1), b, g), (b, b);
(b) §=1{(r. 8, (. b), (g, 1), (g b), (b, 1), (D, &)}

2. S={(n,x1, ..., %), n=21,x;#6,i=1, ..., n— 1}, with the interpretation that the outcome is
(n, x1, ..., x,_1) if the first 6 appears on roll n, and x; appears on roll, i,i =1, ...,n— 1. The
event (U, _ E,)" is the event that 6 never appears.

3. EF={(1,2),(1,4),(1,6),(2 1), (4 1), (6, D}.
E U F occurs if the sum is odd or if at least one of the dice lands on 1. FG = {(1, 4), (4, 1)}.
EF" is the event that neither of the dice lands on 1 and the sum is odd. EFG = FG.

4, A= {1,0001,0000001, ...} B= {01, 00001, 00000001, ...}
(4 U BY = {00000 ..., 001, 000001, ...}

5. (a) 2°=32
(b)
w={1,1,1,1,1),(1,1,1,1,0),(1,1,1,0,1),(1, 1,0, 1, 1), (1, 1, 1,0, 0), (1, 1, 0, 1, 0)
(15 15 03 03 b 13 0’ 0’ 0)’ (1’ 0’ 15 15 1)’ (09 15 15 15 1)5 (15 05 15 19 0)’ (05 1’ 15 15 0)’ (03 0’ 1’ 15 1)
1 ,

)
(0,0,1,1,0),(1,0,1,0, 1)}

N, (1
0), (1
() 8

(d) AW=1{(1,1,1,0,0),(1,1,0,0,0)}

6. (@) §=1{(1,2),(0, ), (1,/),(0,), (1, 9), (0, 5)}
(b) 4={(1,s), (0, 5)}
(©) B=1{(0, ), (0,7, (0, 5)}
(d) {(1,9),(0,5), (1,2, (1,)}

7. (a) 6°
(b) 615 — 315
(C) 415
8. (a) .8
(b) 3
(c) 0

9. Choose a customer at random. Let A denote the event that this customer carries an American
Express card and V the event that he or she carries a VISA card.

P(A U V)=PA) +P(V) - P(AV)= 24+ 61 — .11 = .74,

Therefore, 74 percent of the establishment’s customers carry at least one of the two types of
credit cards that it accepts.

10 Chapter 2



10. Let R and N denote the events, respectively, that the student wears a ring and wears a
necklace.

(a) PRUN)=1-.6=4

(b) .4=P(R U N)=P(R) + P(N) — P(RN) = .2 + .3 — P(RN)
Thus, P(RN) = .1

11. Let 4 be the event that a randomly chosen person is a cigarette smoker and let B be the event
that she or he is a cigar smoker.

(a) 1-P(AuB)=1-(07+.28—.05)=.7. Hence, 70 percent smoke neither.

(b) P(A°B)=P(B) — P(AB) = .07 — .05 = .02. Hence, 2 percent smoke cigars but not
cigarettes.

12. (@) PSUFUG) =(28+26+16—-12-4—-6+2)/100=1/2
The desired probability is 1 — 1/2 = 1/2.

(b) Use the Venn diagram below to obtain the answer 32/100.

S F

A
(NN

(c) since 50 students are not taking any of the courses, the probability that neither one is
taking a course is [520) / (1goj =49/198 and so the probability that at least one is taking a
course is 149/198.

13. I I (a) 20,000
(b) 12,000

() 11,000
19000 () 68,000
w () 10,000

i
Chapter 2 11



14.

15.

16.

17.

18.

19.

20.

12

P(M) + P(W) + P(G) — P(MW) — P(MG) — P(WG) + P(MWG) = 312 + 470 + .525 — .086 —
042 — 147 +.025 = 1.057

@ {S)3)
/13)

5 6),(5)3
i i
6-5-4-3-2 b) 2 © 2)(2)\2

6 6° 6°
o5 ) o) =N
d ——~~~ e
(d) o1 (e) & (H s
6
(g o
8i2
i=1
64-63---58
2.-4-16
52-51

4/36 +4/36 +1/36 + 1/36 = 5/18

Let A be the event that you are dealt blackjack and let B be the event that the dealer is dealt
blackjack. Then,

P(4 U B) = P(4) + P(B) — P(4B)
4416 4-4-16-3-15
52-51  52-51-50-49
.0983

where the preceding used that P(4) = P(B) =2 x % . Hence, the probability that neither

is dealt blackjack is .9017.

Chapter 2



21.

22.

23.

25.

27.

28.

Chapter 2

(a) p1=4/20, p, = 8/20, p; = 5/20, ps = 2/20, ps = 1/20
(b) There are atotal of 4-1+8-2+5-3+2-4+1-5=48 children. Hence,
q1 =4/48, q, = 16/48, q; = 15/48, q, = 8/48, g5 = 5/48

The ordering will be unchanged if for some £, 0 < k < n, the first k£ coin tosses land heads and
the last #n — & land tails. Hence, the desired probability is (z + 1/2"

The answer is 5/12, which can be seen as follows:

1 = P{first higher} + P{second higher} + p{same}
= 2P{second higher} + p{same}
= 2P{second higher} + 1/6

Another way of solving is to list all the outcomes for which the second is higher. There is 1
outcome when the second die lands on two, 2 when it lands on three, 3 when it lands on four,
4 when it lands on five, and 5 when it lands on six. Hence, the probability is
(1+2+3+4+5)/36=5/12.

n—1 ©
P(En) = [%) i? ZP(En) :%

n=1
Imagine that all 10 balls are withdrawn

3-947-6-3-747-6-5-4-3-547-6-5-4-3-2.3-3!
10!

P(4) =

s ()

If sampling is with replacement

3 3 3
P{same} = w
19)
P{different} = P(RBG) + P{BRG) + P(RGB) + ... + P(GBR)
_6:5-6-8
(19)°

13



29.

30.

31.

32.

33.

34.

35.

14

(a)

n(n—1)+m(m-1)
(n+m)(n+m-1)

(b) Putting all terms over the common denominator (n + m)*(n + m — 1) shows that we must

(a

o Gl

(©)

3.2-1 2

P({complete} = ——— =—

({complete} 3339
3 1
P{same} = — =—
{ j 27 9

prove that

wn+m—1)+m*n+m—1)2nn—-1)n+m)+mim—1)n+m)

which is immediate upon multiplying through and simplifying.

)@:1/18

- 1/18=1/6

1
LG,
HH

gb+g-!' g

(b+g)! b+g

H e

20 323
4

Chapter 2



36. (a) (‘2‘) / (szzj ~.0045,

3. (a) @/@oj — 1/12 ~ 0833
(b) @G’j / (lsoj F112=102

38. 1/2—(2J/(2J orn(n—1)=12orn=4.

o, 3431
5.5.5 25

40. p{1}:4i4=64
P{2} = [j}{4+(;)+4}/44 = ;46
o (e

41, 1—2—:

42. 1- [3—5j
36

2An=hn=2) = 2 in a line
n! n
2n(n-2)! 2

n! n—1

43.

ifin a circle, n > 2

44, (a) If A is first, then 4 can be in any one of 3 places and B’s place is determined, and the
others can be arranged in any of 3! ways. As a similar result is true, when B is first, we
see that the probability in this case is 2 - 3 - 3!/5! =3/10

(b) 2-2-31/51=1/5
(c) 2-31/51=1/10

Chapter 2 15



45.

46.

47.

48.

49.

50.

S1.

52.

53.

16

n (n—-DF" | .
1/n if discard, ——~—— if do not discard
n

If n in the room,

12:11-  -(13-n)
12:12- 12

P({all different} =

When n =5 this falls below 1/2. (Its value when n =5 is .3819)

121/(12)"

(L /o
Yl
FIREEELR)

( j(n —1)""/N"
m

S

20-18-16-14-12-10-8-6
20-19-18-17-16-15-14-13

Lok

20-19-18-17-16-15-14-13

(a)

(b)

Let A; be the event that couple 7 sit next to each other. Then

2.70 2%.61  2%.51 2%.41
P(U4) =4 T TR

and the desired probability is 1 minus the preceding.

Chapter 2



P(SuH:E;]Q ((?((Ha S —
(5
) 4i)
&
) G, CIE) G
I
A5 ()
)
R 5 B
B

56. Player B. If Player A chooses spinner (a) then B can choose spinner (c). If A chooses (b)
then B chooses (a). If A chooses (c¢) then B chooses (b). In each case B wins probability 5/9.

Chapter 2 17



Theoretical Exercises

i=l1
5. F‘,:E‘I(WE‘C

T
6. (a) EF°G°

(b) EF°G

c) EOFUG

(d) EF UEG U FG

(e) EFG

(f) EFG

(g) EFFG° UEF'G°UEFG VEFG

(h) (EFG)

(i) EFG°UEFGUEFG

0 S
7. (a) E
(b) EF
(c) EGUF
8. The number of partitions that has » + 1 and a fixed set of i of the elements 1,2, ..., nas a

. n
subset is 7,,;. Hence, (where Ty, = 1). Hence, as there are [ J such subsets.
l

n n—l1 n
o= B B B

11.  1>P(EUF)=P(E)+ P(F) - P(EF)

12.  P(EF° U E°F) = P(EF°) + P(E°F)
= P(E) — P(EF) + P(F) — P(EF)

13. E=EF U EF°

18 Chapter 2



15.

16.

19.

21.

MY N
k \r—k
M+ N
r
PE,...E)>2P(E ... E,.) + P(E,) — 1 by Bonferonni’s Ineq.

n—1

> ZP(EI.) —(n—2)+ P(E,) — 1 by induction hypothesis
1

(r’ilj(knjrj(n —r+l)

(n+mj(n+m—k+l)

k-1
Let y1, va, ..., i denote the successive runs of losses and xy, ..., x; the successive runs of wins.
There will be 2k runs if the outcome is either of the form y,, xi, ..., yx X; Or X1y1, ... Xs, yx Where

all x;, y; are positive, with x; + ... + x,=n, y; + ... + y, = m. By Proposition 6.1 there are

2[” B IJ[m B lj number of outcomes and so

k-1 k-1
n—1\m-1 m+n
P{2kruns} = 2(1{—1)(1{—1}/( p J
There will be 2k + 1 runs if the outcome is either of the form x,, y, ..., Xx, Vi, X5+1 OF Y1, X1, ...,

Vi Xk Ve+1 Where all are positive and le. =n, z ¥; =m. By Proposition 6.1 there are

n—1\m-1 n—1)m-1
[ i j( i lj outcomes of the first type and [k— J( i jof the second.

Chapter 2 19



Chapter 3

Problems

1.

20

P{6 | different} = P{6, different}/P{different}
_ P{lst =6,2nd # 6} + P{lst # 6,2nd = 6}
5/6

173

_21/6 5/6 _
5.6

could also have been solved by using reduced sample space—for given that outcomes differ it
is the same as asking for the probability that 6 is chosen when 2 of the numbers 1, 2, 3,4, 5, 6
are randomly chosen.

P{6 | sumof 7} = P{(6,1)}/1/6 =1/6
P{6 | sumof 8} = P{(6,2)}/5/36 = 1/5
P{6 | sum of 9} = P{(6,3)}/4/36 = 1/4
P{6 | sum of 10} = P{(6, 4)}/3/36 =1/3
P{6 | sumof 11} = P{(6,5)}/2/36 =1/2

P{6 | sumof12} = 1.

P{E has3, N — S has 8}
P{N — S has 8}

GG GLE)
(L) o)

P{at least one 6 | sum of 12} = 1. Otherwise twice the probability given in Problem 2.

P{Ehas3 | N—Shas8} =

598

15141312

In both cases the one black ball is equally likely to be in either of the 4 positions. Hence the
answer is 1/2.

Plgand15b | at least one b} = ;—i =2/3

Chapter 3



8. 1/2

9. p{A:W|2W}:LW’2W}
P{2w}
:P{A=w,B=w,C¢w}+P{A=w,B;tw,Czw}
P{2w}
123 111
_ 334 334  _ 7T
123 111 227711
234 334 334
10.  11/50
13, 31
1. (@) P(BlAy)= P(BA) 5221 5251 _ 1
P(4,) 2 17
52

Which could have been seen by noting that, given the ace of spades is chosen, the other
card is equally likely to be any of the remaining 51 cards, of which 3 are aces.

4 3
P(B) _ 5351 _ 1
b) P(B|A)= = =—
(b) P(B|4) P BT
52 51

2. (a) (.9)(.8)(.7)=.504

(b) Let F; denote the event that she failed the ith exam.
PUF) _ (9)(2)
1-.504 496

o (YY) e (L)
rlser-(J2))(X) Aslsse-
e

P(F, = 3629

R ) =
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15. Let E be the event that a randomly chosen pregnant women has an ectopic pregnancy and S
the event that the chosen person is a smoker. Then the problem states that

P(E|S)=2P(E|5), P(S) = .32
Hence,
P(S|E) = P(SE)/P(E)
P(E|S)P(S)
P(E|S)P(S)+ P(E|S)P(S)

2P(S)
2P(S)+ P(S°)
=32/66 ~ 4548

16. With S being survival and C being C section of a randomly chosen delivery, we have that

98 = P(S)=P(S| C).15+ P(S| C?) .85
= 96(.15) + P(S| C?) .85

Hence
P(S| ) ~ .9835.

17.  P(D)=.36, P(C)=.30, P(C| D)= 22

(a) P(DC) = P(D) P(C|D)=.0792
(b) P(D|C)=P(DC)/P(C) = .0792/.3 = 264

P(voted|Ind) P(Ind)
ZP(Voted|type)P(type)
~ 35(.46) -
35(46) +.62(.3) +.58(24)

18.  (a) P(Ind|voted) =

62(.30) . 383
35(.46)+.62(3) +.58(24)

(b) P{Lib |voted} =

58(.24) -

(¢) P{Con|voted} = 35(.46) +.62(.3) +.58(.24) N

(d) P{voted} = .35(.46) + .62(.3) +.58(.24) = .4862
That is, 48.62 percent of the voters voted.
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19. Choose a random member of the class. Let A be the event that this person attends the party
and let W be the event that this person is a woman.

where M = W°

DR UZy pp—C UL
P(AW)P(W )+ P(AM)P(M)

_A48(38)
48(38)+.37(.62)

Therefore, 44.3 percent of the attendees were women.
(b) P(4)=.48(.38) +.37(.62) = .4118
Therefore, 41.18 percent of the class attended.

P(FC) _

20.  (a) P(FlC)= o .02/.05 = .40

(b) P(C|F)=P(FC)/P(F)=.02/.52 = 1/26 ~ .038
21. (a) P{husband under 25} = (212 + 36)/500 = .496
(b) P{wife over | husband over} = P{both over}/P{husband over}

= (54/500)/(252/500)
—3/14~ 214

(c) P{wife over | husband under} = 36/248 ~ .145

22. a. mzé
666 9
b, +-1
316
51 5
c. ——=—
96 54
21 12 4
23.  P(w|w transferred! P{w tr.} + Pw|R trt PR tr) = =—+-==2.
33 33 9
21
Piwlw tr ) P{wtr}) 22
P{w transferred | w} = {WIW riPiwtr =33 —p.
P{w} 4
9
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24, (a) P{g—g|at leastone g } = Z—i =1/3.

(b) Since we have no information about the ball in the urn, the answer is 1/2.

26. Let M be the event that the person is male, and let C be the event that he or she is color blind.
Also, let p denote the proportion of the population that is male.

P(C|M)P(M 05
PM|C) = (ClM)P(M) _ (.05)p
P(CIM)P(M) + P(C‘M“)P(M“) (.05)p +(.0025)(1 - p)
27. Method (b) is correct as it will enable one to estimate the average number of workers per car.

Method (a) gives too much weight to cars carrying a lot of workers. For instance, suppose
there are 10 cars, 9 transporting a single worker and the other carrying 9 workers. Then 9 of
the 18 workers were in a car carrying 9 workers and so if you randomly choose a worker then
with probability 1/2 the worker would have been in a car carrying 9 workers and with
probability 1/2 the worker would have been in a car carrying 1 worker.

28. Let 4 denote the event that the next card is the ace of spades and let B be the event that it is
the two of clubs.

(a) P{4} = P{next card is an ace}P{4 | next card is an ace}
31 3

324 128
(b) Let C be the event that the two of clubs appeared among the first 20 cards.

P(B) = P(B| C)P(C) + P(B| C)P(CY)
o, 129 29
48 3248 1536

29. Let A be the event that none of the final 3 balls were ever used and let B; denote the event that
i of the first 3 balls chosen had previously been used. Then,

P(4) = P(4 | By)P(By) + P(4 | B))P(B\) + P(4| B,)P(B,) + P(4 | By)P(B;)
0Lk
3003 i\3—i
- ZO: 15 15
3 3

30. Let B and W be the events that the marble is black and white, respectively, and let B be the
event that box 7 is chosen. Then,

=.083

P(B) = P(B| B)P(B)) + P(B| B)P(By) = (1/2)(1/2) = (2/3)(1/2) = 7/12
_ P(W|BI)P(Bl) W2y _

3/5
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31.

32.

33.

34.

35.

Let C be the event that the tumor is cancerous, and let NV be the event that the doctor does not

call. Then

_ _ P(NC)
p=P(C|N) S0

P(N|C)P(C)
P(N|C)P(C)+ P(N|C*)P(C)

o

1
a+—(l-«a
2( )

_ 2a >
1+«

with strict inequality unless o = 1.

Let E be the event the child selected is the eldest, and let F; be the event that the family has j

children. Then,

P(EF))
P(E)
P(F,)P(E|F)
> P(F)P(E|F)
_ p,(1/J) o
A+.25(1/2)+.35(1/3) +.3(1/4)

P(F| E)=

Thus, P(F, | E) = .24, P(F4| E) = .18.

Let V' be the event that the letter is a vowel. Then

PE| ) = P(V|E)P(E) __ w2
P(V|E)P(E) + P(V|A)P(4) ~ (1/2)(2/5)+(2/5)(3/5)
P(G|C) = P(CIG)PG) = 54/62
P(C‘G)P(G) + P(C|G)P(G*)

P{A4 = superior | 4 fair, B poor}
_ P{Afair, B poor|A superior|A superior}
P{A fair, B poor}

10151
_ 30302 _3
10151 10571 4°

30302 30302
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36.

37.

38.

39.

40.

26

P{women |C}P{C}

P{C|woman} =
P{women |4} P{A} + P{women |B}P{B} + P{women |C}P{C}
5100
_ 225 _1
.Sﬂ+.6£+.7@ 2
225 225 225
11
(a) Plfair|hy =22 -1
11T 1 3
ii_i_i
22 2
11
(b) Pifair|hn} = —42 1
11T 1 5
ii_i_i
42 2
(c) 1
31
152 36 36
Ptails|w = 152 = =
¢ ’ 31,51 36475 111
152 122

P ., acc.
P{acc. |no acc.} = %

3 7
_ B(.4)(.6)+E(.2)(.8) 46

3 7
SO+ (8

789

a —— ——
@ 121314
7-8-5

b) 3—
®) 12-13-14

5:6-7

C —_—
© 12-13-14

5:6-7

d) 3———
@ 12-13-14

_E.
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41.

42.

43.

45.

46.

. 1
P{ace} = P{ace ‘ interchanged selected} >

. 2
+P{ace | interchanged not selected} 2—3

L, 326 129
27 5127 51-27°

(.02)(.5) 10

P{A | failure} = =—
(.02)(.5)+(.03)(.3)+(.05)(2) 29

1
~ (@)
P{2 headed | heads} = — 311 57 ‘2‘ 3:%.
—-D+—=+-= et
37732 34

P{heads
> Pih

S 1
_ 1010 _ 1

Sth}P{Sth}
ith}P{ith}

P{5th| heads} =

IOLL_II
1010

Let M and F denote, respectively, the events that the policyholder is male and that the
policyholder is female. Conditioning on which is the case gives the following.

P(4,4,)
P(4)
P(A1A2|M)a + P(44|F)(1-a)
P(4|M)a + P(4|F)(1-a)
pao+ pr(l—a)
P+ p/(l-a)

P(4,] 4) =

Hence, we need to show that
pac+ pill=a) > (pua+p(l - @)’
or equivalently, that

pr@—a’)+pill-a-(1-a)’] >2a(1 - Qppu

Chapter 3
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47.

48.

49.

28

Factoring out (1 — ) gives the equivalent condition
P+ Py > 20/,
or

@n—p)* >0

which follows because p,, # p;. Intuitively, the inequality follows because given the
information that the policyholder had a claim in year 1 makes it more likely that it was a type
policyholder having a larger claim probability. That is, the policyholder is more likely to me
male if p,, > p;(or more likely to be female if the inequality is reversed) than without this
information, thus raising the probability of a claim in the following year.

. 1|5 54 543 5432 54321
P{all white} = —| —+ ——+— + — 4 —
615 1514 151413 15141312 1514131211

1543

P{3]all white} = 0151413

P{all white}

(a) P{silver in other | silver found}

_ P{S in other, S found}
P{S found} '

To compute these probabilities, condition on the cabinet selected.

1/2

P{S found|4}1/2 + P{S found|B} 1/2
__ 1 _2

1+1/2 3~

Let C be the event that the patient has cancer, and let £ be the event that the test indicates an
elevated PSA level. Then, with p = P(C),

P(E|C)P(C)
P(ClE)= .
P(E|C)P(C)+ P(E|C*)P(C)
Similarly,
P(C| ) = . P(E C)P(C) ' .
P(E°|C)P(C)+ P(E°|C)P(C*)
T32p

732p+.865(1- p)

Chapter 3



50. Choose a person at random

P{they have accident} = P{acc. | good}P{g} + P{acc. | ave.}P{ave.}
+ P{acc. | bad P(b)}
=(.05)(.2) + (.15)(.5) + (.30)(.3) = .175

95(2)
825
(.85)(.5)
825

P{A4is good| no accident} =

P{A4 is average | no accident} =

51. Let R be the event that she receives a job offer.

(a) P(R)=P(R | strong)P(strong) + P(R | moderate)P(moderate) + P(R | weak)P(weak)
=(.8)(.7) + (4)(.2)+ (.1).1)=.65

P(R| st P(st
(b)  P(strong|R) = (R| strong) P(strong)

P(R)
_ (87 _56
.65 65
Similarly,
8 1
P(moderate | R)= —, P(weak | R)=—
65 65
P(R|st P(st
© P(strong|R”)= (R°|strong) P(strong)
P(R°)
_(2(7) _14
35 35
Similarly,
P(moderate | R = 2, P(weak | R = =
35 35

52. Let M, T, W, Th, F be the events that the mail is received on that day. Also, let 4 be the event

that she is accepted and R that she is rejected.

(a) P(M)=P(M|A)P(4) + P(M| R)P(R) = (.15)(.6) + (.05)(.4) = .11

Chapter 3
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53.

55.

56.

30

P(T)
P(M®)
_ P(T|A)P(A) + P(T|R)P(R)
1- P(M)

_ (2)(6)+(D)(4) 16
.89 89

(b) P(T| M) =

P(MSTW<| A)P(A)
P(MTW)

() P(A|MTW) =

_ (1-.15-20-25)(6) 12
(A)(6)+(.75)(4) 27

P(Th|4)P(A)

P(Th)
- (156 3
CC15)(6)+(15)(4) 5

(d) P(4|Th) =

P(no mail| 4)P(A)

P(no mail)
B (.15)(.6) 9
T C15)(6)+(4)(4) 25

(e) P(4|no mail) =

Let W and F be the events that component 1 works and that the system functions.

P(Wm:P(WF)_ PW)  1/2
P(F) 1-P(F¢) 1-(1/2)""
4 _ 10 _ 10
PiBoy. By =y PBoy) =1 T

10-10
6+x

= 4x=36 orx=9.

so independence = 4 =

A direct check now shows that 9 sophomore girls (which the above shows is necessary) is
also sufficient for independence of sex and class.

P{new} = ZP{new| type i}p; = Z(] _pi)n—lpi
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57.

58.

59.

60.

@) 201 - p)
(b) @pz(l—p)

(c) P{up on first | up 1 after 3}
= P{up first, up 1 after 3}/[3p*(1 — p)]
=p2p(1 - p)/[3p*(1 - p)] = 2/3.

(a) All we know when the procedure ends is that the two most flips were either H, T, or T, H.
Thus,

P(heads) = P(H, T| H, T or T, H)
PHT)  _ p-p 1
P(H,T)+P(T,H) p(l-p)+(1-pp 2

(b) No, with this new procedure the result will be heads (tails) whenever the first flip is tails
(heads). Hence, it will be heads with probability 1 — p.

(a) 1/16
(b) 1/16

(c) The only way in which the pattern H, H, H, H can occur first is for the first 4 flips to all
be heads, for once a tail appears it follows that a tail will precede the first run of 4 heads
(and so T, H, H, H will appear first). Hence, the probability that T, H, H, H occurs first is
15/16.

From the information of the problem we can conclude that both of Smith’s parents have one
blue and one brown eyed gene. Note that at birth, Smith was equally likely to receive either a
blue gene or a brown gene from each parent. Let X denote the number of blue genes that
Smith received.

(a) P{Smith blue gene} =P{X=1|X<1}= 11/12/4 =2/3

(b) Condition on whether Smith has a blue-eyed gene.
P{child blue} = P{blue | blue gene}(2/3) + P{blue | no blue}(1/3)
=(1/2)2/3)=1/3

(c) First compute
P{child brown|Smith blue}2/3

P{Smith blue | child brown} = e

=1/2

Now condition on whether Smith has a blue gene given that first child has brown eyes.
P{second child brown} = P{brown | Smith blue}1/2 + P{brown | Smith no blue}1/2
=1/4+1/2=3/4
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61.

62.

63.

32

Because the non-albino child has an albino sibling we know that both its parents are carriers.
Hence, the probability that the non-albino child is not a carrier is

P(4, 4|4, aora, A orA,A)=%

Where the first gene member in each gene pair is from the mother and the second from the
father. Hence, with probability 2/3 the non-albino child is a carrier.

(a) Condition on whether the non-albino child is a carrier. With C denoting this event, and
O; the event that the i offspring is albino, we have:

P(01) = P(0,| OP(C) + PO, | C)P(C)
= (1/4)(2/3) + 0(1/3) = 1/6

(b) POyfor) = OO
P(Oy)
P(0;0,|C)P(C) + P(O; 0,|C*)P(C*)
- 5/6
_ (/91/4)(2/3)+0(1/3) 3
5/6 20
(a) P{both hit | at least one hit} = Piboth hit} -
P{at least one hit}

pip2/(1 = q1q2)

(b) P{Barb hit|at least one hit} = p/(1 — q1¢»)
0; =1 — p;, and we have assumed that the outcomes of the shots are independent.

Consider the final round of the duel. Letg,=1—p,

(a) P{A4 not hit} = P{4 not hit | at least one is hit}
= P{A not hit, B hit}/P{at least one is hit}

= qsp4/(1 — quqp)

(b) P{both hit} = P{both hit | at least one is hit}
= P{both hit}/P{at least one hit}

= paps/(1 — q4qp)
(©) (quB)n_l(l — 4493)

(d) P{n rounds| 4 unhit} = P{n rounds, 4 unhit}/P{4 unhit}
_ (‘IA‘]B)WIPA‘]B
qzP4/0—q,q5)

=(q498)" " '(1 = qq5)
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64.

65.

66.

67.

(e) P(n rounds | both hit} = P{n rounds both hit}/P{both hit}

_ (CIA‘]B)H_IPAPB
PP/ 1—q,495)

= (qAQB)n_l(l —q4q3)

Note that (c), (d), and (e) all have the same answer.
If use (a) will win with probability p. If use strategy (b) then

P{win} = P{win | both correct}p”® + P{win | exactly 1 correct}2p(1 — p)
+ P{win | neither correct} (1 — p)*
=p +p(l-p)+0=p

Thus, both strategies give the same probability of winning.
(a) P{correct | agree} = P{correct, agree}/P{agree}
=p’/p*+ (1 -p)]
=36/52=9/13 whenp=.6
(b) 172
(a) [[ (1—PP2)(1—P3P4)]P5 (PP2+P3P4—PP2P3P4)P5
(b) Let £, = {1 and 4 close}, F£> = {1, 3, 5 all close}
E;={2,5close}, Es= {2, 3, 4 close}. The desired probability is

P(E1© E> U E5 U Ey) = P(E)) + P(E>) + P(E3) + P(Ey) — P(E\E) — P(E\E5) — P(E\Ey)
— P(E>E3) — P(ELES) + P(ESE,) + P(EV\ELES) + P(EESEY)
+ P(E\ESEy) + P(ELESES) — P(E\E>ESES)

= P\Py+ P\P3Ps + P,Ps + P,P3Py — P\P3PsPs — P\P,P4Ps — P\P,P5P,
— P\P,P3Ps — PyP3P4Ps — 2P P,P3P,Ps + 3P\ P,P3P4Ps.

(@) P1Py(1 — P3)(1 = Py) + Pi(1 — Py)P5(1 — Py) + Pi(1 — Py(1 — P3)Py
+ PoPy(1 = Pi)(1 = Py) + (1 = P))Po(1 = P3)Py + (1 = P1)(1 = P2)P3Ps
+ PiPyPy(1 — Py) + P\Py(1 = P3)Py + Pi(1 — P2)P3Py + (1 — P\)P,P3Py + P\P,P3Py.

(©) Z( jp (1-
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68.

69.

70.

71.

34

Let C; denote the event that relay i is closed, and let F be the event that current flows from
Ato B.

P(C,iG, | F) = PCGF)
P(F)
_ P(F|C,C)P(CC,y)
DPs(p1Py + P3Py — PiD2P3Ps)
_ PsP\P>
Ps(P1Py + P3Py — PiD2P3Ps)

13131 9 11111 1
@ 3222 -2 2 @ oo -

24242 128 22222 32

13131 9 11111 1
0 2232 -2 ®) S -

24242 128 22222 32

18 1
c) — c) —
© 128 © 16

110 15
d — d —
@ 128 @ 16

(a) P{carrier|3 without}
_ U8z
1/81/2+11/2

(b) 1/18

P{Braves win} = P{B| B wins 3 of 3} 1/8 + P{B| B wins 2 of 3} 3/8
+P{B|B wins 1 of 3} 3/8 + P{B| B wins 0 of 3} 1/8
1 311 3| 3 31 38
S—t |+ |+= —=—
8 8142 4] 8 42 o4
where P{B | B wins i of 3} is obtained by conditioning on the outcome of the other series.
For instance

P{B|Bwin2 of 3} = P{B| D or Gwin 3 of 3, B win 2 of 3} 1/4
=P{B|D or Gwin2 of 3, B win 2 of 3} 3/4
11 3

+=.
24 4
By symmetry P{D win} = P{G win} and as the probabilities must sum to 1 we have.

P{D win} = P{G win} = g
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72. Let ' denote for and a against a certain place of legislature. The situations in which a given
steering committees vote is decisive are as follows:

given member other members of S.C.  other council members
for both for 3 or 4 against
for one for, one against at least 2 for
against one for, one against at least 2 for
against both for 3 of 4 against

P{decisive} = p*4p(1 - p)’ + p’p(1 — p)(6p*(1 - p)* +4p’(1 — p) + p*)
+(1=p)2p(1 = p)(6p*(1 = p)* +4p’(1 = p) + p°)
+(1-pp*4p(1 - p)’.

73, (a) 1/16, (b) 1/32, (c) 1032,  (d) 1/4, (e) 31/32.

74. Let P, be the probability that 4 wins when 4 rolls first, and let P be the probability that B
wins when B rolls first. Using that the sum of the dice is 9 with probability 1/9, we obtain
upon conditioning on whether 4 rolls a 9 that

1 8
Pi=—+—(1-P
A4 9 9( B)

Similarly,

5 31
Py=—+—(1-P
5= 3 36( 1)

Solving these equations gives that P, = 9/19 (and that Pz = 45/76.)

75. (a) The probability that a family has 2 sons is 1/4; the probability that a family has exactly 1
son is 1/2. Therefore, on average, every four families will have one family with 2 sons
and two families with 1 son. Therefore, three out of every four sons will be eldest sons.

Another argument is to choose a child at random. Letting E be the event that the
child is an eldest son, letting S be the event that it is a son, and letting 4 be the event that
the child’s family has at least one son,

PElS) = 0

=2P(E)

= 2[P(E|A)% +P(E

- 2[1§+01} —3/4
24 4

AC)ﬂ
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(b) Using the preceding notation

P(ES
p(Els = P2
P(S)
=2P(E)
7 o
= 2[P(E|A)— +P(E|A )—}
8 8
= 2[11} =7/12
38
76. Condition on outcome of initial trial

P(E before F)= P(Eb F| E)P(E) + P(E b F | F)P(F)
+ P(E b F | neither E or F)[1 - P(E) — P(F)]
= P(E) + P(Eb F)(1 - P(E) — P(F)].

Hence,

_ P
PED ) P(E)+P(F)’

77. (a) This is equal to the conditional probability that the first trial results in outcome 1 ()
given that it results in either 1 or 2, giving the result 1/2. More formally, with L; being
the event that outcome 3 is the last to occur

P(L|F)P(F)  (1/2)(1/3)
P(L)  1/3

P(F, | Ly) = =1/2

(b) With §; being the event that the second trial results in outcome 1, we have

P(L,|FS) P(ES,) _(1/2)(1/9)

P(FyS, | Ls) =
(71l Ly) P(L,) 1/3

=1/6

78. (a) Because there will be 4 games if each player wins one of the first two games and then one
of them wins the next two, P(4 games) = 2p(1 — p)[p* + (1 - p)*].

(b) Let 4 be the event that 4 wins. Conditioning on the outcome of the first two games gives

P(A=P(4|a, a)p* + P(4
=p* + P(A)2p(1 - p)

a, b)p(1 —p) + P(4 | b, a)(1 — p)p + P(4| b, b)(1 — p)’

where the notation a, b means, for instance, that 4 wins the first and B wins the second
game. The final equation used that P(4 | a, b) = P(4 | b, a) = P(4). Solving, gives

2
_ P
oo 1-2p(1-p)
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79.

80.

82.

Each roll that is either a 7 or an even number will be a 7 with probability

. N
PPy + Pleven)  1/6+1/2

Hence, from Example 47 we see that the desired probability is

1

7
(Zj(1/4)f(3/4)7—" =1—(3/4)" - 7(3/4)°(1/4)
=2

(a) P(4) = (1/2),ifi<n
=12y, ifi=n

DL/ +n(1/2)
zn _1 - 2n—1

(b)

(c) Condition on whether they initially play each other. This gives

2

1 2"-2(1

Pn:—+ - })n—l
2"—-1 2"-1\2

2
where (%) is the probability they both win given they do not play each other.

(d) There will be 2" — 1 losers, and thus that number of games.

(e) Since the 2 players in game i are equally likely to be any of the [; J pairs it follows that

_/[?
o)

(f) Since the events B; are mutually exclusive

PO B)= Y P(B) = (' —1)/ @] = (112"

1-(9/11)"
1-(9/11)*°

@ )= B - i eenfor e -
1 2 1+2

(c) similar to (a) with P’ replacing Pf.

1
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(b) and (d) Let Ej(f_}) denote the probability that 4 wins when 4 needs i more and B needs j
more and A(B) is to flip. Then

Py=P\Piy;+ (1-R)P,
Ej - sz_;,j—l +(1-B)F;.

These equations can be recursively solved starting with
P()1: 1,P1,0:0.

83. (a) Condition on the coin flip

P{throw n is red} = li+lg = 1
26 26 2
(3]0
(b) Pirly = LU _233) 203) 3
P} 12 A
2(3 23

[22}1

P{rr| A} P(4 3 )2

() Pidlm}= {r,;l{jr}( - 2V (1) (11 4
(3] Ez}@ 2

. 4 8764 8765434 87 6543
84. (b) PAwins) = —+———— +

12 1211109 1211109876 121110987
PBwing = 5.4, 87654 87654324

1211 12111098 12111098765
ACwingy= 514, 876544 87654321

121110 121110987 12111098765

85. Part (a) remains the same. The possibilities for part (b) become more numerous.
86. Using the hint
n . n n n .
P{4cB} = 22" 2" = 2'/4" =(3/4)"
uea=Zem(j)fr-3((s -om
where the final equality uses

i(?jziln—i — (2 + l)n

i=0

38 Chapter 3



&7.

88.

&89.

90.

(b) P(AB = ¢)=P(4 < B)=(3/4)", by part (a), since B is also equally likely to be any of the

subsets.

P{i*]all heads) = — K

D (ilkY"
Jj=0

No—they are conditionally independent given the coin selected.

(a) P(J; votes guilty | Jyand J vote guilty}

= P{J1, J», J; all vote guilty}/P{J, and J, vote guilty}

l(.7)3 +13O(.2)3 97

_ 10
T 0.3 o0 1427
(D) + (2
10() 10()

(b) P(J; guilty | one of J1, J, votes guilty}

7 3
) 1o (DD + 21228 15

3 26
E2(.2)(.8)

7
G2

(c) P{J guilty| J1, J, vote innocent}
7 2 3 2
— (D3 +—(2)(.8
:10()() 10()()=£‘
102

T3P+ (8)
(D)

E; are conditionally independent given the guilt or innocence of the defendant.

Let N; denote the event that none of the trials result in outcome i, i = 1, 2. Then

P(N] UNQ) :P(N1)+P(N2)—P(N1N2)

=(1-p)'+(1=p)' =1 ~=pi1-po)'

Hence, the probability that both outcomes occur at least once is

1= =p)'=1-p)"+(po).
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Theoretical Exercises

1.

40

P(AB) | P(AB)

P(AB| A) = > =P(4B| A4 U B)
P(4) ~ P(AUB)
IfAcB
_ P o _ o _ P(BA)
P(4]B) P(B),P(AIB) o, PBlo=1, P®BlL e

Let F be the event that a first born is chosen. Also, let S; be the event that the family chosen

in method a is of size i.

PyF)= Y P(FIS)P(S)) = Z% %

_ m
Pb(F) - ziini

Thus, we must show that
ZiniZni /i>m?
or, equivalently,
S ie Y,
i j i j
or,

RIS H XL

iz J i)

Considering the coefficients of the term n;n;, shows that it is sufficient to establish that

i+i22
j i

or equivalently
P+ > 2if

which follows since (i — j)* > 0.
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4.

10.

11.

Let N; denote the event that the ball is not found in a search of box 7, and let B; denote the
event that it is in box j.

P(N,|B))P(B))
P(N,[B)P(B,)+ P(N,|B{ )P(B)
_ b
 (I-@)B+1-P
_ (1-a)F,

(1-a)PR+1-P,

PB;|N) =

ifj#i

ifj=i
None are true.

P(liEiJ =1- P[rl\Efj =1- H[l - P(E))]

(a) They will all be white if the last ball withdrawn from the urn (when all balls are
withdrawn) is white. As it is equally likely to by any of the # + m balls the result follows.

(b) P(RBG)= —S——P(RBG | G last) = —5— b
r+b+g r+b+gr+b
bg L b g

Hence, the answer is .
(r+b)(r+b+g) r+b+gr+g

(a) P(4)=P(A| OP(C)+PA|CYP(C*) > PB| O)PC) + P(B| C*)P(C*) = P(B)

(b) For the events given in the hint
P(C|A)P(4) (@1/6)1/6
pua| )= PEIDPA _ 1/611/6)
3/36 3/36

=1/3

Because 1/6 = P(A4 is a weighted average of P(4 | C) and P(4 | ), it follows from the
result P(4 | C) > P(4) that P(4 | C%) < P(4). Similarly,

113=PB|C)> P(B)> P(B| C)
However, P(A4B| C) =0 < P(4B| C°).
P(A) = P(B) = P(C) = 1/2, P(AB) = P(AC) = P(BC) = 1/4. But, P(ABC) = 1/4.
P(A4;)) = 1/365. Fori#j#k, P(4;;4;,) = 365/(365)’ = 1/(365)*. Also, fori=j#k#r,
P(A4;jArr) = 1/(365)".

log(2)

1-(1-p)"212,0r,n> —
log1 - p)
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12.

13.

14.

15.

16.

17.

42

i—-1 ©

aiH(l —a;) is the probability that the first head appears on the i™ flip and H(l —a;) is the
j=1 i=1

probability that all flips land on tails.

Condition on the initial flip. If it lands on heads then 4 will win with probability P,y ,
whereas if it lands tails then B will win with probability P,,, (and so 4 will win with
probability 1 — P,, ).

Let N go to infinity in Example 4;.

P{r successes before m failures}
= P{r" success occurs before trial m + r}
m+r-1
n-1) ,
— 7 1_ n—r .
Z (r ~ Jp (1-p)

n=r
If the first trial is a success, then the remaining #» — 1 must result in an odd number of

successes, whereas if it is a failure, then the remaining #» — 1 must result in an even number of
successes.

P, =1/3

Py~ (1/3)(&/5) + (2/3)(1/5) = 2/5

Py = (173)(4/5)(6/7) + (2/3)(4/5)(1/7) + (1/3)(1/5)(1/7) = 3/7
P4 =4/9

n
2n+1

(b) P,=

(c) Condition on the result of trial n to obtain

1 2n
Pn: I_Pn— —+})n—
( Dol T

(d) Must show that

n_ |, n-l 1 L -1 2n
2n+1 2n—1]2n+1 2n—-12n+1
or equivalently, that

n_n 1 +n—l 2n
2n+1 2n-12n+1 2n-12n+1

But the right hand side is equal to

n+2n(n-1)  n
2n-D2n+1) 2n+1
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18. Condition on when the first tail occurs.
19. Pi= pf—l,i+l +(I=p)F,_,

20. Q1 = Oyp + (1 - an)(l _Pl)
P,=ap+(1-a)p'

nn-1) n-1
(n+n  n+1
P, ,=P{A4 receives first 2 and at least 1 of the next 2}

_n n-l - 21 | n-2
n+2n+1 n(n—1) n+2

(©) Pop= "
n

21. (b) P,1 = P{A receives first 2 votes} =

,n=m.
+m

(d) P, =P{A4 always ahead}

= P{4 always | 4 receives last vote}
n+m

+ P{A always | B receives last vote}
n+m

n m
= Pt Pn,m—l
n+m n+m

(e) The conjecture of (c) istrue whenn+m=1m=1,m=0).
Assume it when n + m = k. Now suppose that n + m =k + 1. By (d) and the induction
hypothesis we have that

n n—l—m+ m n-m+1l_n—-m

Pn,m: -
n+mn—-1+m n+mn+m-1 n+m

which completes the proof.

22. Pn :Pn—lp+ (1 _Pn—l)(l _p)
=2p-DPit(1-p)

1 1
=Q2p- 1){5 + 5(2 p-1 ”1} + 1 —p by the induction hypothesis

_ 2p-1

+%(2p—1)” +1-p

=—+—Q2p-1".

N |~
| =
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23.

24.

25.

27.

44

Py, =1/2. Assume that P,, = 1/2 when k > a + b and now suppose a+ b=k + 1. Now
1
a+b
(")
1
b+a
)

+ P{last is white | neither first ¢ are white nor first 5 are black}

P, = P{last is white | first a are white}

+ P{last is white | first b are black}

1 _ a1l albl albl | 1
(a+bj (b+aj (a+b)! 2| (a+b)! (a+b)| 2
a b

where the induction hypothesis was used to obtain the final conditional probability above.

The probability that a given contestant does not beat all the members of some given subset of
k other contestants is, by independence, 1 — (1/2)*. Therefore P(B;), the probability that none
of the other n — k contestants beats all the members of a given subset of k£ contestants, is

[1 - (1/2)"]"*. Hence, Boole’s inequality we have that

P(U B) < (Zj[l —(1/2)f

Hence, if (Zj[l —(1/2)F1"* <1 then there is a positive probability that none of the (Zj

events B; occur, which means that there is a positive probability that for every set of £
contestants there is a contestant who beats each member of this set.

P(E| F)=P(EF)/P(F)

P(EFG) P(FG) _ P(EFG)

P(E|FGP(G|F)= P(FG) P(F)  P(F)

P(EFG®)

PE|FGYP(G | F) = )

The result now follows since
P(EF) = P(EFG) + P(EFG®)

E\, E,, ..., E, are conditionally independent given F if for all subsets iy, ..., i, 0f 1,2, ..., n

P(E, ..E,|F)= HP( )

Chapter 3



28. Not true. Let F'= Ej.

29. P{next m heads | first n heads}
= P{first n + m are heads}/P(first n heads}

1 1
n+m n n+1
=jp*dp jpdp=—-
7 7 n+m+l

Chapter 3
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Chapter 4

Problems

VR
— A
N—
VR
— o0

) y

32 =) - 2) 28

14) 91

)

2. p()=136  p(5)=2/36  pO)=1/36  p(15)=2/36 p(24)=2/36
p(2)=236  p6)=436  p(10)=2/36 p(16)=1/36 p(25)=1/36

p(3)=2/36  p(7)=0 p(11)=0 p(18)=2/36  p(30)=2/36
p@)=3/36  p@8)=2/36  p(12)=4/36 p0)=2/36  p(36)=1/36

4
4, PIX=1} =12, P(X=2} = ~2-2 py=33=>23_5
109 18 1098 36
4 1 4.3.2
P{X=4}=i—§§=—O,P{X=5}= >:4-3 _ 3 ,
10987 168 10-9-8-76 252
prr—g = 54321 1
10-9-8-7-6 252
5. n-2ii=0,1,....n

6. P(X=3}=1/8, P{X=1}=3/8, P{X=—1}=3/8, P{X=-3}=1/8

8. (@) p(6)=1—-(5/6)*=11/36, p(5)=21/6 4/6 + (1/6)*=9/36
p(4)=21/6 3/6 + (1/6)*=17/36, p(3) =2 1/6 2/6 + (1/6)* = 5/36
p(2)=21/6 1/6 + (1/6)*=3/36, p(1) = 1/36

(d) p(5) = 1/36, p(4) = 2/36, p(3) = 3/36, p(2) = 4/36, p(1) = 5/36
p(0) =6/36, p(=)) = p(j),j >0

46 Chapter 4



333 9

142
P{divisible by 7} = ——
{ Y74 = 1000
66
P{divisible by 15} = ——
{ Y133 = 1000

In limiting cases, probabilities converge to 1/3, 1/7, 1/15, 1/10

(b) P{u(N)# 0} = P{N is not divisible by pl.2 ,i21}
= [ [PV is not divisible by p; }

=[Ja-1p})=6/7

13. p(0) = P{no sale on first and no sale on second}
=(7)(4)=.28
p(500) = P{1 sale and it is for standard}
= P{1 sale}/2
=[P{sale, no sale} + P{no sale, sale}]/2
=[(.3)(.4) + (.7)(.6)]/2 = .27

p(1000)= P{2 standard sales} + P{1 sale for deluxe}
= (.3)(.6)(1/4) + P{1 sale}/2
=.045+.27= 315

p(1500)= P{2 sales, one deluxe and one standard}
=(.3)(.6)(1/2) = .09

p(2000)= P{2 sales, both deluxe} = (.3)(.6)(1/4) = .045
14. P{X=0}=P{1 losesto2} =1/2

P{X=1}=P{of 1,2, 3: 3 has largest, then 1, then 2}
=(1/3)(1/2)=1/6

P{X=2}=P{of 1,2, 3,4: 4has largest and 1 has next largest}
=(1/4)(1/3) =1/12

P{X=3}=P{of1,2,3,4,5: 5has largest then 1}
=(1/5)(1/4) =1/20

P{X =4} = P{l has largest} = 1/5
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15.

16.

20.

21.

22.

48

P{X=1}=11/66
oo N(12-4Y 1
pa=2 ZZ( 66 j[54+jj

o 12-7\ 12—k 11
Pix=3;= ,;]Z;‘( j[54+jj(42+j+kJ

k+#j

3
P{X=4}=1- Y P{X =1}
i=1
12-i
66

pir-iy - 32t 2]

J#l

o 12—\ 12—k 11
P{Y;=i} = ZZ( )(54+jj(42+k+J'J

k:’:/ J#i

P{Y,=i}=

All sums go from 1 to 11, except for prohibited values.

(a) P{x> 0} = P{win first bet} + P{lose, win, win}
= 18/38 + (20/38)(18/38)* ~ .5918

(b) No, because if the gambler wins then he or she wins $1.
However, a loss would either be $1 or $3.

(c) E[X]= 1[18/38 + (20/38)(18/38)*] — [(20/38)2(20/38)(18/38)] — 3(20/38)" ~ —.108

(a) E[X] since whereas the bus driver selected is equally likely to be from any of the 4 buses,
the student selected is more likely to have come from a bus carrying a large number of
students.

(b) P{X=1i} =i/148, i =40, 33,25, 50

E[X] = [(40)* + (33)* + (25)* + (50)*]/148 ~ 39.28
E[Y] = (40 + 33 + 25 + 50)/4 = 37

Let N denote the number of games played.

(@) E(N)=2[p* + (1 -p)’] +3[2p(1 —p)] =2+ 2p(1 ~ p)

The final equality could also have been obtained by using that N =2 + | where / is 0 if
two games are played and 1 if three are played. Differentiation yields that

iE [N]=2-4p

dp

and so the minimum occurs when 2 —4p =0 or p = 1/2.
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(b) E[N]=3[p’ + (1 —p)’ +4[3p°(1 —p)p + 3p(1 - p)’(1 - p)]

+5[6p*(1 —p)y' = 6p* —12p° +3p* +3p +3

Differentiation yields
iE[N] =24p® - 36p* + 6p+3
dp

Its value at p = 1/2 is easily seen to be 0.

23. (a) Use all your money to buy 500 ounces of the commodity and then sell after one week.

The expected amount of money you will get is

1 1
E[money] = 5500+§2000 =1250

(b) Do not immediately buy but use your money to buy after one week. Then

E[ounces of commodity] = %1000 +%250 =625

7 3 11

3
24. —(1-p)==Lp-3/4, b) ——p+(-p2=—p+2
@ p—( p)4 i (b) 27 (I-p) R4

%p—3/4=—%p+2:>p=11/18,maximumvalue=23.72

(c) g- %(1 -q) @ - %q +2(1-g) , minimax value = 23/72

1
25. a) —(1+2+..+10)=—
(a) 10( ) 5

attained when ¢ = 11/18

11

(b) after 2 questions, there are 3 remaining possibilities with probability 3/5 and 2 with

27. C-

probability 2/5. Hence.

2 3 1 2 17
E[Number]= —3)+—|2+—+2—|=—.
N ] 5() 5[ 3 3} 5

The above assumes that when 3 remain, you choose 1 of the 3 and ask if that is the one.

A I
dp=2 oA pr L
T (p 10}

28. 3. 4 3/5
20
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29.

30.

31.

32.

35.

36.

50

If check 1, then (if desired) 2: Expected Cost = C; + (1 —p)C, + pR; + (1 — p)Ry;
if check 2, then 1: Expected Cost = C, + pC, +pR; + (1 — p)Ry so 1, 2, best if

Ci+(1=p)C> < Cy +pC, or C, < ILC2
-p

E[X] = iz"a/z)" =

(a) probably not
(b) yes, if you could play an arbitrarily large number of games

E[score] = p*[1 — (1 — P)* + (1 — p*)(1 — p?)

d
—=2(1 =p)p* = 2p(1 = p*)
dp
If T is the number of tests needed for a group of 10 people, then
E[T]=(9)"+11[1-(9)"1=11-10(.9)"
If X is the amount that you win, then
P{X=1.10}=4/9=1-P{X=-1}
E[X]=(1.1)4/9 = 5/9 = -.6/9 = =067
Var(X) = (1.1)2(4/9) + 5/9 — (.6/9)> ~ 1.089
Using the representation
N=2+1
where /[ is 0 if the first two games are won by the same team and 1 otherwise, we have that
Var(N) = Var(l) = E[I}* - E{1]

Now, E[I’=E[l} =P{I=1}=2p{l —p} and so
Var(N) =2p(1 - p)[1 - 2p(1 - p)] = 8p> — 4p* — 6p* + 2p

Differentiation yields

diVar(N) =24p” —16p° — 12p+2
p

and it is easy to verify that this is equal to 0 when p = 1/2.
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37.

38.

39.

41.

42.

43.

44,

45.

47.

E[X?] = [(40)° + (33)° + (25)° + (50)°)/148 ~ 1625.4
Var(X = E[X*] - (E[X])* = 82.2
E[Y*] ==[(40)* + (33)* + (25)* + (50)*)/4 = 1453.5, Varr(Y) = 84.5

(a) E[(2+X)*]=Var(2 +X) + (E[2 + X])* = Var(X) + 9= 14

(b) Var(4 +3X) =9 Var(X) =45

@(1/2)4 =3/8 40. [jj(1/3)4(2/3)1 +(1/3)° = 11/243

i[lfja/z)‘“

i=7

Gjﬁ(l -p)’+ [jjp“(l -p)+p’ 2 @Jpz(l -p)+p’

S6p—15p"+12p-320
S6(p—1/2)p-1720
<Sp21/2

5V 3 on2 L [d 4 5
[3J(.2) (.8) +(4J(.2) (.8)+(.2)
azn:(}:)pll (1- pl)n_i +(1- a)zn:[?jplz (1- Pz)n_i

with 3: P{pass} = %{[;)(.8)2(,2) + (-8)3} + %{[;)(.4)2(,6) + (.4)3}
=.533

: 1 (5) o 25(5) i s
with 5: P{pass} = EZ(iJ(‘g)l(,Z) B +§Z(i j(.4)l(,6) -i

i=3 i=3

=.3038

9 8
@and (b): () Z[?Jp"(l—p)9-", (if) Z[f)p"(l—p)g"k

i=5

(iii) i(gp"(l — p)" where p=.7 in (a) and p = .3 in (b).
i=4
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48.

49.

50.

51.

52.

53.

54.

52

The probability that a package will be returned is p = 1 — (.99)'° — 10(.99)°(.01). Hence, if

someone buys 3 packages then the probability they will return exactly 1 is 3p(1 — p)*.

10 10
(a) N ye 0 775
20 7 2( 7

9
ee+lys
216 2

(b)

.55

(a) P{H, T, T|6 heads} =P(H, T, Tand 6 headsﬁ/P{6 heads}
=P{H, T, T} P{6 heads | H, T, T}/P{6 heads}

_ o T) s 2 [[10) 4 4
Pq (SJPQ/(6JP‘]

=1/10

(b) P{T, H, T| 6 heads} =P(T,H, Tand 6 headsﬁ/P{6 heads}
= P{T, H, T}P{6 heads | T, H, T}/P{6 heads}

— 2 7 5.2 10 6 4
qp[qu ¢ P4

=1/10

(a) e b) 1-e?-2e?=1-12¢"
Since each letter has a small probability of being a typo, the number of errors should
approximately have a Poisson distribution.

(@) 1—e? =357 =1-45¢7"
(b) 4.5¢73

Since each flight has a small probability of crashing it seems reasonable to suppose that
the number of crashes is approximately Poisson distributed.

(a) The probability that an arbitrary couple were both born on April 30 is, assuming
independence and an equal chance of having being born on any given date, (1/365)%.
Hence, the number of such couples is approximately Poisson with mean 80,000/(365)°
.6. Therefore, the probability that at least one pair were both born on this date is

approximately 1 — e~

4

(b) The probability that an arbitrary couple were born on the same day of the year is 1/365.
Hence, the number of such couples is approximately Poisson with mean 80,000/365 =
219.18. Hence, the probability of at least one such pairis 1 —e*"*'® ~ 1.

(a) e? (b) 1—e??*—22e*=1-32¢*
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55.

56.

57.

59.

60.

61.

62.

63.

The number of people in a random collection of size n that have the same birthday as yourself
is approximately Poisson distributed with mean n/365. Hence, the probability that at least
one person has the same birthday as you is approximately 1 — e "%, Now, e™ = 1/2 when
x=1og(2). Thus, 1 —e™*% >1/2 when n/365 > log(2). That is, there must be at least 365

log(2) people.

2
(@ 1-e’-3¢7 —6733— = 1—£€_3
2 2
17 4
Pix>3 17,¢

(b) P{X>3]x>1} = Pl 1oe

(a) l—e'2

1 -1/2
b) —e

1
Q) 1_el2= L2
(©) 5

P{2|beneficial} 3/4

P{beneficial | 2} = . .
P{2| beneficial}3/4 + P{2| not beneficial}l/4

5373 5%
——+e
2 4 24

e

l—e'*—14e"

If A4; is the event that couple number i are seated next to each other, then these events are,
when # is large, roughly independent. As P(4; =2/(2n — 1) it follows that, for n large, the
number of wives that sit next to their husbands is approximately Poisson with mean

2n/(2n — 1) = 1. Hence, the desired probability is ¢ ' = .368 which is not particularly close to
the exact solution of .2656 provided in Example 5# of Chapter 2, thus indicating that n = 10
is not large enough for the approximation to be a good one.

(a) e—2.5

25 25 (25 s

b) 1 — 2525025
() 1-e ¢ 2 31
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64.

65.

66.

67.

68.

69.

54

,
(@ 1- Y e*4'/il =p
i=0

(b) 1-(1-p)*~12p(1 -p)"

© (1-p'p
(@) 1-¢?
1—671/2—1671/2
(b) PIX>2]Xx>1) = 1_671/22
(c) 1-¢?

(d) 1T —exp {~500 —7)/1000}

Assume n > 1.
2

a

@ 2n—-1
2

b

®) 2n—-2

(c) exp{—2n/2n—1)} ="'

Assume n > 1.
2
(@) —
n
(b) Conditioning on whether the man of couple j sits next to the woman of couple i gives the
1 n—-2 2 2n—3

result: + = >
n—-ln-1 n-1n-1 (n-1)

(©) e’
exp(—10e™}

With P; equal to the probability that 4 consecutive heads occur within j flips of a fair coin, P,
=P,=P+3=0,and

Py=1/16

Ps=(1/2)Py+ 1/16 = 3/32

Ps=(1/2)Ps+ (1/4)Ps + 1/16 = 1/8

Py = (1/2)Pg + (1/4)Ps + (1/8)Ps + 1/16 = 5/32

Ps = (1/2)P; + (1/4)Ps + (1/8)Ps + (1/16)P; + 1/16 = 6/32

Py = (1/2)Ps + (1/4)P; + (1/8)P + (1/16)Ps + 1/16 = 111/512

Pio = (1/2)Ps + (1/4)Pg + (1/8)P; + (1/16)Ps + 1/16 = 251/1024 = 2451

The Poisson approximation gives

Pio~1—exp{—6/32-1/16} =1 —¢* = 2212

Chapter 4



70.  eM+(1-eMp

26\’
26Y' 12
(b) (QJ IR
72. P{wins in i games} = (i ; 1J(-6)4(-4)i_4

73. Let N be the number of games played. Then
P{N=4}=2(1/2)*=1/8, P{N=5}= 2(?)(1/2)(1/2)4 =1/4

P{N=6} = 2@(1/2)2(1/2)4 =5/16, P{N=17}=5/16

E[N]=4/8 +5/4+30/16 +35.16 = 93/16 = 5.8125

5
74, (a) %J

4SIORNHIBRRGIER!

26, (N1+N2—k

N +N, -k
N, N

2

J(l/z)NﬁNz—" (1/2) +( j(l/z)Nl”Vz—" (1/2)

2N -k IN-k
77. 2( v J(l/z)

2[2N—k—1

N1 j(l/Z)ZN‘k‘l(l/Z)

Chapter 4
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79.

80.

81.

56

)
10
(a) P{X— 0} = W
10
o L3
10 9 M1 8 \2
(b) PAX>2}=1- 100
10
P{rejected| 1 defective} =3/10
P{rejected |4 defective} =1 — (g)/[l??j =5/6

53

P{4 defective | rejected} = % =75/138

ii_l’_ii
610 1010

P{rejected} = 1 — (.9)*

Chapter 4



Theoretical Exercises

L.

Let £; = {no type i in first n selections}
N
P{T>n} = P(g_)lEij
=Y A=-P)" =YD A-P=P)'+> > > (1-p,-p)

1<J i<j<k

L EDYY R
P{T=n}=P{T>n-1} — P{T>n}
1- },ig(l)F(a_h)

Not true. Suppose P{X=5b} =€e>0and b,=b+ 1/n. Then bliran(X <b,} =P{X<b}#
P{X<b}.

When >0
PlaX+ fB<x) = P{xs x—ﬁ}:F(x—ﬂj
[24 o
When a< 0
P{aX + f<x) = P{Xz x_ﬂ}zl— lim F(ﬂ—lj.
o h—0" o
ZP{N> i} =Y > PIN=k
i=1 k=1
= > > PIN=K}
k=1 i=1
ikP{N k} = E[N].
k=1
iiP{N>i} = i ZP{N kY
i=0 i=0 k=i+1
= iP{N k}Zz

P{N ki(k —1)k /2

ikzP{N =k} — ZkP{N = k}j /2
k=1 k=1

Il
iMs 1

I
TN

Chapter 4



8.

10.

11.

12.

58

E[c]=cp+c(1-p)

Hence, 1 = E[¢"] if
ept+c'd-p) =1

or, equivalently
pt—c+1-p=0

or
(pc—1+p)c—1)=0

Thus, ¢ = (1 — p)/p.

E[Y|=EXo— yo]= lE[X] —pwo=yo—wo=0
(o2
Var(Y) = (1/0)* Var(X) = ¢°/c” = 1.

BUx e+ = YA

il_ n—i
iAot 4P

n

_ n! in_ n—i
“ 2 aopaen? P

i=0

1 ! n+1 i+1 i
— 1 1_ n—i
z(iﬂ =p)

(n+Dpiz
_ - +11)p ;(n jlj‘” i= pyii
:<n+11)p{1 (mj - )}
“a +1) [1-(1-p)™']

For any given arrangement of & successes and »n — k failures:
P{arrangement | total of & successes }

_ P{al‘rangement} _ pk (l_p)n—k ~ |

P{k successes} - (ijk(l—p)”k B (Zj

Condition on the number of functioning components and then use the results of Example 4c

of Chapter 1:

poo= 31 (173 7)]

i +1 . . :
where (;4- ) =0ifn—i>i+ 1. We are using the results of Exercise 11.
—1

Chapter 4



13. Easiest to first take log and then determine the p that maximizes log P{X = k}.
log P{X=k} = log(Zj +klogp+(m—k)log(1—p)
O jogPix =y =X _n=k

op p l-p

=0 = p = k/n maximizes

(b) Condition on the number of children: For k>0

P{kboys} = > P{k|n children}ap"
n=l

o0

_ n n_ . n
= (kj(l/z) ap

n=k

W N g
P{0boys} =1—- —+ 1/2
{0 boys} = ;ap()

17. (a) If Xis binomial (n, p) then, from exercise 15,

P{Xiseven} =[1+(1-2p)"]/2
=[1+ (1 —=2A/n)"}/2 when A=np
— (1 +e /2 as n approaches infinity

2n
(b) P{Xiseven} = e"ﬂz;t @m) — el +eh2

18.  log P{X=k} =—A+ klog A—log (k!)
0 k
—logP{X =k} =—-1+—
PYR { } P

=0=> A=k

Chapter 4
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19.

20.

21.

22.

60

E[X" =Y i"e "2 /il
i=0

i"e A /i)

Il
'MS

I
—_

i"e A (i —1)!

Il
.M8

G+ e A 1

Il
M

J

=AY (j+D)"e A !
0

Il
(=]

J
= JE[(X +1)"

Hence [X°] = AE(X + 1)7]
=AY i+ 2 /il

i=0

= A D et A iw2) et A i)y et A /i!}
i=0 i=0 i=0

= A[E[X*]+2E[X]+])

= A(Var(X) = E’[X] + 2E[X] + 1)
=AA+ 2420+ D)= +31+1)

Let S denote the number of heads that occur when all n coins are tossed, and note that S has a
distribution that is approximately that of a Poisson random variable with mean 4. Then,
because X is distributed as the conditional distribution of S given that S > 0,

P{S=1 e

PiX=1}=P{S=1|S>0! = TR

(i) 1/365
(i1) 1/365
(iii))1  The events, though independent in pairs, are not independent.

(i) Say that trial / is a success if the i pair selected have the same number. When 7 is large
trials 1, ..., k are roughly independent.

(i1) Since, P{trial i is a success} = 1/(2n — 1) it follows that, when # is large, M is
approximately Poisson distributed with mean £/(2n — 1). Hence,

P{M; =0} ~ exp[—k/(2n — 1)]

(iii) and (iv) P{T > an} = P{M,, = 0} ~ exp[-an/2n — 1)] - ¢ **

Chapter 4



23.

24,

25.

27.

28.

29.

Chapter 4

365 . y
(a) P(E)=1- Zio( : j(l/365)~’(364/365)365 j
L

(b) exp(-365P(E})}

(a) There will be a string of k consecutive heads within the first » trials either if there is one
within the first n — 1 trials, or if the first such string occurs at trial #; the latter case is
equivalent to the conditions of 2.

(b) Because cases 1 and 2 are mutually exclusive

P, =P+ (1= Py )(1 - Pt

P(m counted) = ZP(m‘n events)e 1" /n!

o0

n m n-m _—A an
1- A"/ n!
Z(m (1-p)" "X /n

— o (Ap)" i[ﬂ(l -p)I"™" o A1-p)
m! = (n—m)!
_ e
m!

Intuitively, the Poisson A random variable arises as the approximate number of successes in
(large) independent trials each having a small success probability a (and 4 na). Now if each
successful trial is counted with probability p, than the number counted is Binomial with

parameters 7 (large) and op (small) which is approximately Poisson with parameter opn = Ap.

P{X =n+k}
P{X > n}

n+k-1

_pd-p
(1-p)
=p(1-p)*"

PiX=n+klX>n} =

If the first » trials are fall failures, then it is as if we are beginning anew at that time.

The events {X > n} and {¥ <r} are both equivalent to the event that there are fewer than r
successes in the first # trials; hence, they are the same event.

Np \( N—np
P{X=k+1} \k+1\n-k-1

PX =k} [NpJ(N - NpJ

k n—k
_ (Np —k)(n—k)
k+D)(N-Np—n+k+1)

61



n (N+1
N (n+lj
("
n(N +1)
n+l

31. Let Y denote the largest of the remaining m chips. By exercise 28

P{Y=j}=(’i__llj/(m’;:nj,mﬁjﬁnwLm

Now, X=n+m — Y and so

PX=i=P{Y=m+n—i}= [”’*”"'_lj/(’"”j,mn

m-—1 m

k—l k,zn—i
32. P{X=k} = - L k>1
=k =—]5—

n
24 E[X] B n k(k) 2)1—1
“2" 1 2"—1

n (kj n-2
EX?] = 2 n(n +1)
e | "1
n2*" % —n(n+1)2"2
(2)1 _ 1)2
n22n—2 n

22)1 - Z

Var(X) = E[X” ] - {E[X])’ =

62
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35.

n n+l
E[Y] = ”zl,E[Y2]= it~ |
i=l1 1

n

n+1j2 n’

5 ~

2
Var(Y) ~ %—( B

hno12 1 1
@ X = T T
(b) P(X <oo} = lim P{X < i}
= lim(1-1/(i+1)) =1
(c) E[X]= ZiP{X =i}

= D i(P{X >i-1} - P{X > i}

Chapter 4
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Chapter S

Problems

—

(a) cI(l—xz)dx=1:C:3/4

37 5 3 X 2
b) Fx)=—|(0-x)dx=—| x——+—|,-1<x<1
(b) F(x) 4_11( ) 4{ : J
2. J.xe_)‘/ 2dx = —2xe*'* —4¢™*'* . Hence,

cJ.xe_’”zdx=1:>c=1/4
0
P{X>5}= lJ.xe_'”zdx =l[10e_5/2 +4e7'?]
44 4
14
4

3. No. f(5/2)<0

4, (a) j—dx_—j 1/2.

(b) F(y)—'[—dx—l—% y>10. F(y)=0 fory < 10.

6 i 6—i
2\(1 ) — o
(©) Z(f)(g} (EJ since F(15) = % . Assuming independence of the events that the
i=3
devices exceed 15 hours.

5. Must choose ¢ so that

1
0l = j5(1 —x)*de=(1—c¢)

soc=1-(01".

64 Chapter 5



NI

(a) E[X]= j e 2y =2 j Y2 dx =20(3) = 4
0 0

(b) By symmetry of f{x) about x= 0, E[X] =0

00

(c) E[X]= j%dx:oo

(a+bx*)dx =1or a+§=1

x(a+bx2)dx=g or Z+2=3/5. Hence,
5 2 4

JSY SRS S

PIE R
5 5

8. E[X] = sze—xczx -T3)=2

0

9. If 5 units are stocked and the demand is X, then the profit, P(s), is given by
P@)=bX—-(s—-X)P ifX<s
=sb ifX>s
Hence

E[P(s)] = j :(bx —(s—x)0) f (x)dx +j " sbf (x)dx
= (b+ 1) j :xf(x)dx st j 0 F(x)dx+ sb[l - jo f(x)dx}
—sh+ (b+ 1) j :(x —9) f(x)dx

Differentiation yields

j E[P(s)] = b+ (b + @%U ;xf(x)dx _p j 0 f(x)dx}

ds
b+ (bt é)[sf(s) ~s - ;f(s)dx}

—bh- (b+z)j;f(x)dx

Chapter 5 65



10.

11.

13.

14.

15.

66

Equating to zero shows that the maximal expected profit is obtained when s is chosen so that

where F(s) = ) (x)dx is the cumulative distribution of demand.
0

(a) P{goestoA} =P{5<X<150r20<X<30o0r35<X<45o0r50<X<60}.
=2/3 since X is uniform (0, 60).

(b) same answer as in (a).

X is uniform on (0, L).

Pmin( X ,ﬂj<1/4

L-X X

— 1= P)min[ X ,ﬂ >1/4
L-X X

=1-P L>1/4,L_X>1/4
L-X X

=1-P{X>L/5 X<4L/5}
= 1—P{§ <X< 4L/5}

1322
55

P{X>25 5/30 _
P{X >15} 15/30

2
P> 10} = 2, PX> 25| x> 15! =

where X is uniform (0, 30).

E[X"] = j "dx =

0
P{Xn <X} { <x } 1/n

1

x
E[X"]Ij % ("7 jdx—%j 1/”a’xzﬁ
0 0

(a) D(.8333)=.7977
(b) 2d(1) - 1 = .6827
(c) 1—d(.3333)=.3695
(d) (1.6667) =.9522
(e) 1—d(1)=.1587

Chapter 5



16.

17.

18.

19.

20.

22.

Chapter 5

X -40

P{X>50} = P{ > 14?} 1-®2.5)=1-.9938
Hence, (P{X < 50})"" = (.9938)"

E[Points] = 10(1/10) + 5(2/10) + 3(2/10) = 2.6

2= P{X > 9 — 5} = P{Z > 4/0} where Z is a standard normal. But from the normal
o o

table P{Z < .84) = .80 and so
B4 ~4/cor o~4.76
That is, the variance is approximately (4.76)* = 22.66.

Letting Z = (X — 12)/2 then Z is a standard normal. Now, .10 = P{Z > (¢ — 12)/2}. But from
Table 5.1, P{Z < 1.28} =.90 and so

(c—12)2=128 or c=14.56

Let X denote the number in favor. Then X is binomial with mean 65 and standard deviation
65(.35) ~4.77. Also let Z be a standard normal random variable.

(a) P{X>50} = P{X>49.5} = P{X—65}/4.77 > —15.5/4.77
~ P{Z>-3.25} ~ 9994

(b) P{59.5<X<70.5} ~P{-5.5/477<Z<55/4.77}
=2P{Z<1.15} - 1~.75

(c) P{X<74.5} ~ P{Z<9.5/4.77} ~ 977
(a) P{.9000 —.005 <X <.9000 + .005}
_ p_005 005
.003 003
=P{-1.67<Z<1.67}
=2d(1.67) — 1 =.9050.

Hence 9.5 percent will be defective (that is each will be defective with probability
1 —.9050 = .0950).

(b) P{—E <Z< 005} 2@( 005]—1=.99when
O o o

CI)('OOSJ— 995 = 005 —=2.575=0=.0019.
o o}

67



23.

24.

25.

27.

68

149.5—m 200.5—m

6 <Z <—6
‘/IOOOlé ‘/100012
66 66

- 200.5—166.7}_ [149.5—166.7j

(a) P{149.5<X<200.5}= P

45000/36 45000/36

~ D(2.87) + D(1.46) — 1 = .9258.

149.5-800(1/5)

\/80014
55

=P{Z<-93}
=1-d(.93)=.1762.

(b) P{X<149.5} = P{Z <

With C denoting the life of a chip, and ¢ the standard normal distribution function we have

1.8x10° —1.4x10°
P{C<1.8x10% = ¢ —
R e

= K1.33)
= 9082

Thus, if N is the number of the chips whose life is less than 1.8 x 10° then N is a binomial
random variable with parameters (100, .9082). Hence,

19.5-90.82

j =1-g—247)~ 1

Let X denote the number of unacceptable items among the next 150 produced. Since Xis a
binomial random variable with mean 150(.05) = 7.5 and variance 150(.05)(.95) = 7.125, we
obtain that, for a standard normal random variable Z.

P{X<10} =P{X<10.5}
_ P{X—7.5S10.5—7.5}
V7125 47125

~ P{Z<1.1239}
= 8695

The exact result can be obtained by using the text diskette, and (to four decimal places) is
equal to .8678.

PIX>5,799.5) = Pz > 22
2,500

= P{Z>15.99} = negligible.

Chapter 5



28.

29.

30.

Let X equal the number of lefthanders. Assuming that X is approximately distributed as a
binomial random variable with parameters n = 200, p = .12, then, with Z being a standard
normal random variable,

X -200(12) _ 19.5-200(.12)
200(.12)(.88) ~ 1/200(.12)(.88)

~ P{Z>-9792}
~ 8363

PLY>195}=.P{

Let s be the initial price of the stock. Then, if X is the number of the 1000 time periods in
which the stock increases, then its price at the end is

X
X 71000-X 1000 U
su-d =sd (Zj

Hence, in order for the price to be at least 1.3s, we would need that

dwm(gJX>13

- log(1.3) —10001og(d)
log(u/d)

or

X =469.2

That is, the stock would have to rise in at least 470 time periods. Because X is binomial with
parameters 1000, .52, we have

p{X>>4695}::P{ X —1000(52) 4695——1000(52)}

J1000(.52)(:48) ~ 4/1000(.52)(.48)
~ P{Z>-3.196}

~.9993
P{5| black
P{in black} = { | aca :
P{5 | black}a + P{5 | white} (1 — @)
1 —(5-4)*/8
——e a
_ 2\27x
1 —(5-4)2/8 1 -(5-6)* /18
——e a+(l-a)——=ce
227 327w
a 18
_ 2
& s (1-a) o /8
2 3

a is the value that makes preceding equal 1/2

Chapter 5 69



31.

32.

33.

34.

35.

36.

37.

70

A a

dx dc A a2
@ Ex—d] - [0 %4 <a—x>—=__[a__J
x=d j 4 ! 4 2 4

i( )=2—a—1=0:>a=A/2
da A

(b) E[X -df] = T(a —xX)de Fdx + T(x —a)de Fdx
0 a
—Ja —Ja

= a(l—e™)+ae™ +67—%+ae_i“ +eT—ae_M

Differentiation yields that the minimum is attained at @ where
e ™ =1/2 ora =log2/A
(c) Minimizing ¢ = median of F

(a) e
(b) o2

-1
e

(a) P{X>20}=¢"

P{X >30} 1/4

(b) P{X>30|x>10= =
P{X >10} 3/4

=1/3

40

50
(a) exp{— J-/i(t)dz} =¥
(b) e—1.21
2
(a) 1-F2)= explZ— It%lt} =e*
0
(b) exp[—(.4)*/4] — exp[—(1.4)"/4]
2
(©) exp{—jfdt} =M

() P{|X|>12}=Px > 12} + PX<-112} =112

(b) P{|X| <a} =P{-a<X<a}=a,0<a<1. Therefore,
fy@=1,0<a<1

X/ is uniform on (0, 1).

That is,

Chapter 5



38.  For both roots to be real the discriminant (4Y)* — 44(Y + 2) must be > 0. That is, we need that
Y>> Y+ 2. Now in the interval 0 < Y < 5.

Y>Y+2< Y>2 andso
P{Y’>Y+2}=P{Y>2}=3/5.

39. Fy(y)=P{log X<y}
=P{X <} =Fxe)

H) =fle)e = e

40.  Fy(y)=P{*<y}
= Fx(logy)

F0)= felogy L~ =L 1<y<e
y oy

Chapter 5
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Theoretical Exercises

72

The integration by parts formula J.udv =uv— J.vdu with dv = —2bxe

that
) _ _pxt ® © R
J‘xzefbx dx = j+i e dx
) 26 4 263
- 13/2](‘)6}’2/261)} by y= xv2b
(2b)" "
_ N 27 1 B \/;
2 by ap?
where the above uses that > '[e’y ’ "2dy =1/2. Hence, a =
7%
jp{y <—y}dy = j [ £y (x)dx dy
0 —o
0 —x 0
= [ [0y dx == [ty (x)
-0 0 -0
Similarly,

TP{Y > yidy = Txfy(x) dx
0 0

Subtracting these equalities gives the result.

E[aX+b] = j (ax+b)f(x)dx = a j xf (x)dx +b j f(x)dx
=aE[X]+b

E[X"] P{X" > t}dt

P{X" > x"Inx"""dx by t=x", dt = nx""'dx

I
Ot 8 O 8 O]

P{X > x}nx""dx

4b3/2

Jrz

—bx?

, u=—x/2b yields

Let X be uniform on (0, 1) and define E, to be the event that X is unequal to a. Since NE, is

the empty set, it must have probability 0.

a

Chapter 5



10.

11.

12.

13.

SD(aX + b) = \[Var(aX +b) =Va’c” =|do
Since 0 < X < ¢, it follows that X* < cX. Hence,
Var(X) = E[X*] ~(E[X])’

< E[cX - (E[X])?
= cE[X] - (E[X])°

= E[X](c — E[X])
=ca(l — )] where a=E[X]/c
<4

where the last inequality first uses the hypothesis that P{0 < X < ¢} =1 to calculate that 0 <
<1 and then uses calculus to show that maximum (1 — &) = 1/4.

0<ac<l

The final step of parts (a) and (b) use that —Z is also a standard normal random variable.

(a) P{Z>x}=P{-Z<-x}=P{Z<-x}

(b) P{|Z| >x} =P{Z>x} + P{Z<—x} = P{Z>x} + P{-Z>x}
=2P{Z>x}

© P{lzl<x}=1-P{|Z] >x} =1-2P{Z>x} by (b)
=1-2(1-P{Z<x})

Withe=1/ («/ 2720') we have
f(x) _ ce—(x—,u)z/ZO'Z
fr(x) _ _Ce—()c—,u)2 /2062 ()C _ IU)/O'Z
f”(x) _ co_f4ef(x7y)2 /207 (x —,u)2 —CO'72€7(X7#)2 /207

Therefore,
f”(,u + G) :f”(,u_ (7) — CG—Ze—l/Z _ CO_—Ze—l/Z =0

E[X]= j PLX > x}2x* dx = 2jxe-*”dx = %E[X] =2/ P
0 0

b+a
2

(b) u

(a)

(©) l—em=1/20rm=%log2

(a) all values in (a, b)

(b) u
() 0

Chapter 5 73



14, Pl{cX<x}=P{X<x/c}=1-e™"

15, i) = /() __Va

== = ,0<t<a
F@®) (a@-t)/a a-t

16. If X has distribution function F' and density f, then for a > 0
F.(t)=P{laX <t} = F(t/a)

and

= LGt a)
a

Thus,

Yrwra
__a _ 1
Ay (t) = Fa ~Ax(t)a).

18, E[X]-= j e Fax = 1t j Ae™™ (x)* dx
0 0

= 2*T(k+1) =k AF

o0

19. E[Xk]=$ x e ™ (Ax) " dx
0
—k ©

-~ /le—/bc(/lx)t+k—ldx
ros

k
= Lr(z+k)

I'(7)
Therefore,

E[X]=1/2,
E[X|==AT(@t+2)/T() =+ )2

and thus

Var(X) = (t + Dt/2> = A7 =t/ 2
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20.

21.

22.
23.

24.

25.

26.

Chapter 5

r(1/2) = j e x 7V 2dx

0
= x/fjefyz/zdy by x=1%2, dx=ydy = V2x dy
0
— 2\/;j(2ﬂ)—1/26—y2/2dy
0

= 2\/;P{Z > 0} where Z is a standard normal

Vx

1/(s) jie-ﬂx(zx)f-ldx/ze%(zs)f-l

J‘e_’ux_s) (x/s) " dx
Je‘ly(l +y/s) 'dy by letting y=x —s

y=0

As the above, equal to the inverse of the hazard rate function, is clearly decreasing in s when
t > 1 and increasing when ¢ < 1 the result follows.

As) = c(s —v)? ", s > v which is clearly increasing when £> 1 and decreasing otherwise.
Fla)=1-¢"

Suppose X is Weibull with parameters v, o, . Then

2T o)

=P{X<v+ax'"F}
=1—-exp{—x}.

We use Equation (6.3).
_ _ I'a+1) F(a+b): a
EX1=Bla+ 1, byB(4, b) T(a+b+1) T(a) a+b
[(a+2) T(a+b) (a+1Da

T(a+b+2) T(a) (a+b+1)a+b)

E[X’]=B(a +2, b)/B(a, b) =
Thus,

2

_ (a+1a __a _ ab
Varl¥) (a+b+1)a+b) (a+b)* (a+b+1)(a+b)

X-a)(b—-a)
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28.  P{F(X<x}=P{X<F'(x)
= F(F(x))
=X

209. Fy(x) =P{aX+b<x}
= P{XS x—b} when a >0

a
= Fy((x — b)/a) when a > 0.

H0)= L A= bYla) ifa>0.
a

When a< 0, Fy(x)=P{X2 x_b}zl—FX(x_
a

) = —%{’“b)
a

a

30. Fy(x)=P{e* <x}
=P{X<logx}
Fx(log x)

J(x) = fi(log x)/x

1

_ o (log x—u)? /202
xN2rwo

76

a

b) and so
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Chapter 6

Problems
8.7
2. a) p(0,0)= —— =14/39,
(@) p(0, 0) TRE
0, 1)=p(1 0)=£ =10/39
P p5 13-12
5.4
1,1)= —— =5/39
P D 1312
8-7-6
b) p(0,0,0)= ————— =28/143
(®) A ) 13-12-11
(0,0, 1)=p(0, 1,0)=p(1,0 0)=8'7—‘5:70/429
p b b p b 2 p 2 b 13‘12.11
0,1, 1)=p(1,0,1)=p(, 1 0)=M=40/429
P P P 13-12-11
5.-4.3
,1,1)=——— =5/143
P ) 13-12-11
3. (a) p(0,0)=(10/13)(9/12) = 15/26

p(0, 1)=p(1, 0) = (10/13)(3/12) = 5/26
p(1, 1) = (3/13)(2/12) = 1126

(b) p(0, 0, 0) = (10/13)(9/12)(8/11) = 60/143
(0,0, 1)=p(0, 1,0)=p(1, 0, 0) = (10/13)(9/12)(3/11) = 45/286
pi,j, k) = (3/13)(2/12)(10/11) = 5/143 ifi+j+k=2
p(1, 1, 1) = (3/13)2/12)(1/11) = 1/286

4, (a) p(0, 0)=(8/13)% p(0, 1) = p(1, 0) = (5/13)(8/13), p(1, 1) =(5/13)

(b) p(0,0,0)=(8/13)’
pli,j, k)= (813’ (5/13) if i +j + k=1
p(i,j, k)= (8/13)(5/13)* if i+ j + k=2

5. (0, 0) = (12/13)°(11/12)°
p(0, 1)=p(1, 0) = (12/13)’[1 = (11/12)’]
p(1, 1) = (2/13)[(1/13) + (12.13)(1/13)] + (11/13)(2/13)(1/13)
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8.  f)=c j (* —x%)edx

10.

1.

12.

78

4
3

Tfy(y)dy =1 = ¢= 1/8 and s0 fy(y) = 2 2
0

1 T -y
filx) = 5! (= x)edy

| : _ _ _ _
= Ze | ‘(1+|x|) upon using —'[yze Y=yl +2ye +2e

2

cyle”?,-0<y<ow

3,-y

’O<y<oo

=S w2 gy = Sox?
(b) f(x) 7j(x T 2jdy S +x)

0

(c) PAX>Y} = g'[ji(xz +%dydxj =
00

(d) P{Y>12|X< 12} =P{Y>1/2, X< 1/2}/P{X < 1/2}

j

1/2

15
56

1/2

J

0

(xz + xzydxdyj

172
(2x% + x)dx
0

(@) i) =e ™ i) =e?, 0<x<m, 0<y<m

PX<Y =112

(b) PiX<a}=1-¢"

5—!(.45)2(.15)(.40)2

211121

52
e’ +5e7 + ;e‘s +

53
—e

3!

5
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14. Let X and Y denoted respectively the locations of the ambulance and the accident of the

moment the accident occurs.

P{|Y—X| <a}=P{Y<X<Y+a}+P{X<Y<X+a}

L min(y+a,L)

2
= — dxdy
L2 . !
2 L-ay+ta
= 7z I j dxdy + I jdxdy
0 L-ay

+—L—a— 2——|, 0<a<L
L L2( )L( LJ

15 (a) 1= j j F(x, y)dydx = j jc dydx = cA(R)
(x,y)eR
where A(R) is the area of the region R.

(d) fix,y)=1/4,-1<x,y<1
=ffy)
where f(v)=1/2,-1<v< 1.

©) PIX*+Y2<1)= i j j dydx = (area of circle)/4 = /4.

16.  (a) 4=uA,
(b) yes
(¢) PA)= Y P(4) =n(1/2)""

17. % since each of the 3 points is equally likely to be the middle one.

18.  P{Y-X>L/3)= j I%dydx

y-x>L/3
L
—<y<L
5 Yy
()<x<£
4 L/6 L L/2 L
=?“ Idydx+.[ J‘dydeI
0 L/2 L/6x+L/3
2 2 2
_ AL TR oy
12 24 72
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1 xl 1
19. J‘Oj.ozdydxzj.odx =1
1
(a) jy;dx=—1n<y),o<y<1
<1
(b) IO;dy=1, 0<y<l

1
(©) E

(d) Integrating by parts gives that
1 1
[ ¥ n()dy=—1-[ (yIn(y)-y)dy

yielding the result
1
EY]= =] yin(y)dy = 1/4

20. (a) yes: f(x)=xe ™, f(y)=e”,0<x<00,0<y<ow

1
(b) no: fi(x) = J.f(x,y)dy:2(1—x),0<x<1

y
f0)= [ £0ey)de=2y,0<y<1
0
21. (a) We must show that .[ ’ I N f(x,y)dxdy =1. Now,

J.OO Iw f(x,y)dxdy = J.lj. l_y24xy dxdy
—0d oo ’ 0J0
= [ 1200~ yyay
! 2, .3
= [ 120257+ ")dy
= 12(12-2/3 + 1/4)= 1
1
(b) EX) = [ xfy (x)dx
= jlxj 1_x24x dydx
X, 2w dy
1
= jolzxza—x)zdx = 2/5

(c) 2/5

80
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22. (a) No, since the joint density does not factor.

(b) fix) = jol(x+y)dy —x+1/2, 0<x<1.

1pl-x
(€) PIX+Y<1}= jojo (x+ y)dydx

- j;[x(l—x)+(1—x)2/2]dx =1/3

23. (a) yes
frx) = 12x(1 —x)J‘Olydy =6x(1-x), 0<x<1

fily) = 12yj01x(1—x)dx —2y,0<y<1

(b) EX] = [ 01 6x>(1—x)dx = 1/2

(©) BN - | 012y2dy -3
(d) Var(X) = jol6x3(1—x)dx—1/4 = 1/20

(e) Var(Y) = I;2y3dy—4/9 ~1/18

24, P{N=n}= py"'(1-p,)
(b) P{X =} =p/(1 - py)
(¢) PIN=n,X=j}= p"'p,

-1

25. eT by the Poisson approximation to the binomial.
l.

26. (a) Fypcla,b,c)=abc 0<a,b,c<1

(b) The roots will be real if B* > 44C. Now

P{AC<x) = j j dadc = decda+_i.xjilcda
00 0

c<x/a X

0<a<l
0<ce<1

=x—x log x.

Hence, Fc(x) =x —x log x and so
fac(x)=—logx,0<x<1

Chapter 6



b%/4

1 /
P{BY4> AC) = — j j log xdxdb
0 0

p* b?
~— —Zlog(b*/4) ldb
L 2 og( )}

_log2 5

6 36

I
[ S——

where the above uses the identity

x’logx x°

9

sz log xdx =
27. (@ PIX+Y<a}=| |e’dydx =a-1+e",a<]l

e’dydx =1-¢e(e—1),a>1

o!—,_‘ o'—.a

I
il

1 o
(b) P{Y> Xla} = j je—ydydx =a(l — e

0x/a

o ay

28, PXi/Xp<al= ”Ae—ﬁ%e*ﬂdxdy
00

= ]E(l —e M )lze%zydy

0

A Aa
L+Aa al+4,
P{XI/X2< 1} = L
+ A
29. P{PR<w)= j j 6x(1— x)2ydydx
x? y<w
0 x<1
0 y<1
\/;l 1 w/x?
= J- j 12x(1—x)ydydx+J- Jle(l—x)ydydx
00 Jw 0

=3w—2w"2 = 6w(1 + (log w)/2 — \w)
=4w*? - 3w(1 +logw), 0 <w<1
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30.

31.

32.

33.

(a) €’

(b) 1 —e?-2e?=1-3¢"
The number of typographical errors on each page should approximately be Poisson
distributed and the sum of independent Poisson random variables is also a Poisson
random variable.

(@) 1 —e*?—22e% - >2(2.2)/2!

5

4
(b) 1= D e 44y /i, (©) 1= > e*%(6.6)' /!
i=0

i=0
The reasoning is the same as in Problem 26.

(a) If W=X, + X; is the sales over the next two weeks, then W is normal with mean 4,400

and standard deviation 1/2(230)? = 325.27. Hence, with Z being a standard normal, we

have

P{W> 5000} = P{Z > M}

325.27
= P{Z> 1.8446} = .0326

(b) P{X>2000} = P{Z> (2000 — 2200)/230}
= P{Z>-87} = P{Z< 87} = 8078

Hence, the probability that weekly sales exceeds 2000 in at least 2 of the next 3 weeks
P>+ 3p*(1 — p) where p = .8078.

We have assumed that the weekly sales are independent.

Let X denote Jill’s score and let Y be Jack’s score. Also, let Z denote a standard normal
random variable.

(a) P{Y>X}=P{Y—-X>0}
~P{Y-X> 5}
_ P{Y—X—(l60—170) N .5—(160—170)}

JQOY¥ +(15°  4J(20) +(15)
~ P{Z> 42} ~ 3372

(b) P{X+Y>350} = P{X+Y>350.5}
:P{ X +Y-330 20.5 }

>
V20 + (157 {J(20) +(15)
~ P{Z> 82} ~ 2061
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34.

35.

36.

37.

38.

39.

84

Let X and Y denote, respectively, the number of males and females in the sample that never
eat breakfast. Since

E[X] = 50.4, Var(X) = 37.6992, E[Y]=47.2, Var(Y) = 36.0608

it follows from the normal approximation to the binomial that is approximately distributed as
a normal random variable with mean 50.4 and variance 37.6992, and that Y is approximately
distributed as a normal random variable with mean 47.2 and variance 36.0608. Let Z be a
standard normal random variable.

(a) P{X+Y>110} =P{X+Y>109.5}
{X+Y—97.6 109.5—97.6}
=p >
J73.76 J73.76
~ P{Z>1.3856} ~ .0829

(b) P{Y>X}=P{Y-X>-5}
_ P{Y—X—(—3.2) N —.5—(—3.2)}
J73.76 \73.76
~ P{Z> 3144} ~ 3766

(a) PIX,=1|X=11=4/12=1-PX,=0|X,=1}

(b) PIX,=1|X=01=5/12=1-P{X,=0| X, =0}

(a) PIX,=1|X=11=513=1-PX,=0|X,=1}

(b) same as in (a)

(a) P{Y,=1|Y,=11=2/12=1-P{Y;=0|YV,=1}

(b) P{Y,=1]¥,=0}=3/12=1-P{Y,=0| ¥, =0}

(a) P{Y,=1|Y,=1} =p(1, )/[1 - (12/13)']=1-P{¥,=0| Y, = 1}

(b) P{Y,=1]Y,=0} =p(1,0)/(12/13) =1 - P{Y, = 0| ¥, = O}
where p(1, 1) and p(1, 0) are given in the solution to Problem 5.

11
(a) P{X=/, Y=i}=g;,j=1,...,j,i=1,...,j

5 5
(b) P{X=j|Y=i}=; Zl/Sk:l M1k, 52/
JI k=i

J/ k=i

(c) No.
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PY =i, X =i} 1
P{X =it  36P{X =i}
2
36P{X =i}

40.  Forj=i: P{Y=ilX=i} =
Forj<i: P{Y=j|X=i} =

Hence

2=y 1

1= 2P{Y:]|X:i}—
Jj=1

2i—-1

and so, P{X =i} = and

1

P{Y=jlXx=i= 2i2‘i

2i—1

—x(y+1)
xe -
S eresniid (s 1)’xe™ ™, 0 <x

xe gy

2. (@ fxly = f

xefx(erl)

(®) frixv]x) = f— =xe™,0<y

xe—X(y+1)dy

walx

P{XY<a} = J‘ Ixe_x(y”)dydx
00
= j(l —e e dx=1-¢"
0

fi(a)=€e",0<a

43 fle(y|x): t(xZ_yz)e*x
S (x*—yH)eVdx

3
=S ), ey sx

_ 3 2 2
Frarlo = 5[ 600

= %(xzy—y3/3+2x3/3), —x <y<x
X

Chapter 6
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44,

45.

46.

47.

48.

49.

50.

86

P{N =nlA}g(A
Al = PN =l

P{N =n}
=Cie V' ae (ai)™
— Cze—(m-l)ﬂ/vﬁs—l

where C and C, do not depend on A. But from the preceding we can conclude that the
conditional density is the gamma density with parameters o+ 1 and n + 5. The conditional
expected number of accidents that the insured will have next year is just the expectation of
this distribution, and is thus equal to (n + s)/(a+ 1).

P{Xi> X+ X3) + P{XG > X + X6 + PG> X + X

= 3P{Xl >X2 +X3}

= 3 [ [ nx,d,
¥ > >3 (takea=0,b=1)

11-x3

f J.dxldxzdx3—3_|. I(l X, — X;)dx,dx,
0

Xy +X3

_ lx3

Iy =1/2.

|
g

Jxy, ()= 25" ‘ﬁxe xdx:l xe~ ﬁxe_xdx}

=30(x + 1)%e xe [l —e*(x+ D]

(L—zdf
L
3/4 3/4

j fr, () = jx (1—x)2dx

1/4 1/4

(a) P{min X;<a} =1-P{min X;>a} =1- [ [P{X, >a} =1-¢*

(b) P{max X;<a} = [[P{X, <a}=(1-e™)’

2
Y
41
Sxgxy 6Y) = —'ZX(J.ZZdzJ 2y, x<y
) X

= 48xy(y* — x°).
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51.

52.

53.

54.

l—aa+x
Py~ Xp<ab = [ [4800( - x*)dyax
0 0
11

+ jj48xy(y2—x2)dydx

1-a 0

fomO) =" =20 0<r<1,0<0<2x
: V4 2

Hence, R and @ are independent with &being uniformly distributed on (0, 27) and R having
density fz(r) =2r, 0 <r<1.

fodr,@)=r, 0<rsin <1, 0<rcos 0<1, 0<O<m2, 0<r<+2

I i | RYEN
—x '“cosuN2 —z '“sinu+2 .
=cos’u+sinfu=1

J=12
—~/2zsinu \522 cos u

1
Suu, z) - 2—6_2 . Butx*+)*=2zs0
T

1 2,2
Srerx,y)= ——e 12
2z

y ox
(@ fu=xy,v=xy,thenJ=|; _ | = X and

Sl ——" y

y oy

y=Aulv,x= \/E Hence,

(b)f”"/(u’v):LfXY(\/EaVu/V): 12,M21,1<v<u
v 2vu u

1 1
fu(u)=J- V2dv=710gu,u21.

1/u

Forv>1

71 1
0= [ =g

v

Forv<l1

Tl 1
fiv) = J.ﬁduza,0<v<l.

1/2

Chapter 6
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55.

57.

58.

59.

60.

88

(@) u=x+yv= x/y:>y—L x:_uv
v+l v+1
B = 5+— =—2(x+y)=—(v )
/'y —x/y Yoy y U
Juy (U, v) = LO0<uv<l+v,0<u<l+v
(+1
: O TR
yi=xitx,m=e'. J =] | =—e" =y,
e' 0

x1=log y», x, =y, —log y»

fY Y (yl y2) = Lie_ll()ghle—l(yl—logyz)
1-12 >

Y

1

=— e 1 <y, 1 >logy,

Y2

U=x+ty, v=xtz, w=y+tz=z=

1 1 0
J=11 0 1 ==2
01 1
1 1
U, v, w) = —expy——
N ) 21){2

PY;=i,j= Sk+ 1} =P{Y;=

k\(n—k)! .
= —,P{n+1—ZYi=zk+l

ki(n = k)n!, if D i =n+1

v+w—u vV—w+u
X =

w—v+u

b

Ij,J = k} P(Yie1 = iknt |

n:

i=l
k+1

J=l

0, otherwise

(u+v+w)},u+v>w, utw>v, vtwtu

= l],

Thus, the joint mass function is symmetric, which proves the result.

The joint mass function is

PXi=x,i=1,...n}= 1/[2),)@- e{0,1},i=1,

As this is symmetric in xy, ..

., Xn the result follows.

=1, ...

Y, =i, =1,...k}

’k}
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Theoretical Exercises

1. P{Xﬁaz, YSb2}=P{a1<XSa2, b1<YSb2}
+P{X3a1, b1<YSb2}
+P{a1<XSa2, Yﬁbl}
+P{X<a, Y<b}.

The above following as the left hand event is the union of the 4 mutually exclusive right hand

events. Also,

P{XSCI], YSb2}=P{XSa1, b1<YSb2}
+P{X<ay, Y<b}

and similarly,

P{Xﬁaz, ngl}:P{CZISX S(lz,<Y§b1}
+P{XSa1, YSbl}

Hence, from the above

F(az, bz) = P{a1 <X< ay, bl <Y< bz} +F((11, bz) —F(al, bl)
+F((12, b]) —F(Cll, b]) +F(a1, b])

2. Let X; denote the number of type i events, i=1, ..., n.

Zn: 7 events}

1

P{X] =r, ...,X,,=rn} = P{Xl :rl""ﬂXn =r,

X e‘lini/(irl) !

“TTe G, fn
i=1

3. Throw a needle on a table, ruled with equidistant parallel lines a distance D apart, a large

. . 2
number of times. Let L, L < D, denote the length of the needle. Now estimate 7 by E

where f'is the fraction of times the needle intersects one of the lines.

Chapter 6
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90

(a) Fora>0
FAa)=P{X<Lal}

waly

= | [ £ fr(dxdy
= [Fe(@) fy )y
0
@)= [ (@), vy
0

(b) FAa)=P{XY<a}

waly

= [ [£e@)fr(dxdy
00
= [Fe(al» fy(»)dy
0
140 = [ frtal s
0

If X is exponential with rate 4 and Y is exponential with rate x then (a) and (b) reduce to

A
(8) FAa)= [2e™ yuedy
0

(b) FrAa)= J./ie_M/yéye_”ydy
0

Interpret X; as the number of trials needed after the (i — 1)* success until the i success
occurs, i = 1, ..., n, when each trial is independent and results in a success with probability p.

Then each X; is an identically distributed geometric random variable and ZX . , representing

i=1
the number of trials needed to amass n successes, is a negative binomial random variable.

(a) P{cX<a}=P{X<alc} and differentiation yields

fix(a) = lfX(a/c) _ L “Qale)y'T({1).
c c
Hence, cX is gamma with parameters (¢, A/c).

(b) A chi-squared random variable with 2n degrees of freedom can be regarded as being the
sum of n independent chi-square random variables each with 2 degrees of freedom
(which by Example is equivalent to an exponential random variable with parameter A).

Hence by Proposition X, is a gamma random variable with parameters (n, 1/2) and the
result now follows from part (a).
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10.

11.

12.

() PIW<tt=1-P{W>t=1-PX>t,Y>1 =1 —[1 - Fx(®)] [1 — Fx(®)]

() f(®) = O[] — FUO] + (@) [1 = Fx(9)]
Dividing by [1 — Fx(1)][1 — Fx(#)] now yields
A8) = fx(@)/[1 = Fx()] + 0)/[1 = F(#)] = Ax(?) + Ax(2)

P{min(X,, ..., X,) >t} =P{X, > 1, ..., X, > £}

- at_ nt
=e¥ et =e"

thus showing that the minimum is exponential with rate nA.

If we let X; denote the time between the /™ and (i + 1)™ failure, i =0, ..., n — 2, then it follows

from Exercise 9 that the X; are independent exponentials with rate 24. Hence, ZX . the

amount of time the light can operate is gamma distributed with parameters (n — 1, 21).

[l

I= X1) ... fixs)dx;...dx
x1<x2>x3<x4>x5f(l) foxs)ex ’
- .H.[.H du; ... dus by u;=F(x;), i=1,...,5
Uy <uy >uy <Uy >Us
0<M,‘<1

= [I§u,du,...du,
= [Ila-u)/2 dus...
= [[[u, —ul /31/ 2du,du,

1
- j[u2 —u*/3]/2du =215
0

Assume that the joint density factors as shown, and let

C = r g(x)dx, i=1,..,n

Since the n-fold integral of the joint density function is equal to 1, we obtain that

- 11e
i=1
Integrating the joint density over all x; except x; gives that

fr, ) =g, ]C =2,(x)/C,

i#j
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13.

14.

15.

16.

92

If follows from the preceding that

S, ) =T [ fx, ()
Jj=1

which shows that the random variables are independent.

0

No. Let X, = {1 if trialiisa success  pon

fX\Xl seves X (X

n+m

and so given ZX . = n the conditional density is still beta with parameters n + 1, m + 1.

1

PX=i|X+Y=n=P{X=i,Y=n—-i}/P{X+Y=n}

PX=k|X+Y=m}

PX=n,Y=m)

xl""’anrm) =

_ pd-

P{xl,...,xn+m|X =X}
P{x X, )

_ Cxe; (1 _ x)11+m—2x,»

p) "' p(1—p)y " 1

Sy (x)

(” N 1)pz(l -p T

_PX =k X+Y=m

PIX+Y =m}
_PX=kY=m-k}

P{X+Y =m)

1

(

m

(2"}9’” (1-py™

2n
m

Y P(X =nY =m|X, =i))P(X, =i)

= e*(iﬁ%*%)

min(n,m) n—i A’jm—i i

= (n=D!(m-i)! !
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P{X, = max(X, X,, X5)} _ 1/3

17. a) PIXi> X | X1 > X3} = =2/3
(@) PX> XX > X5} LY > Y] 0
|
(b) PLX; >X2|X1<X3} _ P{X,;> X, > X,} _ 1/3! —1A
P{X, < X,} 1/2
|
© P> Xl x> xy = D> X0 > Xa) 18,
P{X, > X} 1/2
d) PX > X0 | Xo <X} = P, = minX Xp. X3} _ 13 _ )3

P{X, < X3} 1/2

18. P{U>s|U>al =P{U>s}/P{U>a}
-5

,a<s<l1
l1-a

P{U<s|U<al =P{U<s}/P{U<a}
=s/a,0<s<a

Hence, U | U> a is uniform on (a, 1), whereas U | U < a is uniform over 0, a).

P{N =n|W =w} f;(w)
P{N =n}

e ()
n.

e o Priw, ]

19 flwwln)=

=Ce"

where C and C; do not depend on w. Hence, given N = n, W is gamma with parameters

(n+t, p+1).
20. Swix et n(Wlxl,...,xn) = f(xl}"(;xn W))Cf)W(W)
15eees X,
= Cﬁwe_wxieiﬂw(ﬂw)’*l
-w| S+ N X;
= Ke [ Zl: annl
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21.

22.

23.

94

Let X;; denote the element in row 7, column j.

P{X, is s saddle point}

.....

= PimkinXik > HES,XX"/;PiX” =mkinXik}

where the last equality follows as the events that every element in the i row is greater than
all elements in the /™ column excluding Xj; 1s clearly independent of the event that Xj; is the
smallest element in row i. Now each size ordering of the n + m — 1 elements under
consideration is equally likely and so the probability that the m smallest are the ones in row i

is l/(n +nn; _1) . Hence

“DI(n-1)
P{Xj is a saddlepoint} = ! ! = (m = Din=1)!

(n+’r1111—1jm (n+m-1)!

and so

P{there is a saddlepoint} = P(V{X jlsa saddlepoint})
] -
= ZP{X ; 1s a saddlepoint}
L]
_ mln!
(n+m-1)!
For0<x<1
P(X]=nX-[X]<x)=Pn<X<n+x)=e™ - "=l -
Because the joint distribution factors, they are independent. [X] + 1 has a geometric
distribution with parameter p = 1 — e *and x — [X] is distributed as an exponential with rate A

conditioned to be less than 1.

Let Y=max (Xi, ..., X)) , Z=min(X}, ..., Xy)

P{Y<x}=P{X;<x,i=1,..,n}= ﬁP{X,. <x}=F"(x)
1

P{Z>x}=P{X;>x,i=1,...,n} = ﬁP{Xl. >xy=[1-Fx)]".
1
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24, (a) Letd=D/L. Then the desired probability is

I-(n-)d 1~(n-2)d 1-2d 1-d 1
n! j J- j I jdxndx

0 xi+d  x, 3+dx,_,+d x,_+d

=[1—(n- 1)d]"

.dxydx,

n—1°

(b) 0
25, F, (0= Z@F (O[1= F()""
Sy, () = Z@’F @)1= Fx)]"™
- Y[ P)F @ - - F@rT e

n

— i-1 n—i
- Z—(n_l),( 0= F 0]

i=j
) k—t+1#ék—l)!lrk_l(x)f(x)[l_F(x)]n_k byk=i+1
mF ) S = Fr
2. frpn® = a1y
27. In order for X =x;, X;,=x, , i <j , we must have

(i) i—1 ofthe X’s less than x;

(i1) 1 of the X’s equal to x;

(iii)j — i — 1 of the X’s between x; and x;
(iv) 1 of the X’s equal to x;

(v) n—j of the X’s greater than x;

Hence,

fx(n X(j) (i, x_/)
n!
(-G —-i-Dl(n-j)!

Chapter 6
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29.

30.

33.

96

Let Xj, ..., X, be n independent uniform random variables over (0, a). We will show by
induction on # that

a-t ift < a
P{iXp — Xty > 8} = a

0

It is immediate when n = 1 so assume for n — 1. In the n case, consider

ift>a

P{Xuy— Xur) > 1| Xy = 5}

Now given X,y = s, X(1y , ..., X(-1) are distributed as the order statistics of a set of n — 1
uniform (0, 5) random variables. Hence, by the induction hypothesis

s=0)" ifr< s
P{Xgy — Xy > t| Xy = 53 = s
0

ift>s

and thus, for ¢t <a,

n-1
n

fs—t ns"! a-t)
P{)((k)_)((k])>t:j[ . j o dSZ( p j
t
l nSi’l*l

n—1
which completes the induction. (The above used that f Xon (s)= n[iJ = ).
! a a

n

(a) P{X> X} =P{Xislargestofn+1}=1/(n+1)
(b) P{X> X} =P{Xisnotsmallestofn+ 1} =1-1/(n+1)=n/(n+1)

(c) This is the probability that X is either the (i + 1)* or (i + 2)™ or ... /™ smallest of the n + 1
random variables, which is clearly equal to (j — 1)/(n + 1).

The Jacobian of the transformation is

J |_l =y’ /|x| . Therefore, as the solution of the equations u =x, v=x/yisx=u, y =

Hence,

u/v, we see that

. U 1 w2
ﬁ”"(u’ V): |V_2|f)(’y(u,U/V) =|V_Z|Ze (u”+u”/v7)
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Hence,

Chapter 6

27

2

© 2 2
J‘ |u|ef" 12 g,

—0

© 2 2
J. |u|e’“ "2 du , where o =Vv/(1 +1%)
—0

00

2 2
—u?/2
ue ™ "% du
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Chapter 7

Problems

1. Let X =1 if the coin toss lands heads, and let it equal 0 otherwise. Also, let ¥ denote the
value that shows up on the die. Then, with p(i, j) = P{X =1, Y =}

6 6,
Efreturn] = > 2jp(1, /) + ZéP(O,])
j=1 J=1

%(42 +10.5) =52.5/12

2. (a) 6-6-9=324

(b) X=(6-S5)6-W)9-R)

(c) E[X]=6(6)(6)P{S=0, W=0,R=3}+6(3)(9)P{S=0, W=3,R=0}
+3(6)(9)PLS=3, W=0,R=0} +6(5)(7)P{S=0, W=1,R=2}
+5(6)(T)P{S=1,W=0,R=2} +6(4)8)P{S=0, W=2,R =1}
+A(6)8)P{S=2, W=0,R=1} +5(4)9)P{S=1, W=2,R=0}
+4(5)9)PLS=2, W=1,R=0} +5(5)8)PIS=1,W=1,R=1}

1 9 6 9 6 6
= @[216[ 3) + 324( 3) +420- 6[ 2) + 384( 2)9 + 360( 2j6 + 200(6)(6)(9)}

3
~ 198.8

3. E[|X -]

‘1= jj-|X—y|adydx. Now
00

1 x 1

hemsffdy = ey oo -

0 0 x

1-x

= J-u“du + ju“du
0 0
=[x+ (1 =x)""a+1)

Hence,
1 1
Ellx -v'1= — j [+ (1— %) Jdx
a+1 0
= ;
(a+1)(a+2)

98 Chapter 7



m m

4. E[lX-Y|] = %ZZV—A. Now,

i=1 j=1

l—J| Z(z N+ Z(J—l)

J=i+l

= [l(l -D+m-Dm-i+1)]2

Hence, using the identity Y /> = m(m + 1)(2m + 1)/6, we obtain that
j=1

Ellx-1]] [1 m(m+1)2m+1) m(m+1)} (m+1)(m—-1)

m 6 2 3m
5. The joint density of the point (X, ¥) at which the accident occurs is
f,y)=—=,-312<x,y<3/2
_f(X)f(y)
where

flay=1/3,-32<a<3/2.

Hence we may conclude that X and Y are independent and uniformly distributed on
(-3/2, 3/2) Therefore,

4372
E[|X|+|Y|]—2 J. gxdx——J‘xdx 3/2.

-3/2

6. {Zx} ZE[X] =10(7/2) = 35.

i=1

N N
8. E[number of occupied tables] = £ {Z X ,} = ZE [X;]
i=1 j=
Now,

E[X;] = P{i" arrival is not friends with any of first i — 1}
=(1-p)"

and so

N
E[number of occupied tables] = Z(l -p)!

i=1
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10.

100

Let X; equal 1 if both choose item i and let it be 0 otherwise; let Y; equal 1 if neither 4 nor B
chooses item i and let it be 0 otherwise. Also, let /; equal 1 if exactly one of 4 and B choose
item i and let it be 0 otherwise. Let

(a) E[X]= iE[Xi] = 10(3/10*= .9

10
(b) E[Y]= ) _E[Y]] =10(7/10)’ = 4.9

i=1
(¢) Since X+ Y+ W =10, we obtain from parts (a) and (b) that
E[W]=10-.9-49=42
Of course, we could have obtained E[ W] from
10
E[W] =Y E[W;] = 10(2)(3/10)(7/10) = 4.2
i=1

Let X; equal 1 if urnj is empty and 0 otherwise. Then
E[X;] = P{ball iis notinum j, i > j} = [ JA-1/i)
i=j

Hence,

n n

(a) E[number of empty urns] = ZZ(I —1/7)
j=li=j

(b) P{none are empty} = P{ball; is in urn j, for all j}
=]
j=1

Let X; equal 1 if trial i is a success and 0 otherwise.

(a) .6. This occurs when P{X|; =X, = X;} = 1. It is the largest possible since
1.8 = ) P{X, =1} =3P{X, =1}. Hence, P{X;=1} = .6 and so

PX=3}=PX,=X,=X;=1} <P{X,=1} = 6.

(b) 0. Letting

if U < if U < if U <
XlzllfU_.é XzzllfU_.4 ijllfU_.3

0 otherwise 0 otherwise 0 otherwise

Hence, it is not possible for all X; to equal 1.
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11. Let X; equal 1 if a changeover occurs on the i flip and 0 otherwise. Then

EX]=P{i—1isH,iisT}+P{i—1isT,iis H}
=2(1-p)p, i 22.

E[number of changeovers] = E[ZXI.] = Z”:E[Xi] =2(m—-1(1 -p)

i=1

12. (a) Let X;equal 1 if the person in position i is a man who has a woman next to him, and let it

equal 0 otherwise. Then
%2” - ifi=1,2n
n P
E[X;] = Y
2 2n-1D)(2n-2)

Therefore,
E{i)(,} = iE[Xi]
i=1

=1( 24 (an-2)-" j

i=1

2\ 2n-1 4n-2
_ 3n’—n
dn-2

(b) In the case of a round table there are no end positions and so the same argument as in part
(a) gives the result

11 (n—-D(n-2) | 3’
Qn-12n-2)| 4n-2

where the right side equality assumes that n > 1.

13. Let X; be the indicator for the event that person i is given a card whose number matches his
age. Because only one of the cards matches the age of the person i

1000

1000
E{ZXI} =Y E[X]=1
i=1 i=1

The number of stages is a negative binomial random variable with parameters m and 1 — p.

14.
Hence, its expected value is m/(1 — p).

101
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15.

16.

17.

18.

102

Let X;;, i #j equal 1 if i and j form a matched pair, and let it be 0 otherwise.

Then

E[X;;]1= P{i,j is a matched pair} =
n(n—1)

Hence, the expected number of matched pairs is

n 1 1
fon g ety

i<j i<j

1 -x2/2

ElX] = Iym

y>x

Let /; equal 1 if guess i is correct and 0 otherwise.

(a) Since any guess will be correct with probability 1/ it follows that
E[N]= Y E[I,]=n/n=1
i=1

(b) The best strategy in this case is to always guess a card which has not yet appeared. For
this strategy, the i™ guess will be correct with probability 1/(n —i + 1) and so

E[N] = il/(n —i+1)

(c) Suppose you will guess in the order 1, 2, ..., n. That is, you will continually guess card 1
until it appears, and then card 2 until it appears, and so on. LetJ; denote the indicator
variable for the event that you will eventually be correct when guessing card i; and note
that this event will occur if among cards 1 thru i, card 1 is first , card 2 is second, ..., and
card i is the last among these i cards. Since all i! orderings among these cards are equally
likely it follows that

E[J]=1/i! and thus E[N]= E[ZJI-} = 21/1'!
i1

i=1

1

{1 match on card i

52
E[number of matches] = E{ E I,}, I = 0
- S

= 52% =4 since E[[;]] = 1/13
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1 . .
19. (a) E[time of first type 1 catch] — 1 =— —1 using the formula for the mean of a geometric
b

random variable.

(b) Let

1 atype jiscaught beforea typel
710 otherwise.

Then

EliZXJzZE[Xj]

J#l Jj#l
= ZP{type Jj before type1}
J#l
=2 P /(P +R),

Jj#l

where the last equality follows upon conditioning on the first time either a type 1 or type j
is caught to give.

P.
P{type j before type 1} = P{j|jor 1} = —2
B +R

20. Similar to (b) of 19. Let

{1 ball j removed before ball 1
Y= ...

E{Z X_/] = > E[X,]= Piball j beforeballl}

J#1 Jj#l Jj#l

=ZP{j|jorl}

J#l

=Y WHIWO)+W())

Jj#l

100y 1 Y (364)”
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(b) Let X;= {0

365 365
E{ZXJ} :ZE[X].]:365
1 1

22. From Example 3g, 1 + é+§+§+E+6

23. E{ZS:X,. + ZSZY} = ZS:E[XI.]+ ZS:E(Yi)
1 1 1 1

23 .3 147

1 if day jis someones birthday

1120 120 110

24, Number the small pills, and let X; equal 1 if small pill 7 is still in the bottle after the last large
pill has been chosen and let it be 0 otherwise, i =1, ..., n. Also,let Y, i=1, ..., mequal 1 if
the i small pill created is still in the bottle after the last large pill has been chosen and its

smaller half returned.

Note that X = Zn:Xi +Zm:Yi. Now,

i=1 i=l1

E[X;] = P{small pill i is chosen after all m large pills}

= U(m+1)

E[Y;] = P{i" created small pill is chosen after m — i existing large pills}

=1/(m—-i+1)

Thus,

(a) E[X]=n/(m+ 1)+ Zmll/(m—iJrl)

i=l1
(b) Y=n+2m — X and thus

E[Y]=n +2m — E[X]

25. P{NZn}P{XIZXZZ...ZX,,}=l'
n.

o0 ch
El = P{N > n} = —=e

[V] Z,{ } Z‘n'

104
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26.

27.

28.

1
(a) E[max] = j Pi{max > 1}dt
0

(1- P{max < t)}dt

n

O ey = O —y —

A-¢"/dt =
n+l1

1
(b) E[min] = j pimin > £}4¢
0

1
n+1

=ja—0%h=
0

Let X denote the number of items in a randomly chosen box. Then, with X; equal to 1 if item
i is in the randomly chosen box

101 101 101
E[X] = E{ZX,} = E[X,]= T 10
i=1 i=l1

Hence, X can exceed 10, showing that at least one of the boxes must contain more than 10
items.

We must show that for any ordering of the 47 components there is a block of 12 consecutive
components that contain at least 3 failures. So consider any ordering, and randomly choose a
component in such a manner that each of the 47 components is equally likely to be chosen.
Now, consider that component along with the next 11 when moving in a clockwise manner
and let X denote the number of failures in that group of 12. To determine E[X], arbitrarily
number the 8 failed components and let, fori=1, ..., 8,

_ |1, if failed component i is among the group of 12 components
" 10, otherwise

Then,

and so

8
E[X]= X E[X/]

i=l1
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29.

30.

31.

106

Because X; will equal 1 if the randomly selected component is either failed component
number i or any of its 11 neighboring components in the counterclockwise direction, it
follows that E[.X;] = 12/47. Hence,

E[X] = 8(12/47) = 96/47

Because E[X] > 2 it follows that there is at least one possible set of 12 consecutive
components that contain at least 3 failures.

Let Xj;; be the number of coupons one needs to collect to obtain a type i. Then

E[X,]=8, i=12
E{X.]1=8/3, i=34
E[min(X,,X,)]=4
Elmin(X,, X )]=2, i=12, j=34
E[min(X;,X,)]=4/3
E[min(X, X,,X)]=8/5, j=34
E[min(X,;, X; X,)]=8/7, i=1,2
E[min(X,,X,,X;,X,]=1

(a) E[maxX,-]=2-8+2-8/3—(4+4-2+4/3)+(2‘8/5+2-8/7)—1=%

(b) E[max(X;, X3)]=8+8—-4=12
(¢c) Elmax(X;, X3)]=8/3+8/3-4/3=4
(d) Let Y} = max(Xy, X3), ¥ = max(X3, Xy). Then
E[max(Yy, Y,)] = E[Y1] + E[Y>] — E[min(Y;, 12)]
giving that

. 437 123
Elmin(Yy, 15)]=12+4 - —=—
[min(Y, Y>)] 35 35

E[(X - V)]’ = Var(X - Y) = Var(X) + Var(-Y) = 2¢°

10
Var[z X,.J =10 Var(X,). Now

i=1
Var(X)) = E[X]]-(7/2)°

=[1+4+9+16+25+36]/6—49/4
=35/12

10
and so Var(ZXiJ =350/12.
i=1
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32.

33.

34.

Use the notation in Problem 9,
x= ZX j
j=1

where Xj is 1 if box j is empty and 0 otherwise. Now, with

EX]=P{X;=1}= H(l —1/i), we have that
i=j
Var(X) = ELX)(1 - E[X)).
Also, forj <k
k—1 n
EXx]=[Ja-1n] Ja-2/i
i=j i=k
Hence, for j <k,

k— n n n
Cov(X;, X;) = l_i(l ~upJa-2/p-TJa-up] Ja-1/i
i=j i=k i=j i=k

Var(X) = Z":E[X_i](l — E[X,])+2Cov(X ,, X,)

j=1
(a) E[X*+4X +4]=E[X?] + 4E[X] + 4 = Var(X) + E}[X] + 4E[X] + 4 = 14

(b) Var(4 + 3X) = Var(3X) = 9Var(X) =45

Let X, = 1 if coupl'e Jj are seated next to each other
0 otherwise
(@) £ i)( 102 =2, PX;=1} = 2 ince there are 2 people seated next to wife j
=" 19 19 Y 19 peop J

and so the probability that one of them is her husband is % .

(b) Fori#j, E[XX]=P{X,=1,X=1}
=PX=1}PX=1]X=1}

- %% since given X; = 1 we can regard couple i as a single entity.

10 2
Var Z){ :103(1_3 +10-9 ii_ i
= 190 19 1918 (19
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35.

36.

37.

108

(a) Let X; denote the number of nonspades preceding the first ace and X, the number of
nonspades between the first 2 aces. It is easy to see that

P{Xlzi, Xzzj}:P{Xlzj, Xzzi}

. 4
and so X| and X, have the same distribution. Now E[X|] = ?8 by the results of Example
. 1
3jand so E[2 + X, + X5] = %

265

(b) Same method as used in (a) yields the answer 5[?—2 + lj = TR

(c) Starting from the end of the deck the expected position of the first (from the end) heart is,

from Example 3j, % . Hence, to obtain all 13 hearts we would expect to turn over

52 — ﬁ +1= E(53).
14 14
Let X, = 1 rolli lar?ds on 1’ Y, - 1 rolli lar.1d5 on?2
0 otherwise 0 otherwise
Cov(X,, Y)) = ELX; ¥]] - E[XE[Y]
_ L i=j(sinceX;Y; =0 wheni =
_ 36 :
R =0 i#j
36 36
Cov) X, D Y, =D > Cov(X,.Y))
i J i
__"n
36

Let W,, i =1, 2, denote the i"™ outcome.
Cov(X, Y)=Cov(W,+ W, , W, — W>)

= Cov(W,, Wy) — Cov(W,, W>)
= Var(W,) — Var(W,) =0
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39.

40.

41.

Chapter 7

@ x —2x
ELY] = [f. (v, £, = [ —dy = 2™
0

0

2 —2x
¢ dx
X

E[Y]= j Yy Ny, 1y () =f
0 0

—2x

dxdy

Cov(Y,, Y,) = Var(¥,) =30
Cov(Y,, Yir1) = Cov(X, + X1 + Xpia, X1 + Xoio + Xii3)
= Cov(Xyi1 + X2y X1 + Xo2) = Var(X,iy + X,i0) =20

COV(Ym Yn+2) = COV(Xn+25 Xn+2) = 02
Cov(Y,, Y,+;) =0 whenj >3

fy)=¢e? J.le_” “dx = ™. In addition, the conditional distribution of X given that ¥ =y is
y
exponential with mean y. Hence,
E[Y] = 1, E[X]= E[E[X| Y]] = £[Y] = |

Since, E[XY] = E[E[XY| Y]l= E[YE[X| Y]] = E[Y*] =2 (since Y is exponential with mean 1, it
follows that E[Y*] = 2). Hence, Cov(X, Y)=2—-1=1.

The number of carp is a hypergeometric random variable.

o

E[X] =
[ 10

_20(80) 3 7 336

= from Example 5c.
99 1010 99

Var(X)
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42. (a) Let.X;= 1 pairi c9n51sts of a man and a woman
0 otherwise

10

EX]=P{X;=1} = —

[Xi] = P{ T

E[XX]=PiX;=1,X 1}—P{X,»:1}P{Xj=1|X2=1}
109 .
1917°

i)z

Var ZX _102(1_Ej 110-9 Ei_(mj 900 18
190 19 1917 \19 19217

(b) X, = 1 pair i consists of a married couple
" 10 otherwise
E[X]=L E[X:X)]=P{X;,= 1}P{X—1|X—1}_iL izi
ST l 917”7/

2
Var ZX _10L1_5 10-9 ii_(LJ _ 18022
919 1917 \19 (19)> 17
43, E[R]=n(n+m+1)2

n+m

2.7 .
nm i=1 _(l’l‘f‘l’l’l‘i‘l}

Var(R) = :

n+m-1\n+m

The above follows from Example 3d since when F = G, all orderings are equally likely and
the problem reduces to randomly sampling n of the n + m values 1, 2, ..., n + m.
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nm
+

n+m n+m
computed by using

44. From Example 81 . Using the representation of Example 21 the variance can be

0 , j=1
E[I]IH/‘] = n m n—1
n+mn+m—-ln+m-2 , n-l<j<l
0 , j=1
E[Ll;) = mn(m—1)(n—1)
m+m(n+m-D)(n+m-2)(n+m-3) , n-1<;<I
45, (@) Cov(X, + X,,X, + X3) :l
JVar(X, + X,)/Var(X, + X;) 2
(b) 0

12
46. E[ILL]= ZE[1112| bank rolls 7/]P {bank rolls i}

i=2

= ) (P{rollis greater than i})* P{bank rolls i
g

= E[I]
> (E[1,])’
= E[Il] E[Iz]

47. (a) It is binomial with parameters » — 1 and p.

(b) Letx;; equal 1 if there is an edge between vertices i and j, and let it be 0 otherwise. Then,
D;= zkiiXi,k ,and so, for i #j

Cov(D;, D)) = COV{ZXi,kaZXr,jJ

k#i r#j
= 2.2 Cov(X, 1. X, )
k#i r#j
= Cov(X;;, X))
= Var(X; ))
=p(l-p)
where the third equality uses the fact that except when k= and r =i, X; , and X, ; are

independent and thus have covariance equal to 0. Hence, from part (a) and the preceding
we obtain that for i #J,

p(l-p) 1

Di,D/:
AAD:D) (n=Dp(l-p) n-1
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48.  (a) E[X]=6

(b) E[X|Y=1]=1+6=7

2 3 4
(©) 1l+ 2i1+3[iJ l+4[iJ (l)+[ij (5+06)
5 55 5)5 5)\5 5

49. Let C; be the event that coin i is being flipped (where coin 1 is the one having head
probability .4), and let 7 be the event that 2 of the first 3 flips land on heads. Then

P(T|C)P(C))
P(T|C)P(C))+ P(T|C,)P(C,)

_ 3(.4)*(.6) _
3(.4)°(.6)+3(.7)*(.3)

P(C | 1=

Now, with N; equal to the number of heads in the final ; flips, we have
E[N| T1=2+E[N, | 7]
Conditioning on which coin is being used, gives
E[N; | T] = E[N, | TC,]P(C\ T) + E[N;TC>]P(C; | T) = 2.8(.395) + 4.9(.605) = 4.0705

Thus, E[Nio | 7] = 6.0705.

-x/y =y 1
50. fX\y(x|y)=we e’ly =—eY, 0<x<w

J‘e_”ye_y/y dx
0

Hence, given Y =y, X is exponential with mean y, and so

EX|y=y]=2y’

SISl = 2L o<k
J‘e_y/ydx
0
T sl
E[X3|Y=y]=J.x3—dx=y3/4
y

0

52. The average weight, call it E[ W], of a randomly chosen person is equal to average weight of
all the members of the population. Conditioning on the subgroup of that person gives

E[W]= ZE{W| member of subgroupi]p, = Zwipi
i=1

i=1
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53.

54.

Let X denote the number of days until the prisoner is free, and let / denote the initial door
chosen. Then

E[X]=E[X|I=1](.5) + E[X|I=2](.3) + E[X| I=3](.2)
= (2 + E[X])(.5) + (4 + E[X])(.3) + .2

Therefore,

E[X]=12

Let R; denote the return from the policy that stops the first time a value at least as large as i
appears. Also, let X be the first sum, and let p; = P{X=i}. Conditioning on X yields

E[Rs]= D E[R| X =i}p,

i=2
12
= E[Rs)(p2+ps +pa) + zl'pi —Tp7
i=5
= %E[Rs] +5(4/36) + 6(5/36) + 8(5/36) + 9(4/36) + 10(3/36) + 11(2/36) + 12(1/36)
5
36
Hence, E[R5] = 19/3 = 6.33. In the same fashion, we obtain that

E[R,] + 190/36

1 1
E[Rs] = 3—2E[R6] +£[30 +40+36+30+22+12]

implying that
E[Rg] = 170/26 = 6.54
Also,

15

E[Rg] = g

1
E[R8]+£(140)

or,
E[Rg] = 140/21 = 6.67
In addition,

R
E[Ro] = 26E[R9]+36(100)

or

E[Ro] = 100/16 = 6.25
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55.

56.

57.

8.

114

And

24 1
E[Rio]= —E[R,]+—(64
[Rio] 36 [Ry] 36( )
or
E[R\0] =64/12~5.33
The maximum expected return is E[Rg].
Let N denote the number of ducks. Given N=n, let I, ..., I, be such that
_ J1 if duckiishit
' 0 otherwise

E[Number hit| N =n] = E{Z 1,}
i=1
" 6 10
= ZE[IZ.] = anl - [1 —'—j ], since given
i=1 n
N = n, each hunter will independently hit duck i with probability .6/n.

" 10
E[Number hit] = Zn(l ——6j e 6" /n!
n=0 n

1 elevator stops at floor i
Let/;= )
0 otherwise

N N N-1 k

E{;IJX—IC}—;E[IJX—IC]—N[l—(—N j }
Yol = (N-1)" _, (10)*
E{;@}_N—N;[ ~ je“’ -

= N— NV = N(1 — ')

E{ﬁ){l} = E[NJE[X] = 12.5
i=1

. Let X be the number that enter on the ground floor.

Let X denote the number of flips required. Condition on the outcome of the first flip to

obtain.

E[X] = E[X| heads]p + E[x| tails](1 — p)
=[1+1/1-p)lp+[1+1/pl(1-p)
=1+p/(1-p)+(1-p)p
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59.

60.

61.

n+l

(a) Eltotal prize shared] = P{someone wins} =1 — (1 —p)

(b) Let X; be the prize to player i. By part (a)
n+l
E{ZX,} =1-(1-p)"*
i=l1

But, by symmetry all E[X;] are equal and so

EX]=[1~(1-p)""Y(n+1)

(c) E[X]=p E[1/(1 + B)] where B, which is binomial with parameters » and p, represents the
number of other winners.

(a) Since the sum of their number of correct predictions is # (one for each coin) it follows
that one of them will have more than n/2 correct predictions. Now if V is the number of
correct predictions of a specified member of the syndicate, then the probability mass
function of the number of correct predictions of the member of the syndicate having more
than n/2 correct predictions is

P{icorrect} =P{N=i} +P(N=n—1i} i>n/2
=2P{N=1i}
=P{N=i|N>n2}

(b) Xis binomial with parameters m, 1/2.

(¢) Since all of the X + 1 players (including one from the syndicate) that have more than n/2
correct predictions have the same expected return we see that

(X+ 1) - Payoff to syndicate = m + 2
implying that

E[Payoff to syndicate] = (m + 2) E[(X+ 1)']

(d) This follows from part (b) above and (c) of Problem 56.
-5 o - PE(x)

(a) P(M<x)= ;P(M <x|N=n)P(N =n) :;F (x)p(1-p) TRy
(b) PM<x|N=1)=F(x)
(c) P(M<x|N>1)=Fx)P(M<x)

(d) PM<x)=PM<x|N=1)P(N=1)+PM<x|N>1PWN>1)
=Fp + Fx)P(M < x)(1 - p)

again giving the result

pF(x)

P = 1 F )

Chapter 7 115



62. The result is true when n = 0, so assume that
P{N(x)=>n} =x"/(n—-1)!

Now,
PING)>n+1} = J.P{N(x) >n+1|U, = yydy
0

P{N(x—-y)=n}dy

P{N(u) > n}du

O ey O C—

X

= Iu”’l /(n—1)! du by the induction hypothesis
0
=x"/n!

which completes the proof.
(b) EIN@®)]= D PIN(x)>n=Y P{N(x)2n+1}=) x"/nl=¢"
n=0 n=0 n=0

63. (a) Number the red balls and the blue balls and let X; equal 1 if the /" red ball is selected and
let it by 0 otherwise. Similarly, let ¥; equal 1 if the /™ blue ball is selected and let it be 0
otherwise.

COV(ZXI"ZYJJ = ZZCOV(Xi,Yj)

Now,
E[X;] = E[Y;] = 12/30

E[X;Y;] = P{red ball i and blue ball j are selected} = [1233 j / Gg j

Thus,

28) /(30
Cov(X, Y) = 80{(10)/(12j—(12/30)2} = _96/145
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(b) E[XY|X]=XE[Y|X]=X(12 - X)8/20
where the above follows since given X, there are 12-X additional balls to be selected from
among 8 blue and 12 non-blue balls. Now, since X is a hypergeometric random variable
it follows that
E[X]=12(10/30) = 4 and E[X?*] = 12(18)(1/3)(2/3)/29 + 4* = 512/29

As E[Y] = 8(12/30) = 16/5, we obtain

E[XY] = %(48 ~512/29) = 352/29,

and
Cov(X, Y)=352/29 — 4(16/5) = —96/145

64.  (a) E[X]=E[X|type 1]p + E[X | type 21(1 - p) = pas + (1 = p)aax

(b) Let I be the type.
EX| N = w, Varx|D= o}
Var(X) = E[o}]+ Var(x,)

= poi +(1=p)a; + ppi + (1= p)p ~[pay + (1= p)ps T’
65. Let X be the number of storms, and let G(B) be the events that it is a good (bad) year. Then
E[X] = E[X| GIP(G) + E[X| BIP(B) = 3(.4) + 5(.6) = 4.2
If Y is Poisson with mean A, then E[Y*] = A+ A*. Therefore,
E[X?] = E[X*| G]P(G) + E[X?| B]P(B) = 12(.4) + 30(.6) = 22.8
Consequently,

Var(X) =22.8 — (4.2)*=5.16

66.  E[X’]= %{E[Xz Y =11+ E[X?|Y = 2]+ E[X?|Y =3]}

9+ E[(5+ X)* 1+ E[(T+X)*]}

{83+ 24E[ X ]+ 2E[X*]}

{443+ 2E[X?]} since E[X] =15

Hence,

Var(X) = 443 — (15)* = 218.
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67.

68.

69.

70.

71.

118

Let F, denote the fortune after n gambles.

E[F,] = E[E[F, | F, 111 = E[2Qp - 1)Fyp + Fyy — (20 — 1)Fy1]

= (1 + (2p - 1)2)E[Fn—l]
~[1+(2p — 1YPEIF, 2]

=[1+@p - TEIF)

(a) .67+ 4e”

3 3
(b) 6022 + 4e>
3! 3!
3 3
P30 '66_26_23 " '46_36_3;
(c) P{3|0} = 300 _ » 3
P{0} 6e “ + 4de
K 1
a -Xx —xd -
() Je e X 5
0
© 3
®) [erEetde= 1 [eryay=T0 ]
L o 9 16
3
J‘e_xe_xfe “dx
2 2
c) 2 _c_“
© L 3* 81
je e Ydx

1

(@ [pdp=1/2
0
1

) [pldp=1/3
0

1 1
0 0

= ('7)—i!(” L LIy
1) (n+1)!
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72.

73.

75.

1 1
(a) PIN>i} = jP{N > i|pldp = j(l—p)"*ldp ~1/i
0 0

1

(b) PIN=i} =P{N>i} —P{N>i+1} = D
(1

(c) E[N] = iP{N >} = il/i — .
i=1 i=1

(a) E[R]=E[E[R|S]]=E[S]=u

(b) Var(R|S)=1,E[R|S]=S
Var(R) =1+ Var(S) =1 + &

(©) Jer) = [ f () (r] $)ds

_ Cje—(s—,u)z/ZO'Ze—(r—s)z/st

= Kj.exp{—[S—'tH-razzJ/Z( o QJ} ds exp {—~(ar’ + br)}
I+o 1+o

Hence, R is normal.

(d) E[RS] = E[E[RS| S]] = E[SE[R| S]) = E[S*] = 4 + &
Cov(R,S)=pl+ 0 — 1t =0
X is Poisson with mean A =2 and Y is Binomial with parameters 10, 3/4. Hence

(a) PIX+Y=2}=P{X=0)P{Y=2)+P{X=1}P{Y=1} + P{X=2}P{Y=0}

= ez(lzoj(sm)z(lm)g + 2e2[110j(3/4)(1/4)9 +2e72(1/4)"

(b) P{XY=0} =P{X=0} + P{Y=0} - P{X=Y=0}
=+ (1/4)" - e?(1/4)"°

(c) E[XY]=E[X]E[Y]=2-10- % =15
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T7.

78.

79.

120

tX+s Y]

The joint moment generating function, E[e can be obtained either by using

E[et)my] _ J'J’etxﬂyf(x’y)dy dx

or by noting that Y is exponential with rate 1 and, given Y, X is normal with mean ¥ and
variance 1. Hence, using this we obtain

E[etX+sY| Y= esYE[EtX| Y]= esYeYth /2
and so
E[etX+sY] _ etl /ZE[e(s+t)Y]
= P(U=s—t)" s+1<1
Setting first s and then ¢ equal to 0 gives

E[¢]= ¢ 2(1-1)", t<1
E[e"]=(1-5)""s<1
Conditioning on the amount of the initial check gives
E[Return] = E[Return | 4)/2 + E[Return | B]/2
= {AF(A) + B[1 — F(A)]}/2 + {BF(B) + A[1 — F(B)]}/2
={A+ B+ [B—-A]|[F(B) - F(A)]}/2
>(A+B)2
where the inequality follows since [B — A] and [F(B) — F(A4) both have the same sign.

(b) If x < A then the strategy will accept the first value seen: if x > B then it will reject the
first one seen; and if x lies between A4 and B then it will always yield return B. Hence,

B if A<x<B
E[Return of x-strategy] = (A+B)/2  otherwise

(c) This follows from (b) since there is a positive probability that X will lie between 4 and B.
Let X; denote sales in week i. Then
E[X1 +X2] =80
Var(X1 + Xz) = Var(Xl) + Var(Xz) +2 COV(X], Xz)
=172+ 2[.6(6)(6)] =93.6

(a) With Z being a standard normal

P(X, + X, >90) = P[Z > 90_80)

\93.6

= P(Z> 1.034) ~ .150
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(b) Because the mean of the normal X + X5 is less than 90 the probability that it exceeds 90
is increased as the variance of X; + X; increases. Thus, this probability is smaller when
the correlation is .2.

(c) In this case,

P(X1+X2>90)=P{Z> 20~ 80 }

72+ 2[.2(6)(6)]
=P(Z>1.076) ~ .141
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Theoretical Exercises

1.

122

Let 4= E[X]. Then for any a

E[(X-a)' = E[(X— u+ u —a)’]

=E[(X— w1+ (u—a)’ + 2E[(x — p)(u— a)]
= E[(X — p)’] + (- a)’ + 2(u— a)E[(X — p)]

= E[(X— )’ + (u—a)’

E[|X—a| = I(a—x)f(x)dx+ J‘(x—a)f(x)dx

x<a x>a

— aF(a) - J‘xf(x)dx + j xf (x)dx — a[l - F(a)]

x<a x>a

Differentiating the above yields
derivative = 2afla) + 2F(a) — af(a) — af(a) — 1

Setting equal to 0 yields that 2F(a) = 1 which establishes the result.

Elg(X, 1= [ Pig(X.Y) > ajda
0

g(x,y)

I
O ey 8

X,y
g(x,y)>a

= ”g(x,y)dydx

(X —p)’
2

(X —p)
2

gX) =g +g' (WX - ) +g" (1) ..

~g(w) + g (WX — )+ g"(w

Now take expectations of both sides.
If we let X equal 1 if 4; occurs and 0 otherwise then
X=>x,
k=1
Hence,

E[X]= Y ELX,1=) P(4)
k=1 k=1
But

EX]= Y P{X >k}=Y P(C,).
k=1 k=1

j j f(x, y)dydxda = j j j daf (x, y)dydx
0
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6. X= IX (¢t)dt and taking expectations gives
0
E[X] = j E[X(1)] dt = j PLX > thdt
0 0
7. (a) Use Exercise 6 to obtain that
E[X] = j PLX > tidt > jP{Y > }dt = E[Y]
0 1]

(b) Itis easy to verify that
X > Y and Y >, X
Now use part (a).
8. Suppose X > Y and f'is increasing. Then
P{fX)>a} = P{X>[\(a)}
> P{Y>f'(a)} sincex>,Y
- P> a)

Therefore, f(X) >, AY) and so, from Exercise 7,
E[fIX)] 2 E[AD)].

On the other hand, if E[f{X)] > E[f(Y)] for all increasing functions f, then by letting f'be the
increasing function

1 ifx>t¢
0 otherwise

Jx) =

then
P{X>1} = E[AX)] 2 E[AN] = P{Y>1}
and so X > Y.

9. Let

;= J1 if arunof size k begins at the J™ flip
0 otherwise

Then

n—k+1
Number of runs of size k = Zl ;

J=1
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10.

1.

12.

13.

124

n—k+1
E[Number of runs of size k= E{ ZI]}

J=1

=P(I,=1)+ gp(zj =1)+P(,_,, =1)

Jj=2

=P (1 =p)+ (k=11 =p)’+p (1 -p)
1= E{ZAZXI./Z”:XZ} = ZE{X/ZX} = nE{XI/Zn:Xl}
1 1 1 1 1
Hence,
E{i)(i/i)(,} = k/n
1 1

Let
_ [l outcome jnever occurs
710 otherwise

Then X = le and E[X] = I(l—Pj)n
1

j=l
Let
_ |1 successon trial j
/10 otherwise
E {Z 1/} = ZP/ independence not needed
1 1
Var [Z I‘]) = Z p;(1-p;) independence needed
1 1

Let

= 1 recordat j
/10 otherwise
1

E{Zn:lj} = iE[Ij] = iP{Xj is largestof X,..., X} = il/j
1 ] ]

Var(znllj] = Z”:Var(]j) = Zn:l(l —lJ
1 1 1 J J
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15. U= Zp,. by letting Number = ZX where X, =

1
i=1 i=1

1 iissuccess
0 ---

Var(Number) = Z p;1-p,)

i=l1
maximization of variance occur when p; = 1/n
minimization of variance whenp; =1,i=1, ..., [u], ppgs1 = 11— [14]

To prove the maximization result, suppose that 2 of the p; are unequal—say p; # p;. Consider

+p.
a new p-vector with all other py, k # i, j, as before and with p, = p; = % Then in the

variance formula, we must show

pitp; btp;
2( 5 ’](l— 5 ’j > pi(1—p;) +p(1-p)

or equivalently,
pi+pi-2pp; =(pi—p;) 0.
The maximization is similar.

16. Suppose that each element is, independently, equally likely to be colored red or blue. If we
let X; equal 1 if all the elements of A; are similarly colored, and let it be 0 otherwise, then

z;l X, is the number of subsets whose elements all have the same color. Because

E{Z‘X} = Zr:‘E[X,.] = Zrl“z(l/z)/*f

it follows that for at least one coloring the number of monocolored subsets is less than or
equal to Z::ZI(I/Z)‘A"‘_1

17.  Var(lX, +(1-A)X,) = Fol +(1- 1) o}
o5
ol +o;

As Var(AX; + (1 - )X;) = E[(/lX1 +(1-A)X, - ,u)z] we want this value to be small.

L )=2207 =201 =0= A=
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18. (a. Binomial with parameters m and P; + P;.

(b) Using (a) we have that Var(N; + N;) = m(P; + P;)(1 — P; — P;) and thus
m(P; + P)(1 = Pi— P)) = mP(1 — P;) + mP(1 — P;) + 2 Cov(N,, N))
Simplifying the above shows that

Cov(N;, N)) = —mPP;.
19. Cov(X+ Y, X—-Y)=Cov(X, X) + Cov(X, —-Y) + Cov(Y, X) + Cov(Y, -Y)
= Var(X) — Cov(X, Y) + Cov(Y, X) — Var(Y)
= Var(X) — Var(Y) =0.

20. (a) Cov(X,Y|Z)
= E[XY - E[x| 21 - XE[Y| 2] + Elx| 2)E[Y| 2] [Z]
= ElxY| 2 - Elx| Z) E[Y| 21 - EIX| Z)ETY | 2] + E[X| Z1E[ Y| 2]
= E[xY|Z] - Ex| Z)E[Y | Z]

where the next to last equality uses the fact that given Z, E[X | Z] and E[Y ’ Z] can be
treated as constants.

(b) From (a)
E[Cov(X, Y| 2)] = E[xY] - E[E[X| ZIE[Y | Z]]
On the other hand,
Cov(ELX | 2], E[Y| 21 = E[E[X | ZJE[Y | Z]] - ELXIE[Y]

and so

E[Cov(X, Y| 2)] + Cov(ELX] Z], E[ Y| Z]) = E[XY] - E[X]E[Y]
= Cov(X, )

(c) Noting that Cov(X, X | Z)=Var(X ‘ Z) we obtain upon setting ¥ = Z that
Var(X) = E[Var(X| 2)] + Var(E[X| Z])

21. (a) Using the fact that fintegrates to 1 we see that
1 .
c(n,i)= Ix’_l(l —x)"""dx = (i — 1)!(n — i)!/n!. From this we see that
0

EXyl=cn+1,i+ 1)c(n,i)=il(n+1)

2 _ . N ii+1)
E[X;)] =c(n+2,i+2)c(n, i) —(n )4 )
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22.

26.

27.

28.

29.

30.

and thus

i(n+1-1)

VarXo) = (n+1)2(n+2)

(b) The maximum of i(n + 1 — i) is obtained when i = (n + 1)/2  and the minimum when i is
either 1 or n.
Cov(X, Y) = b Var(X), Var(Y) = b* Var(X)

P(X.Y) = bVar(X) b

Vb var(x) M
Follows since, given X, g(X) is a constant and so
Elg0Y | X] = g0E[Y | X]

E[XY] = E[E[XY| X]]
= E[XE[Y | x]]

Hence, if E[Y | X] = E[Y], then E[XY] = E[X]E[Y]. The example in Section 3 of random
variables uncorrelated but not independent provides a counterexample to the converse.

The result follows from the identity
E[XY] = E[E[XY| X]] = E[XE[Y| X]] which is obtained by noting that, given X, X may be
treated as a constant.

5]

X=EX + X X+ X, =] =E[X1‘2Xi = x)e .+ Elx,

= nE[Xl‘ZXi .

Hence, E[X; |X1 +...+X,=x]=x/n

ELNN) | N = NN | V] = N = N 22

since each of the n — M, trials no resulting in

outcome i will independently result in j with probability p;/(1 — p;). Hence,

P

BVN] = 12BN = BN )= 2l g =t =1 )

i i

=n(n—1)pip,

and

Cov(N;, N)) = n(n — V)p,p; — n’p;p; = —np;p;
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31. By induction: true when ¢ = 0, so assume for t — 1. Let N(¢) denote the number after stage ¢.

E[N(®) | N(t —1)] = N(¢t — 1) — E[number selected]
=N(t-1)-Nt-1)——
b+w+r

EING) | NG - 1)] = Nt - l)bbﬁ

+w+r

32, EXXG | Y=y1=EX | Y=)1ELG | Y =y] =5

Therefore, E[X\.X> | Y]=7Y. As E[X,~| Y] =7, this gives that

E[X\X] = E[ELGX, | Y11 = Ei[Y?], E[X] = E[ELX;| Y]] = E[Y]

Consequently,
Cov(Xy, Xo) = E[X\.X7] — E[X1]E[X3] = Var(Y)
3. @ EIT|To] =T+ 1+ (1= p)E[T)
(b) Taking expectations of both sides of (a) gives
E[T]=E[T]+ 1+ -p)E[T]

or

Er)= L LT
2%

(c) Using the result of part (b) gives

Bl - Lo LEr )

p P

_ i+i(l+iE[7;_2]J
p pP\p P

1p + (1/p)* + (1/p)*E[T,-5]
=1/p+ (Up)’ + (1/p)’ + (1/p)’E[T,]

= >/ p) +(1/ p) E[T,]
i=1

= Zr:(l/p)i since E[Ty] = 0.

i=1
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35 PY>X)= Y P(Y>X|X=))p,
= Y P(Y>j|X=))p,
=2 P> ))p,

=2.(-p)'p,

36. Condition on the first ball selected to obtain

Ma,b: LMaflb +LMab715 a, b>0
a+b T oa+b 7

Ma,O =a, MO,b =b, Ma,b = Mb,a
4 7

Mz,l = g, M3,1 = Z, Mz,z =3/2

37. Let X, denote the number of white balls after the nh drawing

A (B (B
a+b a+b

1
a+b

an-i-l

Taking expectations now yields (a).
To prove (b), use (a) and the boundary condition M, = a

(c) P{(n+ 1)stis white} = E[P{(n + 1)st is white | X,}]

:E|: Xn j|: Mn
a+b a+b

40. For (a) and (¢), see theoretical Exercise 18 of Chapter 6. For (c)

E[XY] = E[E[XY | X]] = E[XE[Y| X]]

(o)
= E[X(/ly + pg—y(X —uxﬂ

O (o2
= bty = p22 gl 4 p2 (il + 07
o, o

X X
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41. (a) No

(b) Yes, since f4(x | 7= 1) = fi(x) = fil=x) = f(x | = 0)
(©) )= 5 e+ o0 = £(0)

(d) ELXY]= E[ELXY| X]) = E[XE[Y| X]] = 0
(e) No, since X and Y are not jointly normal.
42. IfE[Y | X] is linear in X, then it is the best linear predictor of ¥ with respect to X.

43.  Must show that E[Y?] = E[XY]. Now

E[XY] = E[XE[X| Z]]
= E[E[XE[X| 7] | 7]
= E[E[X| 711 = E[Y?]

44. Write X, = %Zi where Z; is the number of offspring of the ith individual of the (n — 1)st

generation. i}zllence,

E[X,] = ELELX, | X, 1] = E[uX,1] = HELX, 1]
S0,

E[X,) = pE[X, 1] = LLE[X,2] ... = flE[X] = /'
(c) Use the above representation to obtain

ELX, | X,oi] = 0, Var(X, | X, ) = 02X,

Hence, using the conditional Variance Formula,

Var(X,) = 17 Var(X,_)) + o° i/

(d) 7= P{dies out}
= " P{dies out| X, = j}p,
J

= Zﬂ'j p; » since each of the j members of the first generation can be thought of as
J
starting their own (independent) branching process.
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46. It is easy to see that the n™ derivative of Z:(t2 /2)7/ j! will, when evaluated at ¢ = 0, equal 0
J=0
whenever n is odd (because all of its terms will be constants multiplied by some power of 7).

n

When n = 2j the n™ derivative will equal {t"Y/(j127) plus constants multiplied by powers

dt"
of t. When evaluated at 0, this gives that

E[Z%] - @)('2)

47. Write X = oZ + p where Z is a standard normal random variable. Then, using the binomial
theorem,

n n . . .
E n — IE Zl n—i
[X"] ZO (l. }7 [Z']u
Now make use of theoretical exercise 46.

48.  $(t) = E[e""] = E["““"] = &"E["“¥] = € ¢\(ta)

49. Let Y =log(X). Since Y is normal with mean s and variance o it follows that its moment
generating function is

M(t) = E[e"] = e+ /2
Hence, since X = e’, we have that
EX] = M(1) = ¢ 2
and
E[X*]=MQ) = &>
Therefore,
Var(X) = QPRI _ gt _ gura’ (e"2 -1)
50. u(f) = log A1)
w'(O)= g0/ K1)

#(0)¢"(1) ~ (¢'1)’
¢’ ()

y'(0) =

v"(0)],-= E[X*]= (E[X])* = Var(X).
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51.

52.

53.

54.

55.

132

Gamma (n, A)

Let (s, £) = E[¢™™]

2
a8 $(5,0)| o= ELXYeX 7] o= E[XY]
sOt t=0 =0
0 0
—@(5,1)| o= E[X], —(s,0)|,_o= E[Y]
aS =0 6t =0

Follows from the formula for the joint moment generating function.
By symmetry, E[Z>]= E[Z] = 0 and so Cov(Z,Z%) = 0.

(a) This follows because the conditional distribution of Y + Z given that ¥ =y is normal with
mean y and variance 1, which is the same as the conditional distribution of X given that
Y=y.

(b) Because Y+ Zand Y are both linear combinations of the independent normal random
variables Y and Z, it follows that Y + Z, Y has a bivariate normal distribution.

() i =E[X] =E[Y+Z]=pu
o = Var(X) = Var(Y + Z) =Var(Y) + Var(Z) = &> + |
Cov(Y+2,Y) o

0'\/02+1 _\/02+1

p=Corr(X, ¥) =

(d) and (e) The conditional distribution of ¥ given X = x is normal with mean

2
o

o
EY|X=x]=p+ p=—(x— )= pr+——(x— )
o, I+o
and variance
2 2
Var(Y| X=x) = 6*| 1-—=— |2
o +1 o +1

Chapter 7



Chapter 8

Problems
1. P{0<X<40}=1-P{|X-20| >20} >1-20/400 = 19/20
2. (a) P{X =85} <E[X]/85=15/17

(b) P{65<X<85)=1-P{|X-75| >10} >1-25/100

(©) P{

3. Let Z be a standard normal random variable. Then,

{

20
4. (a) P{ZXZ. >15}320/15

i=1

iXi/n—75

= 25n

>5}££ soneed n =10

Zn:Xl./n—75

i=1

>5} ~P{|Z| >Jny<.1whenn=3

20

(b) P{ X, >15}=P{§:Xi >15.5}
i=1

15.5—20}
V20

= P{Z>-1.006}

~ .8428

i=1

zP{Z>

i=1

50
S. Letting X; denote the i roundoff error it follows that £ {z X 11 =0,

50
Var(z X l) =50 Var(X;) = 50/12, where the last equality uses that .5 + X is uniform (0, 1)
i=1

and so Var(X) = Var(.5 + X) = 1/12. Hence,

P{\ZX[\ >3 } ~ P{| N0, 1)| >3(12/50)"*} by the central limit theorem
—2P{N(0, 1) > 1.47 = .1416

6. If X; is the outcome of the i™ roll then E[X;] = 7/2 Var(X;) = 35/12 and so
79 79
P{ZXZ. < 300} = P{ZX,. < 300.5}
i=1 i=1
300.5-79(7/2)
(79%x35/12)"'2

= P{N(O,l) < } = P{N(0,]) < 1.58} =.9429
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10.

12.

134

100 _
P{Z X, > 525} ~ P{N(O,l) > M} = P{N(0,]) > .5} =.3085

i=1 4/ (100 25)

where the above uses that an exponential with mean 5 has variance 25.

If we let X; denote the life of bulb i and let R; be the time to replace bulb i then the desired
100 99

probability is P{ZXZ. +ZR1. < 550}. Since ZXZ. + ZRZ. has mean 100 x 5 + 99 x .25 =
i=1 i=1

524.75 and variance 2500 + 99/48 = 2502 it follows that the desired probability is

approximately equal to P{N(0, 1) < [550 — 524.75]/(2502)"*} = P{N(0, 1) < .505} = .693

It should be noted that the above used that

Var(R;) = Var (% Unif [0,1]) =1/48

Use the fact that a gamma (n, 1) random variable is the sum of » independent exponentials
with rate 1 and thus has mean and variance equal to 7, to obtain:

PHX_"
n

> .01} = P{x —n/\n > 01|

P{NOD|>.01Vn |
2PIN(0,1) > .01 |

Q

Now P{N(0, 1) >2.58} =.005 and so n = (258)°.
If W, is the total weight of n cars and 4 is the amount of weight that the bridge can withstand

then W, — A4 is normal with mean 3n — 400 and variance .09z + 1600. Hence, the probability
of structural damage is

P{W,— 4> 0} ~ P{Z > (400 -3n)/09n+1600 |
Since P{Z > 1.28} =.1 the probability of damage will exceed .1 when # is such that

400 - 3n < 1.28+/.097+1600

The above will be satisfied whenever n > 117.

Let L; denote the life of component i.

100
1
E| Y L | =1000+-—50(101) = 1505
{ } 1o°010D

i=1

100 100 i 2 , 1 o ,
Var L |= 10+— | =(100)" +(100)A101) +— > i
[Z ] Z( 10} (100)* + (100)(101) 100;

i=l

Now apply the central limit theorem to approximate.
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- X -74
13. a) P{X >80}=P
@ P } {14/5

> 15/7} ~ PPZ>2.14} = .0162

— Y - 74
(b) P{Y >80} —P{ s

> 24/7} ~ P{Z>3.43} ~ .0003

(¢) Using that SD(Y — X) =~/196/64+196/25 ~ 3.30 we have

P{Y - X >22} = P{Y —X}/3.30 >2.2/3.30}
~ P{Z> 67} ~ 2514

(d) same as in (c¢)

14. Suppose n components are in stock. The probability they will last for at least 2000 hours is

2000 — IOOn}

=PI X, 220000 = plz > 22100
b {z } { 304

i=1
where Z is a standard normal random variable. Since
.95 = P{Z >-1.64} it follows that p > .95 if

2000-100n

30vn

or, equivalently,

<-1.64

(2000 — 100n)/v/n < —49.2

and this will be the case if n > 23.

10,000
15. P{ > X, > 2,700,000} ~ P{Z > (2,700,000 — 2,400,000)/(800 - 100)} = P{Z>3.75} ~ 0

i=l1

18. Let Y; denote the additional number of fish that need to be caught to obtain a new type when

. . . i
there are at present i distinct types. Then Y; is geometric with parameter -
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20.

21.

22.

136

Hence,

pllr-2, 2 0] 1
3 3 9 10

25-4/1300 o 25 ++/1300
3 ’ '

and so we can take a =

3
Also,
P Y—§>a 3—130 5 _ L when a = 1170 .
3 130+9a~ 10 3
25++/11
Hence P{Y > %70} <.l
g(x) =x""" is convex. Hence, by Jensen’s Inequality

E[Y"" D1 > E[Y])"") Now set ¥Y=X""and so
E[Xn] 2 (E[anl])n/(n—l) or (E[Xn])l/l’l Z (E[Xﬂfl])l/(nfl)

No

(a) 20/26 =.769

(b) 20/(20 +36)=5/14 ~ .357

(d) p~P{Z>(255—- 20)/\/%} ~P{Z>123} ~.1093

(e) p=.112184
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Theoretical Exercises

L.

This follows immediately from Chebyshev’s inequality.

2
1
PiD>al =P{| X - ul > ou) < ajﬂz =

@ =i

by — P _ o=
()m np /(1= p)

(c) answer=1

1/2
@ NuvE V3

(e) answer =1

(d) answer = | ,u|/ o

For £> 0, let & > 0 be such that |g(x) —-g(c) | <& whenever |x—c| <& Also, let B be such

that |g(x) | <B. Then,

ElgZ)= [ e0dE,@+] | edF,®

%=

<(e+ge)P{|z,-c| <8 +BP{|Z,—c| > &

In addition, the same equality yields that

E[g(Z)] = (g(c) - &P{| Z,— c| < 8 - BP{|Z,~c| > &)

Upon letting n — oo , we obtain that

lim sup E[g(Z,)] < g(c) + €
lim inf E[g(Z,)] > g(c) — ¢

The result now follows since ¢ is arbitrary.

Use the notation of the hint. The weak law of large numbers yields that

lim P{|(X, +...+ X,)/n—d>¢&} =0

Chapter 8
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Since X| + ... + X, is binomial with parameters n, x, we have

(et )| i oo

The result now follows from Exercise 4.

6.  E[X]= Zk:iP{Xzi}+ iiP{Xzi}
i=l1

i=k+1
k
21 P{X =k}
:P{ k}k(k+1)/2
2
> X pix=h
7. Take logs and apply the central limit theorem
8. It is the distribution of the sum of 7 independent exponentials each having rate A.
9. 1/2
10. Use the Chernoff bound: e “M(#) = ¢*“ ™"~ will obtain its minimal value when ¢ is chosen
to satisfy

Aé' = i, and this value of ¢ is negative provided i < A.
Hence, the Chernoff bound gives
P{X<iy <M Mi)

11. e "M(t) = (pe' + q)"e " and differentiation shows that the value of ¢ that minimizes it is such
that

npe' = i(pe' +q) or &' = .
(n=i)p

Using this value of ¢, the Chernoff bound gives that

P{X>i} < (—+qj (n—1) p' iq)'
n

_ (n@)"(n=0)'p'
i'q'(n—i)"

12. 1 = E[e™] > ¢*™ by Jensen’s inequality.

Hence, GE[X] < 0 and thus 8> 0.
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Chapter 9

Problems and Theoretical Exercises
1. (a) P(2 arrivals in (0, 5) | 2 arrivals in (0, 1)}

=P{21in (0, s), 0 in (s, 1)}/e *1*/2)
= [e M (As)*2][e (e 2*2) = s* = 1/9 when s = 1/3

(b) 1 — P{both in last 40 minutes) = 1 — (2/3)* = 5/9

7 35760
3 &0 1 (5/20)e73
8. The equations for the limiting probabilities are:

[1. =711 + 4Ll + .2[1,
[l =21 + 3I1 + 4l
[I;= 111+ 311 + 411,
[l+TL+1l,=1

and the solution is: [[. = 30/59, [ ], = 16/59, [ I, = 13/59. Hence, Bufty is cheerful 3000/59
percent of the time.

9. The Markov chain requires 4 states:
0 = RR = Rain today and rain yesterday
1 = RD = Dry today, rain yesterday
2 = DR = Rain today, dry yesterday
3 = DD = Dry today and dry yesterday

with transition probability matrix

P=

S o ©
v o W o
o © 9 O

.8
0
4
0
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10.

1.

140

The equations for the limiting probabilities are:

[To= 81y + 4IL
[T, = 2[1, + .6IL
[L =3I + .2[1
[ =711, + .81

[h+IL+IL+1=1
which gives
[To=4/15,11 =11, =2/15,11; = 7/15.
Since it rains today when the state is either O or 2 the probability is 2/5.

Let the state be the number of pairs of shoes at the door he leaves from in the morning.
Suppose the present state is i, where i > 0. Now after his return it is equally likely that one
door will have i and the other 5 — i pairs as it is that one will have i — 1 ant the other 6 — i.
Hence, since he is equally likely to choose either door when he leaves tomorrow it follows
that

Pi= Pi,s—i =P 1=Pgsi= 1/4

provided all the states i, 5 — i, i — 1, 6 — i are distinct. If they are not then the probabilities are
added. From this it is easy to see that the transition matrix Py, i,j =0, 1, ..., 5 is as follows:

/2 0 0 0 0 1/2
/4 174 0 0 1/4 1/4
0 1/4 1/4 1/4 1/4 0
0 o0 /212 0 O
0 1/4 1/4 1/4 1/4 0
1/4 1/4 0 0 1/4 1/4

P=

Since this chain is doubly stochastic (the column sums as well as the row sums all equal to
one) it follows that [[;=1/6,i=0, ..., 5, and thus he runs barefooted one-sixth of the time.

(b) 12
(c) Intuitively, they should be independent.

(d) From (b) and (¢) the (limiting) number of molecules in urn 1 should have a binomial
distribution with parameters (M, 1/2).
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Chapter 10

1. (a) After stage k the algorithm has generated a random permutation of 1, 2, ..., k. It then
puts element k£ + 1 in position £ + 1; randomly chooses one of the positions 1, ..., £+ 1
and interchanges the element in that position with element & + 1.

(b) The first equality in the hint follows since the permutation given will be the permutation

after insertion of element k if the previous permutation is iy, ..., ij_1, i, ij, ..., i and the
random choice of one of the & positions of this permutation results in the choice of
position j.
2. Integrating the density function yields that that distribution function is
/2, x>0
F(x) =

1-¢/2, x>0
which yields that the inverse function is given by

log(2u)/2 ifu<12
l =
FG) —log(2[1-u])/2 ifu>1/2

Hence, we can simulate X from F by simulating a random number U and setting X = F ' (V).

3. The distribution function is given by

x2/4—x+1, 2<x<3,
x—x"/12-2, 3<x<6

F(x)=
Hence, for u < 1/4, F~'(u) is the solution of

A -x+1=u
that falls in the region 2 < x < 3. Similarly, for u > 1/4, F"'(u) is the solution of

x—x/12-2=u

that falls in the region 3 < x < 6. We can now generate X from F' by generating a random
number U and setting X = F ' (D).

4. Generate a random number U and then set X = F'(U). If U< 1/2 then X = 6U — 3, whereas if
U > 1/2 then X is obtained by solving the quadratic 1/2 + X*/32 = U in the region 0 < X < 4.
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The inverse equation F = X is equivalent to
q q

or
- =U
X = {-log(1 - U)/a}""*

Since 1 — U has the same distribution as U we can generate from F by generating a random
number U and setting X = {—log(U)/a}'"”.

If A(¢) = ct" then the distribution function is given by
1 — F(f) = exp{—k""}, t>0 where k=c/(n+ 1)

Hence, using the inverse transform method we can generate a random number U and then set
X such that

exp{—kX"" =1-U
or
X = {-log(1 — U)/k} "D
Again U can be used for 1 — U.
(a) The inverse transform method shows that U"" works.
(b) P{MaxU;<v} =P{U,<x, ..., U, <x}
=[[P{U;<x} by independence
— xﬂ
(¢) Simulate n random numbers and use the maximum value obtained.
(a) If X; has distribution F;,i=1, ..., n, then, assuming independence, F is the distribution of
MaxJX;. Hence, we can simulate from F' by simulating X;, i = 1, ..., n and setting
X =MaxJX,.

(b) Use the method of (a) replacing Max by Min throughout.

(a) Simulate X; from F;, i = 1, 2. Now generate a random number U and set X equal to X if
U <p and equal to X, if U> p.

(b) Note that
1 2
F(x)= - F(x)+ = F,(x)
3 3
where

Fix)=1-¢e>, x>0, Fo(x)=x, 0<x<1
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Hence, using (a) let U}, U,, U; be random numbers and set

_ —log(U,)/3if Uy <1/3

X
U, ifU, >1/3

where the above uses that —log(U;)/3 is exponential with rate 3.

10.  Withg(x)=Ae™

2 -x2/2 2
QB ) ﬂ(zi)l/zebf "~ e exp{-{(x~24)" - 2']/2}
26/12/2

Wexp {—(X - 2)2 /2}

Hence, ¢ = 2¢ %) [A(27)""?] and simple calculus shows that this is minimized when 4= 1.

11. Calculus yields that the maximum value of f{x)/g(x) = 60x’(1 — x)* is attained when x = 3/5
and is thus equal to 1296/625. Hence, generate random numbers U, and U, and set X = U, if
U, <3125U; (1-U,)* /108 . If not, repeat.

12. Generate random numbers Uy, ..., U,, and approximate the integral by [k(U}) + ... + &(U,)]/n.

1
This works by the law of large numbers since E[A(U)] = Ik(x)dx.
0

16, Elfx0]= [0/ f(0If (x)dx = [ g(x)dx
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Corrections to Ross, A FIRST COURSE IN PROBABILITY, seventh ed.

p.79,line2: P(Y7 | R)) - PU}LR))
p. 95, centered eq. on line 12: P

n,m-1,m

— P

n,m-1
p. 288, I. 2: change “when j >r.” to “when j <0.”
p. 309, first line of Example 8b: change “let Y, denote the selection ” to “let Y,
denote the selection ”
p. 373, line -8: on the centered equation following “the preceding equation yields”
add a right paren at the very end. That is,
(1-(@-p)" > (1-(1- p)")
p. 416, line 1: change “Let X,, ... ,X be independent” to “Let X,, .. .be
independent”
p. 509, lines 6 and 7: 73. should be 83. and 74. should be 84.
p. 509, Solution to Problem 68 of Chapter 4: change
(l_e—s)so to (l_e—S)lO
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