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Preface

This book is a concise presentation of the normal distribution on the real line and its
counterparts on more abstract spaces, which we shall call the Gaussian distributions.
The material is selected towards presenting characteristic properties, or characterizations,
of the normal distribution. There are many such properties and there are numerous rel-
evant works in the literature. In this book special attention is given to characterizations
generated by the so called Maxwell's Theorem of statistical mechanics, which is stated
in the introduction as Theorem 0.0.1. These characterizations are of interest both intrin-
sically, and as techniques that are worth being aware of. The book may also serve as a
good introduction to diverse analytic methods of probability theory. We use characteristic
functions, tail estimates, and occasionally dive into complex analysis.

In the book we also show how the characteristic properties can be used to prove
important results about the Gaussian processes and the abstract Gaussian vectors. For
instance, in Section 5.4 we present Fernique's beautiful proofs of the zero-one law and of
the integrability of abstract Gaussian vectors. The central limit theorem is obtained via
characterizations in Section 7.3.

The excellent book by Kagan, Linnik & Rao [73] overlaps with ours in the coverage of
the classical characterization results. Our presentation of these is sometimes less general,
but in return we often give simpler proofs. On the other hand, we are more selective in the
choice of characterizations we want to present, and we also point out some applications.
Characterization results that are not included in [73] can be found in numerous places of
the book, see Section 4.2, Chapter 7 and Chapter 8.

We have tried to make this book accessible to readers with various backgrounds. If
possible, we give elementary proofs of important theorems, even if they are special cases
of more advanced results. Proofs of several di�cult classic results have been simpli�ed.
We have managed to avoid functional equations for non-di�erentiable functions; in many
proofs in the literature lack of di�erentiability is a major technical di�culty.

The book is primarily aimed at graduate students in mathematical statistics and prob-
ability theory who would like to expand their bag of tools, to understand the inner work-
ings of the normal distribution, and to explore the connections with other �elds. Charac-
terization aspects sometimes show up in unexpected places, cf. Diaconis & Ylvisaker [36].
More generally, when �tting any statistical model to the data, it is inevitable to refer
to relevant properties of the population in question; otherwise several di�erent models
may �t the same set of empirical data, cf. W. Feller [53]. Monograph [125] by Prakasa
Rao is written from such perspective and for a statistician our book may only serve as a
complementary source. On the other hand results presented in Sections 7.5 and 8.3 are
quite recent and virtually unknown among statisticians. Their modeling aspects remain
to be explored, see Section 8.4. We hope that this book will popularize the interesting
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viii PREFACE

and di�cult area of conditional moment descriptions of random �elds. Of course it is
possible that such characterizations will �nally end up far from real life like many other
branches of applied mathematics. It is up to the readers of this book to see if the following
sentence applies to characterizations as well as to trigonometric series.

\Thinking of the extent and re�nement reached by the theory of trigonometric
series in its long development one sometimes wonders why only relatively few
of these advanced achievements �nd an application."
(A. Zygmund, Trigonometric Series, Vol. 1, Cambridge Univ. Press, Second Edition, 1959,

page xii)

There is more than one way to use this book. Parts of it have been used in a graduate
one-quarter course Topics in statistics. The reader may also skim through it to �nd results
that he needs; or look up the techniques that might be useful in his own research. The
author of this book would be most happy if the reader treats this book as an adventure into
the unknown | picks a piece of his liking and follows through and beyond the references.
With this is mind, the book has a number of references and digressions. We have tried to
point out the historical perspective, but also to get close to current research.

An appropriate background for reading the book is a one year course in real analysis
including measure theory and abstract normed spaces, and a one-year course in complex
analysis. Familiarity with conditional expectations would also help. Topics from prob-
ability theory are reviewed in Chapter 1, frequently with proofs and exercises. Exercise
problems are at the end of the chapters; solutions or hints are in Appendix A.

The book bene�ted from the comments of Chris Burdzy, Abram Kagan, Samuel Kotz,
W lodek Smole�nski, Pawe l Szab lowski, and Jacek Weso lowski. They read portions of
the �rst draft, generously shared their criticism, and pointed out relevant references and
errors. My colleagues at the University of Cincinnati also provided comments, criticism
and encouragement. The �nal version of the book was prepared at the Institute for
Applied Mathematics of the University of Minnesota in fall quarter of 1993 and at the
Center for Stochastic Processes in Chapel Hill in Spring 1994. Support by C. P. Taft
Memorial Fund in the summer of 1987 and in the spring of 1994 helped to begin and to
conclude this endeavor.



Introduction

The following narrative comes from J. F. W. Herschel [63].

\Suppose a ball is dropped from a given height, with the intention that it shall
fall on a given mark. Fall as it may, its deviation from the mark is error, and
the probability of that error is the unknown function of its square, ie. of the
sum of the squares of its deviations in any two rectangular directions. Now,
the probability of any deviation depending solely on its magnitude, and not on
its direction, it follows that the probability of each of these rectangular devia-
tions must be the same function of its square. And since the observed oblique
deviation is equivalent to the two rectangular ones, supposed concurrent, and
which are essentially independent of one another, and is, therefore, a com-
pound event of which they are the simple independent constituents, therefore
its probability will be the product of their separate probabilities. Thus the
form of our unknown function comes to be determined from this condition..."

Ten years after Herschel, the reasoning was repeated by J. C. Maxwell [108]. In his
theory of gases he assumed that gas consists of small elastic spheres bumping each other;
this led to intricate mechanical considerations to analyze the velocities before and after the
encounters. However, Maxwell answered the question of his Proposition IV: What is the
distribution of velocities of the gas particles? without using the details of the interaction
between the particles; it lead to the emergence of the trivariate normal distribution. The
result that velocities are normally distributed is sometimes called Maxwell's theorem. At
the time of discovery, probability theory was in its beginnings and the proof was considered
\controversial" by leading mathematicians.

The beauty of the reasoning lies in the fact that the interplay of two very natural
assumptions: of independence and of rotation invariance, gives rise to the normal law of
errors | the most important distribution in statistics. This interplay of independence
and invariance shows up in many of the theorems presented below.

Here we state the Herschel-Maxwell theorem in modern notation but without proof;
for one of the early proofs, see [6]. The reader will see several proofs that use various,
usually weaker, assumptions in Theorems 3.1.1, 4.2.1, 5.1.1, 6.3.1, and 6.3.3.

Theorem 0.0.1 Suppose random variables X; Y have joint probability distribution
�(dx; dy) such that

(i) �(�) is invariant under the rotations of IR2;
(ii) X; Y are independent.
Then X; Y are normally distributed.

1
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This theorem has generated a vast literature. Here is a quick preview of pertinent
results in this book.

Polya's theorem [122] presented in Section 3.1 says that if just two rotations by angles
�=2 and �=4; preserve the distribution of X, then the distribution is normal. Generaliza-
tions to characterizations by the equality of distributions of more general linear forms are
given in Chapter 3. One of the most interesting results here is Marcinkiewicz's theorem
[106], see Theorem 3.3.3.

An interesting modi�cation of Theorem 0.0.1, discovered by M. Sh. Braverman [14]
and presented in Section 4.2 below, considers three i. i. d. random variables X; Y; Z
with the rotation-invariance assumption (i) replaced by the requirement that only some
absolute moments are rotation invariant.

Another insight is obtained, if one notices that assumption (i) of Maxwell's theorem
implies that rotations preserve the independence of the original random variables X; Y .
In this approach we consider a pair X; Y of independent random variables such that the
rotation by an angle � produces two independent random variables X cos� + Y sin�
and X sin� � Y cos�. Assuming this for all angles �, M. Kac [71] showed that the
distribution in question has to be normal. Moreover, careful inspection of Kac's proof
reveals that the only essential property he had used was that X; Y are independent and
that just one �=4-rotation: (X+Y )=

p
2; (X�Y )=

p
2 produces the independent pair. The

result explicitly assuming the latter was found independently by Bernstein [8]. Bernstein's
theorem and its extensions are considered in Chapter 5; Bernstein's theorem also motivates
the assumptions in Chapter 7.

The following is a more technical description the contents of the book. Chapter 1
collects probabilistic prerequisites. The emphasis is on analytic aspects; in particular
elementary but useful tail estimates collected in Section 1.3. In Chapter 2 we approach
multivariate normal distributions through characteristic functions. This is a less intuitive
but powerful method. It leads rapidly to several fundamental facts, and to associated Re-
producing Kernel Hilbert Spaces (RKHS). As an illustration, we prove the large deviation
estimates on IRd which use the conjugate RKHS norm. In Chapter 3 the reader is intro-
duced to stability and equidistribution of linear forms in independent random variables.
Stability is directly related to the CLT. We show that in the abstract setup stability is
also responsible for the zero-one law. Chapter 4 presents the analysis of rotation invari-
ant distributions on IRd and on IR1. We study when a rotation invariant distribution
has to be normal. In the process we analyze structural properties of rotation invariant
laws and introduce the relevant techniques. In this chapter we also present surprising
results on rotation invariance of the absolute moments. We conclude with a short proof
of de Finetti's theorem and point out its implications for in�nite spherically symmetric
sequences. Chapter 5 parallels Chapter 3 in analyzing the role of independence of linear
forms. We show that independence of certain linear forms, a characteristic property of
the normal distribution, leads to the zero-one law, and it is also responsible for exponen-
tial moments. Chapter 6 is a short introduction to measures of dependence and stability
issues. Theorem 6.2.2 establishes integrability under conditions of interest, eg. in poly-
nomial biorthogonality as studied by Lancaster [94]. In Chapter 7 we extend results in
Chapter 5 to conditional moments. Three interesting aspects emerge here. First, normal-
ity can frequently be recognized from the conditional moments of linear combinations of
independent random variables; we illustrate this by a simple proof of the well known fact
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that the independence of the sample mean and the sample variance characterizes normal
populations, and by the proof of the central limit theorem. Secondly, we show that for
in�nite sequences, conditional moments determine normality without any reference to in-
dependence. This part has its natural continuation in Chapter 8. Thirdly, in the exercises
we point out the versatility of conditional moments in handling other in�nitely divisible
distributions. Chapter 8 is a short introduction to continuous parameter random �elds,
analyzed through their conditional moments. We also present a self-contained analytic
construction of the Wiener process.
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Chapter 1

Probability tools

Most of the contents of this section is fairly standard probability theory. The reader
shouldn't be under the impression that this chapter is a substitute for a systematic course
in probability theory. We will skip important topics such as limit theorems. The emphasis
here is on analytic methods; in particular characteristic functions will be extensively used
throughout.

Let (
;M; P ) be the probability space, ie. 
 is a set, M is a �-�eld of its subsets
and P is the probability measure on (
;M). We follow the usual conventions: X; Y; Z
stand for real random variables; boldface X;Y;Z denote vector-valued random variables.
Throughout the book EX =

R

X(!) dP (Lebesgue integral) denotes the expected value

of a random variable X. We write X �= Y to denote the equality of distributions, ie.
P (X 2 A) = P (Y 2 A) for all measurable sets A. Equalities and inequalities between
random variables are to be interpreted almost surely (a. s.). For instance X � Y + 1
means P (X � Y + 1) = 1; the latter is a shortcut that we use for the expression P (f! 2

 : X(!) � Y (!) + 1g) = 1.

Boldface A;B;C will denote matrices. For a complex z = x + iy 2 CC by x = <z
and y = =z we denote the real and the imaginary part of z. Unless otherwise stated,
log a = loge a denotes the natural logarithm of number a.

1.1 Moments

Given a real number r � 0, the absolute moment of order r is de�ned by EjXjr; the
ordinary moment of order r = 0; 1; : : : is de�ned as EXr. Clearly, not every sequence of
numbers is the sequence of moments of a random variable X; it may also happen that
two random variables with di�erent distributions have the same moments. However, in
Corollary 2.3.3 below we will show that the latter cannot happen for normal distributions.

The following inequality is known as Chebyshev's inequality. Despite its simplicity it
has numerous non-trivial applications, see eg. Theorem 6.2.2 or [29].

Proposition 1.1.1 If f : IR+ ! IR+ is a non-decreasing function and Ef(jXj) = C <
1, then for all t > 0 such that f(t) 6= 0 we have

P (jXj > t) � C=f(t): (1.1)

5



6 CHAPTER 1. PROBABILITY TOOLS

Indeed, Ef(jXj) =
R

 f(jXj) dP � R

jXj�t f(jXj) dP � R
jXj�t f(t) dP = f(t)P (jXj > t).

It follows immediately from Chebyshev's inequality that if EjXjp = C < 1, then
P (jXj > t) � C=tp; t > 0. An implication in converse direction is also well known: if
P (jXj > t) � C=tp+� for some � > 0 and for all t > 0, then EjXjp <1, see (1.4) below.

The following formula will often be useful1.

Proposition 1.1.2 If f : IR+ ! IR is a function such that f(x) = f(0) +
R x
0 g(t) dt,

Efjf(X)jg <1 and X � 0, then

Ef(X) = f(0) +
Z 1

0
g(t)P (X � t) dt: (1.2)

Moreover, if g � 0 and if the right hand side of (1.2) is �nite, then Ef(X) <1.

Proof. The formula follows from Fubini's theorem2, since for X � 0Z


f(X) dP =

Z



�
f(0) +

Z 1

0
1t�Xg(t) dt

�
dP

= f(0) +
Z 1

0
g(t)(

Z



1t�X dP ) dt = f(0) +
Z 1

0
g(t)P (X � t) dt:

2

Corollary 1.1.3 If EjXjr <1 for an integer r > 0, then

EXr = r
Z 1

0
tr�1P (X � t) dt� r

Z 1

0
tr�1P (�X � t) dt: (1.3)

If EjXjr <1 for real r > 0 then

EjXjr = r
Z 1

0
tr�1P (jXj � t) dt: (1.4)

Moreover, the left hand side of (1.4) is �nite if and only if the right hand side is �nite.

Proof. Formula (1.4) follows directly from Proposition 1.1.2 (with f(x) = xr and g(t) =
d
dt
f(t) = rtr�1).

Since EX = EX+ � EX�, where X+ = maxfX; 0g and X� = minfX; 0g, therefore
applying Proposition 1.1.2 separately to each of this expectations we get (1.3). 2

1The typical application deals with Ef(X) when f(:) has continuous derivative, or when f(:) is convex.
Then the integral representation from the assumption holds true.

2See, eg. [9, Section 18] .
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1.2 Lp-spaces

By Lp(
;M; P ), or Lp if no misunderstanding may result, we denote the Banach space
of a. s. classes of equivalence of p-integrable M-measurable random variables X with the
norm

kXkp =

(
p

q
EjXjp if p � 1;

ess supjXj if p = 1:

If X 2 Lp, we shall say that X is p-integrable; in particular, X is square integrable if
EX2 < 1. We say that Xn converges to X in Lp, if kXn � Xkp ! 0 as n ! 1. If
Xn converges to X in L2, we shall also use the phrase sequence Xn converges to X in
mean-square.

Several useful inequalities are collected in the following.

Theorem 1.2.1 (i) for 1 � p � q � 1 we have Minkowski's inequality

kXkp � kXkq: (1.5)

(ii) for 1=p+ 1=q = 1, p � 1 we have H�older's inequality

EXY � kXkpkY kq: (1.6)

(iii) for 1 � p � 1 we have triangle inequality

kX + Y kp � kXkp + kY kp: (1.7)

Special case p = q = 2 of H�older's inequality (1.6) reads EXY � p
EX2EY 2. It is

frequently used and is known as the Cauchy-Schwarz inequality.
For 1 � p < 1 the conjugate space to Lp (ie. the space of all bounded linear

functionals on Lp) is usually identi�ed with Lq, where 1=p + 1=q = 1. The identi�cation
is by the duality hf; gi =

R
f(!)g(!) dP .

For the proof of Theorem 1.2.1 we need the following elementary inequality.

Lemma 1.2.2 For a; b > 0; 1 < p <1 and 1=p+ 1=q = 1 we have

ab � ap=p+ bq=q: (1.8)

Proof. Function t 7! tp=p + t�q=q has the derivative tp�1 � t�q�1. The derivative is
positive for t > 1 and negative for 0 < t < 1. Hence the maximum value of the function
for t > 0 is attained at t = 1, giving

tp=p+ t�q=q � 1:

Substituting t = a1=qb�1=p we get (1.8). 2

Proof of Theorem 1.2.1 (ii). If either kXkp = 0 or kY kq = 0, then XY = 0 a. s.
Therefore we consider only the case kXkpkY kq > 0 and after rescaling we assume kXkp =
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kY kq = 1. Furthermore, the case p = 1; q = 1 is trivial as jXY j � jXjkY k1. For
1 < p <1 by (1.8) we have

jXY j � jXjp=p+ jY jq=q:

Integrating this inequality we get jEXY j � EjXY j � 1 = kXkpkY kq. 2

Proof of Theorem 1.2.1 (i). For p = 1 this is just Jensen's inequality; for a more
general version see Theorem 1.4.1. For 1 < p < 1 by H�older's inequality applied to the
product of 1 and jXjp we have

kXkpp = EfjXjp � 1g � (EjXjq)p=q(E1r)1=r = kXkpq;

where r is computed from the equation 1=r + p=q = 1. (This proof works also for p = 1
with obvious changes in the write-up.) 2

Proof of Theorem 1.2.1 (iii). The inequality is trivial if p = 1 or if kX + Y kp = 0. In
the remaining cases

kX + Y kpp � Ef(jXj+ jY j)jX + Y jp�1g = EfjXjjX + Y jp�1g+ EfjY jjX + Y jp�1g:

By H�older's inequality

kX + Y kpp � kXkpkX + Y kp=qp + kY kpkX + Y kp=qp :

Since p=q = p� 1, dividing both sides by kX + Y kp=qp we get the conclusion. 2

By V ar(X) we shall denote the variance of a square integrable r. v. X

V ar(X) = EX2 � (EX)2 = E(X � EX)2:

The correlation coe�cient corr(X; Y ) is de�ned for square-integrable non-degenerate r. v.
X; Y by the formula

corr(X; Y ) =
EXY � EXEY

kX � EXk2kY � EY k2 :

The Cauchy-Schwarz inequality implies that �1 � corr(X; Y ) � 1.

1.3 Tail estimates

The function N(x) = P (jXj � x) describes tail behavior of r. v. a X. Inequalities
involving N(�) similar to Problems 1.2 and 1.3 are sometimes easy to prove. Integrability
that follows is of considerable interest. Below we give two rather technical tail estimates
and we state several corollaries for future reference. The proofs use only the fact that
N : [0;1) ! [0; 1] is a non-increasing function such that limx!1N(x) = 0.
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Theorem 1.3.1 If there are C > 1; 0 < q < 1; x0 � 0 such that for all x > x0

N(Cx) � qN(x� x0); (1.9)

then there is M <1 such that N(x) � M
x�

, where � = � logC q.

Proof. Let an be such that when an = xn � x0 then an+1 = Cxn. Solving the resulting
recurrence we get an = Cn � b, where b = Cx0(C � 1)�1. Equation (1.9) says N(an+1) �
CN(an). Therefore

N(an) � N(a0)q
n:

This implies the tail estimate for arbitrary x > 0. Namely, given x > 0 choose n such
that an � x < an+1. Then

N(x) � N(an) � Kqn =
K

q
qlogC(an+1+b) = M(x + b)��:

2

The next results follow from Theorem 1.3.1 and (1.4) and are stated for future reference.

Corollary 1.3.2 If there is 0 < q < 1 and x0 � 0 such that N(2x) � qN(x� x0) for all
x > x0, then EjXj� <1 for all � < log2 1=q.

Corollary 1.3.3 Suppose there is C > 1 such that for every 0 < q < 1 one can �nd
x0 � 0 such that

N(Cx) � qN(x) (1.10)

for all x > x0. Then EjXjp <1 for all p.

As a special case of Corollary 1.3.3 we have the following.

Corollary 1.3.4 Suppose there are C > 1; K <1 such that

N(Cx) � K
N(x)

x2
(1.11)

for all x large enough. Then EjXjp <1 for all p.

The next result deals with exponentially small tails.

Theorem 1.3.5 If there are C > 1; 1 < K <1; x0 � 0 such that

N(Cx) � KN2(x� x0) (1.12)

for all x > x0, then there are M <1; � > 0 such that

N(x) �M exp(��x�);

where � = logC 2.
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Proof. As in the proof of Theorem 1.3.1, let an = Cn � b; b = Cx0=(C � 1). Put
qn = logK N(an). Then (1.12) gives

N(an+1) � KN2(an);

which implies
qn+1 � 2qn + 1: (1.13)

Therefore by induction we get

qm+n � 2n(1 + qm)� 1: (1.14)

Indeed, (1.14) becomes equality for n = 0. If it holds for n = k, then qm+k+1 � 2qm+k+1 �
2(2k(1 + qm)� 1) + 1 = 2k+1(1 + qm)� 1. This proves (1.14) by induction.

Since an ! 1, we have N(an) ! 0 and qn ! �1. Choose m large enough to have
1 + qm < 0. Then (1.14) implies

N(an+m) � K2n(1+qm) = exp��2n:

The proof is now concluded by the standard argument. Selecting large enough M we
have N(x) � 1 � M exp��x� for all x � am. Given x > am choose n � 0 such that
an+m � x < an+m+1. Then

N(x) � N(an+m) � exp��2n �M exp(��2logC an+m+1) �M exp��x�:
2

Corollary 1.3.6 If there are C <1; x0 � 0 such that

N(
p

2x) � CN2(x� x0);

then there is � > 0 such that E exp(�jXj2) <1.

Corollary 1.3.7 If there are C <1; x0 � 0 such that

N(2x) � CN2(x� x0);

then there is � > 0 such that E exp(�jXj) <1.

1.4 Conditional expectations

Below we recall the de�nition of the conditional expectation of a r. v. with respect to a
�-�eld and we state several results that we need for future reference. The de�nition is as
old as axiomatic probability theory itself, see [82, Chapter V page 53 formula (2)]. The
reader not familiar with conditional expectations should consult textbooks, eg. Billingsley
[9, Section 34], Durrett [42, Chapter 4], or Neveu [117].

De�nition 1.4.1 Let (
;M; P ) be a probability space. If F � M is a �-�eld and X
is an integrable random variable, then the conditional expectation of X given F is an
integrable F-measurable random variable Z such that

R
AX dP =

R
A Z dP for all A 2 F .
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Conditional expectation of an integrable random variable X with respect to a �-�eld
F � M will be denoted interchangeably by EfXjFg and EFX. We shall also write
EfXjY g or EYX for the conditional expectation EfXjFg when F = �(Y ) is the �-�eld
generated by a random variable Y .

Existence and almost sure uniqueness of the conditional expectation EfXjFg follows
from the Radon-Nikodym theorem, applied to the �nite signed measures �(A) =

R
AX dP

and PjF , both de�ned on the measurable space (
;F). In some simple situations more
explicit expressions can also be found.

Example. Suppose F is a �-�eld generated by the events A1; A2; : : : ; An which form
a non-degenerate disjoint partition of the probability space 
. Then it is easy to check
that

EfXjFg(!) =
nX

k=1

mkIAk
(!);

where mk =
R
Ak
X dP=P (Ak). In other words, on Ak we have EfXjFg =

R
Ak
X dP=P (Ak).

In particular, if X is discrete and X =
P
xjIBj

, then we get intuitive expression

EfXjFg =
X

xjP (BjjAk) for ! 2 Ak:

Example. Suppose that f(x; y) is the joint density with respect to the Lebesgue mea-
sure on IR2 of the bivariate random variable (X; Y ) and let fY (y) 6= 0 be the (marginal)
density of Y . Put f(xjy) = f(x; y)=fY (y). Then EfXjY g = h(Y ), where h(y) =R1
�1 xf(xjy) dx.

The next theorem lists properties of conditional expectations that will be used without
further mention.

Theorem 1.4.1 (i) If Y is F-measurable random variable such that X and XY are
integrable, then EfXY jFg = Y EfXjFg;

(ii) If G � F , then EGEF = EG;

(iii) If �(X;F) and N are independent �-�elds, then EfXjN WFg = EfXjFg; here
N WF denotes the �-�eld generated by the union N [ F ;

(iv) If g(x) is a convex function and Ejg(X)j <1, then g(EfXjFg) � Efg(X)jFg;

(v) If F is the trivial �-�eld consisting of the events of probability 0 or 1 only, then
EfXjFg = EX;

(vi) If X; Y are integrable and a; b 2 IR then EfaX + bY jFg = aEfXjFg+ bEfY jFg;

(vii) If X and F are independent, then EfXjFg = EX.

Remark: Inequality (iv) is known as Jensen's inequality and this is how we shall refer to it.

The proof uses the following.

Lemma 1.4.2 If Y1 and Y2 are F-measurable and
R
A Y1 dP � R

A Y2 dP for all A 2 F ,
then Y1 � Y2 almost surely. If

R
A Y1 dP =

R
A Y2 dP for all A 2 F , then Y1 = Y2.
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Proof. Let A� = fY1 > Y2 + �g 2 F . Since
R
A�
Y1 dP � R

A�
Y2 dP + �P (A�), thus

P (A�) > 0 is impossible. Event fY1 > Y2g is the countable union of the events A� (with
� rational); thus it has probability 0 and Y1 � Y2 with probability one.

The second part follows from the �rst by symmetry. 2

Proof of Theorem 1.4.1.
(i) This is veri�ed �rst for Y = IB (the indicator function of an event B 2 F).

Let Y1 = EfXY jFg; Y2 = Y EfXjFg. From the de�nition one can easily see that bothR
A Y1 dP and

R
A Y2 dP are equal to

R
A\BX dP . Therefore Y1 = Y2 by the Lemma 1.4.2.

For the general case, approximate Y by simple random variables and use (vi).
(ii) This follows from Lemma 1.4.2: random variables Y1 = EfXjFg, Y2 = EfXjGg

are G-measurable and for A in G both
R
A Y1 dP and

R
A Y2 dP are equal to

R
AX dP .

(iii) Let Y1 = EfXjN WFg; Y2 = EfXjFg. We check �rst thatZ
A
Y1 dP =

Z
A
Y2 dP

for all A = B \ C, where B 2 N and C 2 F . This holds true, as both sides of the
equation are equal to P (B)

R
C X dP . Once equality

R
A Y1 dP =

R
A Y2 dP is established for

the generators of the �-�eld, it holds true for the whole �-�eld N WF ; this is standard
measure theory, see � � � Theorem [9, Theorem 3.3].

(iv) Here we need the �rst part of Lemma 1.4.2. We also need to know that each
convex function g(x) can be written as the supremum of a family of a�ne functions
fa;b(x) = ax + b. Let Y1 = Efg(X)jFg; Y2 = fa;b(EfXjFg); A 2 F . By (vi) we haveZ

A
Y1 dP =

Z
A
g(X) dP � fa;b(

Z
A
X) dP = fa;b(

Z
A
EfXjFg) dP =

Z
A
Y2 dP:

Hence fa;b(EfXjFg) � Efg(X)jFg; taking the supremum (over suitable a; b) ends the
proof.

(v), (vi), (vii) These proofs are left as exercises. 2

Theorem 1.4.1 gives geometric interpretation of the conditional expectation Ef�jFg
as the projection of the Banach space Lp(
;M; P ) onto its closed subspace Lp(
;F ; P ),
consisting of all p-integrable F -measurable random variables, p � 1. This projection is
\self adjoint" in the sense that the adjoint operator is given by the same \conditional
expectation" formula, although the adjoint operator acts on Lq rather than on Lp; for
square integrable functions Ef:jFg is just the orthogonal projection onto L2(
;F ; P ).
Monograph [117] considers conditional expectation from this angle.

We will use the following (weak) version of the martingale3 convergence theorem.

Theorem 1.4.3 Suppose Fn is a decreasing family of �-�elds, ie. Fn+1 � Fn for all
n � 1. If X is integrable, then EfXjFng ! EfXjFg in L1-norm, where F is the
intersection of all Fn.

3A martingale with respect to a family of increasing �-�elds Fn is and integrable sequence Xn such
that E(Xn+1jFn) = Xn. The sequence Xn = E(X jFn) is a martingale. The sequence in the theorem is
of the same form, except that the �-�elds are decreasing rather than increasing.
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Proof. Suppose �rst that X is square integrable. Subtracting m = EX if necessary,
we can reduce the convergence question to the centered case EX = 0. Denote Xn =
EfXjFng. Since Fn+1 � Fn, by Jensen's inequality EX2

n � 0 is a decreasing non-negative
sequence. In particular, EX2

n converges.
Let m < n be �xed. Then E(Xn �Xm)2 = EX2

n +EX2
m� 2EXnXm. Since Fn � Fm,

by Theorem 1.4.1 we have

EXnXm = EEfXnXmjFng = EXnEfXmjFng
= EXnEfEfXjFmgjFng = EXnEfXjFng = EX2

n:

Therefore E(Xn �Xm)2 = EX2
m � EX2

n. Since EX2
n converges, Xn satis�es the Cauchy

condition for convergence in L2 norm. This shows that for square integrable X, sequence
fXng converges in L2.

If X is not square integrable, then for every � > 0 there is a square integrable Y such
that EjX � Y j < �. By Jensen's inequality EfXjFng and EfY jFng di�er by at most �
in L1-norm; this holds uniformly in n. Since by the �rst part of the proof EfY jFng is
convergent, it satis�es the Cauchy condition in L2 and hence in L1. Therefore for each
� > 0 we can �nd N such that for all n;m > N we have EfjEfXjFng�EfXjFmgjg < 3�.
This shows that EfXjFng satis�es the Cauchy condition and hence converges in L1.

The fact that the limit is X1 = EfXjFg can be seen as follows. Clearly X1 is
Fn-measurable for all n, ie. it is F -measurable. For A 2 F (hence also in Fn), we
have EXIA = EXnIA. Since jEXnIA � EX1IAj � EjXn �X1jIA � EjXn �X1j ! 0,
therefore EXnIA ! EX1IA. This shows that EXIA = EX1IA and by de�nition,
X1 = EfXjFg. 2

1.5 Characteristic functions

The characteristic function of a real-valued random variable X is de�ned by �X(t) =
Eexp(itX), where i is the imaginary unit (i2 = �1). It is easily seen that

�aX+b(t) = eitb�X(at): (1.15)

If X has the density f(x), the characteristic function is just its Fourier transform: �(t) =R1
�1 eitxf(x) dx. If �(t) is integrable, then the inverse Fourier transform gives

f(x) =
1

2�

Z 1

�1
e�itx�(t) dt:

This is occasionally useful in verifying whether the speci�c �(t) is a characteristic function
as in the following example.

Example 1.5.1 The following gives an example of characteristic function that has �nite
support. Let �(t) = 1� jtj for jt < j < 1 and 0 otherwise. Then

f(x) =
1

2�

Z 1

�1
e�itx(1� jtj) dt = � 1

�

Z 1

0
(1� t) cos tx dt =

1

�

1� cos x

x2
:

Since f(x) = 1
�
1�cosx

x2
is non-negative and integrable, �(t) is indeed a characteristic func-

tion.
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The following properties of characteristic functions are proved in any standard probability
course, see eg. [9, 54].

Theorem 1.5.1 (i) The distribution of X is determined uniquely by its characteristic
function �(t).

(ii) If EjXjr < 1 for some r = 0; 1; : : :, then �(t) is r-times di�erentiable, the
derivative is uniformly continuous and

EXk = (�i)k d
k

dtk
�(t)

�����
t=0

for all 0 � k � r.
(iii) If �(t) is 2r-times di�erentiable for some natural r, then EX2r <1.
(iv) If X; Y are independent random variables, then �X+Y (t) = �X(t)�Y (t) for all

t 2 IR.

For a d-dimensional random variable X = (X1; : : : ; Xd) the characteristic function �X :
IRd ! CC is de�ned by �X(t) = Eexp(it �X), where the dot denotes the dot (scalar)
product, ie. x � y =

P
xkyk. For a pair of real valued random variables X; Y , we also

write �(t; s) = �(X;Y )((t; s)) and we call �(t; s) the joint characteristic function of X and
Y .

The following is the multi-dimensional version of Theorem 1.5.1.

Theorem 1.5.2 (i) The distribution of X is determined uniquely by its characteristic
function �(t).

(ii) If EkXkr <1, then �(t) is r-times di�erentiable and

EXj1 : : :Xjk = (�i)k @k

@tj1 : : : @tjk
�(t)

�����
t=0

for all 0 � k � r.
(iii) If X;Y are independent IRd-valued random variables, then

�X+Y(t) = �X(t)�Y(t)

for all t in IRd.

The next result seems to be less known although it is both easy to prove and to
apply. We shall use it on several occasions in Chapter 7. The converse is also true if we
assume that the integer parameter r in the proof below is even or that joint characteristic
function �(t; s) is di�erentiable; to prove the converse, one can follow the usual proof of
the inversion formula for characteristic functions, see, eg. [9, Section 26]. Kagan, Linnik
& Rao [73, Section 1.1.5] state explicitly several most frequently used variants of (1.17).

Theorem 1.5.3 Suppose real valued random variables X; Y have the joint characteristic
function �(t; s). Assume that EjXjm <1 for some m 2 IN. Let g(y) be such that

EfXmjY g = g(Y ):
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Then for all real s

(�i)m @m

@tm
�(t; s)

�����
t=0

= Eg(Y ) exp(isY ): (1.16)

In particular, if g(y) =
P
cky

k is a polynomial, then

(�i)m @m

@tm
�(t; s)

�����
t=0

=
X
k

(�i)kck d
k

dsk
�(0; s): (1.17)

Proof. Since by assumption EjXjm < 1, the joint characteristic function �(t; s) =
Eexp(itX + isY ) can be di�erentiated m times with respect to t and

@m

@tm
�(t; s) = imEXm exp(itX + isY ):

Putting t=0 establishes (1.16), see Theorem 1.4.1(i).
In order to prove (1.17), we need to show �rst that EjY jr < 1, where r is the

degree of the polynomial g(y). By Jensen's inequality Ejg(Y )j � EjXjm <1, and since
jg(y)=yrj ! const 6= 0 as jyj ! 1, therefore there is C > 0 such that jyjr � Cjg(y)j for
all y. Hence EjY jr <1 follows.

Formula (1.17) is now a simple consequence of (1.16); indeed, for 0 � k � r we
have EY k exp(isY ) = (�i)kk�(0; s); this formula is obtained by di�erentiating k-times
Eexp(isY ) under the integral sign. 2

1.6 Symmetrization

De�nition 1.6.1 A random variable X (also: a vector valued random variable X) is
symmetric if X and �X have the same distribution.

Symmetrization techniques deal with comparison of properties of an arbitrary variable
X with some symmetric variable Xsym. Symmetric variables are usually easier to deal
with, and proofs of many theorems (not only characterization theorems, see eg. [76])
become simpler when reduced to the symmetric case.

There are two natural ways to obtain a symmetric random variable Xsym from an ar-
bitrary random variable X. The �rst one is to multiply X by an independent random sign
�1; in terms of the characteristic functions this amounts to replacing the characteristic
function � of X by its symmetrization 1

2
(�(t) +�(�t)). This approach has the advantage

that if X is symmetric, then its symmetrization Xsym has the same distribution as X.
Integrability properties are also easy to compare, because jXj = jXsymj.

The other symmetrization, which has perhaps less obvious properties but is frequently
found more useful, is de�ned as follows. Let X 0 be an independent copy of X. The
symmetrization fX of X is de�ned by fX = X�X 0. In terms of the characteristic functions
this corresponds to replacing the characteristic function �(t) of X by the characteristic
function j�(t)j2. This procedure is easily seen to change the distribution of X, except
when X = 0.
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Theorem 1.6.1 (i) If the symmetrization fX of a random variable X has a �nite moment
of order p � 1, then EjXjp <1.

(ii) If the symmetrization fX of a random variable X has �nite exponential moment
Eexp(�jfXj), then Eexp �jXj <1; � > 0.

(iii) If the symmetrization fX of a random variable X satis�es Eexp�jfXj2 <1, then
Eexp �jXj2 <1; � > 0.

The usual approach to Theorem 1.6.1 uses the symmetrization inequality, which is of
independent interest (see Problem 1.20) and formula (1.2). Our proof requires extra
assumptions, but instead is short, does not require X andX 0 to have the same distribution,
and it also gives a more accurate bound (within its domain of applicability).

Proof in the case, when EjXj < 1 and EX = 0: Let g(x) � 0 be a con-
vex function, such that Eg(fX) < 1 and let X;X 0 be the independent copies of X, so
that conditional expectation EXX 0 = EX = 0. Then Eg(X) = Eg(X � EXX 0) =
Eg(EXfX �X 0g). Since by Jensen's inequality, see Theorem 1.4.1 (iv) we have
Eg(EXfX �X 0g) � Eg(X �X 0), therefore Eg(X) � Eg(X �X 0) = Eg(fX) < 1.
To end the proof, consider three convex functions g(x) = jxjp; g(x) = exp(�x) and
g(x) = exp(�x2).

1.7 Uniform integrability

Recall that a sequence fXngn�1 is uniformly integrable4, if

lim
t!1 sup

n�1

Z
fjXnj>tjg

jXnj dP = 0:

Uniform integrability is often used in conjunction with weak convergence to verify
the convergence of moments. Namely, if Xn is uniformly integrable and converges in
distribution to Y , then Y is integrable and

EY = lim
n!1EXn: (1.18)

The following result will be used in the proof of the Central Limit Theorem in Section
7.3.

Proposition 1.7.1 If X1; X2; : : : are centered i. i. d. random variables with �nite second
moments and Sn =

Pn
j=1Xj then f 1

n
S2
ngn�1 is uniformly integrable.

The following lemma is a special case of the celebrated Khinchin inequality.

Lemma 1.7.2 If �j are �1 valued symmetric independent r. v., then for all real numbers
aj

E

0@ nX
j=1

aj�j

1A4

� 3

0@ nX
j=1

a2j

1A2

(1.19)

4The contents of this section will be used only in an application part of Section 7.3.
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Proof. By independence and symmetry we have

E

0@ nX
j=1

aj�j

1A4

=
nX
j=1

a4j + 6
X
i6=j

a2ia
2
j

which is less than 3
�Pn

j=1 a
4
j + 2

P
i6=j a2i a

2
j

�
. 2

The next lemma gives the Marcinkiewicz-Zygmund inequality in the special case needed
below.

Lemma 1.7.3 If Xk are i. i. d. centered with fourth moments, then there is a constant
C <1 such that

ES4
n � Cn2EX4

1 (1.20)

Proof. As in the proof of Theorem 1.6.1 we can estimate the fourth moments of a centered
r. v. by the fourth moment of its symmetrization, ES4

n � E eS4
n.

Let �j be independent of fXk's as in Lemma 1.7.2. Then in distribution eSn �= Pn
j=1 �j

fXj.
Therefore, integrating with respect to the distribution of �j �rst, from (1.19) we get

ES4
n � 3E

0@ nX
j=1

fX2
j

1A2

= 3E
nX

i;j=1

fX2
i
fX2
j � 3n2EfX4

1 :

Since kX�X 0k4 � 2kXk4 by triangle inequality (1.7), this ends the proof with C = 3 �24.
2

We shall also need the following inequality.

Lemma 1.7.4 If U; V � 0 thenZ
U+V >2t

(U + V )2 dP � 4
�Z

U>t
U2 dP +

Z
V >t

V 2 dP
�
:

Proof. By (1.2) applied to f(x) = x2Ix>2t we haveZ
U+V >2t

(U + V )2 dP =
Z 1

2t
2xP (U + V > x) dx:

Since P (U + V > x) � P (U > x=2) + P (V > x=2), we getZ
U+V >2t

(U+V )2 dP � 4
Z 1

t
(2yP (U > y)+2yP (V > y)) dy = 4

Z
U>t

U2 dP+4
Z
V >t

V 2 dP:

2

Proof of Proposition 1.7.1. We follow Billingsley [10, page 176].
Let � > 0 and choose M > 0 such that

R
fjXj>Mg jXj dP < �. Split Xk = X

0

k + X
00

k ,

where X
0

k = XkIfjXkj�Mg�EfXkIfjXkj�Mgg and let S 0; S 00 denote the corresponding sums.
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Notice that for any U � 0 we have UIfjU j>mg � U2=m. Therefore 1
n

R
jS0nj>t

p
n(S 0n)2 dP �

t�2n�2E(S 0n)4, which by Lemma 1.7.3 gives

1

n

Z
jS0nj>t

p
n
(S 0n)2 dP � CM4=t2: (1.21)

Now we use orthogonality to estimate the second term:

1

n

Z
jS00nj>t

p
n
(S 00n)2 dP � 1

n
E(S 00n)2 � EjX 00

1 j2 < � (1.22)

To end the proof notice that by Lemma 1.7.4 and inequalities (1.21), (1.22) we have

1

n

Z
fjSnj>2t

p
ng
S2
n dP � 1

n

Z
fjS0nj+jS00nj>2t

p
ng

(jS 0nj+ jS 00nj)2 dP � CM4

t2
+ �:

Therefore lim supt!1 supn
1
n

R
fjSnj>2t

p
ng S

2
n dP � �. Since � > 0 is arbitrary, this ends the

proof. 2

1.8 The Mellin transform

De�nition 1.8.1 5 The Mellin transform of a random variable X � 0 is de�ned for all
complex s such that EX<s�1 <1 by the formula M(s) = EXs�1.

The de�nition is consistent with the usual de�nition of the Mellin transform of an inte-
grable function: if X has a probability density function f(x), then the Mellin transform
of X is given by M(s) =

R1
0 xs�1f(x) dx.

Theorem 1.8.1 6 If X � 0 is a random variable such that EXa�1 <1 for some a � 1,
then the Mellin transform M(s) = EXs�1, considered for s 2 CC such that <s = a,
determines the distribution of X uniquely.

Proof. The easiest case is when a = 1 and X > 0. Then M(s) is just the characteristic
function of log(X); thus the distribution of log(X), and hence the distribution of X, is
determined uniquely.

In general consider �nite non-negative measure � de�ned on (IR+;B) by

�(A) =
Z
X�1(A)

Xa�1 dP:

Then M(s)=M(a) is the characteristic function of a random variable � : x 7! log(x)
de�ned on the probability space (IR+;B; P 0) with the probability distribution P 0(:) =
�(:)=�(IR+). Thus the distribution of � is determined uniquely by M(s). Since e� has
distribution P 0(:), � is determined uniquely by M(:). It remains to notice that if F is the
distribution of our original random variable X, then dF = x1�a�(dx) + �(IR+)�0(dx), so
F (:) is determined uniquely, too. 2

5The contents of this section has more special character and will only be used in Sections 4.2 and 4.1.
6See eg. [152].
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Theorem 1.8.2 If X � 0 and EXa <1 for some a > 0, then the Mellin transform of
X is analytic in the strip 1 < <s < 1 + a.

Proof. Since for every s with 0 < <s < a the modulus of the function ! 7! Xs log(X) is
bounded by an integrable function C1 +C2jXja, therefore EXs can be di�erentiated with
respect to s under the expectation sign at each point s; 0 < <s < a. 2

1.9 Problems

Problem 1.1 ([64]) Use Fubini's theorem to show that if XY;X; Y are integrable, then

EXY � EXEY =
Z 1

�1

Z 1

�1
(P (X � t; Y � s)� P (X � t)P (Y � s)) dt ds:

Problem 1.2 Let X � 0 be a random variable and suppose that for every 0 < q < 1
there is T = T (q) such that

P (X > 2t) � qP (X > t) for all t > T:

Show that all the moments of X are �nite.

Problem 1.3 Show that if X � 0 is a random variable such that

P (X > 2t) � (P (X > t))2 for all t > 0;

then Eexp(�jXj) <1 for some � > 0.

Problem 1.4 Show that if Eexp(�X2) = C <1 for some a > 0, then

Eexp(tX) � C exp(
t2

2�
)

for all real t.

Problem 1.5 Show that (1.11) implies E
n
jXjjXj

o
<1.

Problem 1.6 Prove part (v) of Theorem 1.4.1.

Problem 1.7 Prove part (vi) of Theorem 1.4.1.

Problem 1.8 Prove part (vii) of Theorem 1.4.1.

Problem 1.9 Prove the following conditional version of Chebyshev's inequality: if F is
a �-�eld, and EjXj <1, then

P (jXj > tjF) � EfjXj jFg=t

almost surely.
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Problem 1.10 Show that if (X; Y ) is uniformly distributed on a circle centered at (0; 0),
then for every a; b there is a non-random constant C = C(a; b) such that EfXjaX+bY g =
C(a; b)(aX + bY ).

Problem 1.11 Show that if (U; V;X) are such that in distribution (U;X) �= (V;X) then
EfU jXg = EfV jXg almost surely.

Problem 1.12 Show that if X; Y are integrable non-degenerate random variables, such
that

EfXjY g = aY; EfY jXg = bX;

then jabj � 1.

Problem 1.13 Suppose that X; Y are square-integrable random variables such that

EfXjY g = Y; EfY jXg = 0:

Show that Y = 0 almost surely7.

Problem 1.14 Show that if X; Y are integrable such that EfXjY g = Y and EfY jXg =
X, then X = Y a. s.

Problem 1.15 Prove that if X � 0, then function �(t) := EX it, where t 2 IR, deter-
mines the distribution of X uniquely.

Problem 1.16 Prove that function �(t) := EmaxfX; tg determines uniquely the distri-
bution of an integrable random variable X in each of the following cases:

(a) If X is discrete.

(b) If X has continuous density.

Problem 1.17 Prove that, if EjXj < 1, then function �(t) := EjX � tj determines
uniquely the distribution of X.

Problem 1.18 Let p > 2 be �xed. Show that exp(�jtjp) is not a characteristic function.

Problem 1.19 Let Q(t; s) = log�(t; s), where �(t; s) is the joint characteristic function
of square-integrable r. v. X; Y .

(i) Show that EfXjY g = �Y implies

@

@t
Q(t; s)

�����
t=0

= �
d

ds
Q(0; s):

7There are, however, non-zero random variables X;Y with this properties, when square-integrability
assumption is dropped, see [77].
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(ii) Show that EfX2jY g = a+ bY + cY 2 implies

@2

@t2
Q(t; s)

�����
t=0

+

 
@

@t
Q(t; s)

!2
������
t=0

= �a + ib
d

ds
Q(0; s) + c

d2

ds2
Q(0; s) + c

 
d

ds
Q(0; s)

!2

:

Problem 1.20 (see eg. [76]) Suppose a 2 IR is the median of X.

(i) Show that the following symmetrization inequality

P (jXj � t) � 2P (jfXj � t� jaj)

holds for all t > jaj.
(ii) Use this inequality to prove Theorem 1.6.1 in the general case.

Problem 1.21 Suppose (Xn; Yn) converge to (X; Y ) in distribution and fXng, fYng are
uniformly integrable. If E(XnjYn) = �Yn for all n, show that E(XjY ) = �Y .

Problem 1.22 Prove (1.18).
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Chapter 2

Normal distributions

In this chapter we use linear algebra and characteristic functions to analyze the multivari-
ate normal random variables. More information and other approaches can be found, eg.
in [113, 120, 145]. In Section 2.5 we give criteria for normality which will be used often
in proofs in subsequent chapters.

2.1 Univariate normal distributions

The usual de�nition of the standard normal variable Z speci�es its density f(x) =
1p
2�
e�

x2

2 . In general, the so called N(m; �) density is given by

f(x) =
1p
2��

e�
(x�m)2

2�2 :

By completing the square one can check that the characteristic function �(t) = EeitZ =R1
�1 eitxf(x) dx of the standard normal r. v. Z is given by

�(t) = e�
t2

2 ;

see Problem 2.1.
In multivariate case it is more convenient to use characteristic functions directly. Be-

sides, characteristic functions are our main technical tool and it doesn't hurt to start using
them as soon as possible. We shall therefore begin with the following de�nition.

De�nition 2.1.1 A real valued random variable X has the normal N(m; �) distribution
if its characteristic function has the form

�(t) = exp(itm� 1

2
�2t2);

where m; � are real numbers.

From Theorem 1.5.1 it is easily to check by direct di�erentiation that m = EX and
�2 = V ar(X). Using (1.15) it is easy to see that every univariate normal X can be
written as

X = �Z +m; (2.1)

23
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where Z is the standard N(0; 1) random variable with the characteristic function e�
t2

2 .
The following properties of standard normal distribution N(0; 1) are self-evident:

1. The characteristic function e�
t2

2 has analytic extension e�
z2

2 to all complex z 2 CC.

Moreover, e�
z2

2 6= 0.

2. Standard normal random variable Z has �nite exponential moments E exp(�jZj) <
1 for all �; moreover, E exp(�Z2) <1 for all � < 1

2
(compare Problem 1.3).

Relation (2.1) translates the above properties to the general N(m; �) distributions.
Namely, if X is normal, then its characteristic function has non-vanishing analytic ex-
tension to CC and

E exp(�X2) <1
for some � > 0.

For future reference we state the following simple but useful observation. Computing
EXk for k = 0; 1; 2 from Theorem 1.5.1 we immediately get.

Proposition 2.1.1 A characteristic function which can be expressed in the form �(t) =
exp(at2 + bt + c) for some complex constants a; b; c; corresponds to the normal random
variable, ie. a 2 IR and a < 0; b 2 iIR is imaginary and c = 0.

2.2 Multivariate normal distributions

We follow the usual linear algebra notation. Vectors are denoted by small bold letters
x;v; t, matrices by capital bold initial letters A;B;C and vector-valued random variables
by capital boldface X;Y;Z; by the dot we denote the usual dot product in IRd, ie.
x � y :=

Pd
j=1 xjyj; kxk = (x � x)1=2 denotes the usual Euclidean norm. For typographical

convenience we sometimes write (a1; : : : ; ak) for the vector

2664
a1
...
ak

3775. By AT we denote the

transpose of a matrix A.
Below we shall also consider another scalar product h�; �i associated with the normal

distribution; the corresponding semi-norm will be denoted by the triple bar jjj � jjj.

De�nition 2.2.1 An IRd-valued random variable Z is multivariate normal, or Gaussian
(we shall use both terms interchangeably; the second term will be preferred in abstract
situations) if for every t 2 IRd the real valued random variable t � Z is normal.

Clearly the distribution of univariate t �Z is determined uniquely by its mean m = mt and
its standard deviation � = �t. It is easy to see that mt = t �m, where m = EZ. Indeed,
by linearity of the expected value mt = Et � Z = t � EZ. Evaluating the characteristic
function �(s) of the real-valued random variable t�Z at s = 1 we see that the characteristic
function of Z can be written as

�(t) = exp(it �m� �2t
2

):
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In order to rewrite this formula in a more useful form, consider the function B(x;y) of
two arguments x;y 2 IRd de�ned by

B(x;y) = Ef(x � Z)(y � Z)g � (x �mx)(y �my):

That is, B(x;y) is the covariance of two real-valued (and jointly Gaussian) random vari-
ables x � Z and y � Z.

The following observations are easy to check.

� B(�; �) is symmetric, ie. B(x;y) = B(y;x) for all x;y;

� B(�; �) is a bilinear function, ie. B(�;y) is linear for every �xed y and B(x; �) is
linear for very �xed x;

� B(�; �) is positive de�nite, ie. B(x;x) � 0 for all x.

We shall need the following well known linear algebra fact (the proofs are explained below;
explicit reference is, eg. [130, Section 6]).

Lemma 2.2.1 Each bilinear form B has the dot product representation

B(x;y) = Cx � y;
where C is a linear mapping, represented by a d � d matrix C = [ci;j]. Furthermore, if
B(�; �) is symmetric then C is symmetric, ie. we have C = CT .

Indeed, expand x and y with respect to the standard orthogonal basis e1; : : : ; ed. By
bilinearity we have B(x;y) =

P
i;j xiyjB(ei; ej), which gives the dot product represen-

tation with ci;j = B(ei; ej). Clearly, for symmetric B(�; �) we get ci;j = cj;i; hence C is
symmetric.

Lemma 2.2.2 If in addition B(�; �) is positive de�nite then

C = A�AT (2.2)

for a d� d matrix A. Moreover, A can be chosen to be symmetric.

The easiest way to see the last fact is to diagonalize C (this is always possible, as C is
symmetric). The eigenvalues of C are real and, since B(�; �) is positive de�nite, they are
non-negative. If � denotes a (diagonal) matrix (consisting of eigenvalues of C) in the
diagonal representation C = U�UT and � is the diagonal matrix formed by the square
roots of the eigenvalues, then A = U�UT . Moreover, this construction gives symmetric
A = AT . In general, there is no unique choice of A and we shall sometimes �nd it more
convenient to use non-symmetric A, see Example 2.2.2 below.

The linear algebra results imply that the characteristic function corresponding to a
normal distribution on IRd can be written in the form

�(t) = exp(it �m� 1

2
Ct � t): (2.3)

Theorem 1.5.2 identi�es m 2 IRd as the mean of the normal random variable Z =
(Z1; : : : ; Zd); similarly, double di�erentiation �(t) at t = 0 shows that C = [ci;j] is given
by ci;j = Cov(Zi; Zj). This establishes the following.
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Theorem 2.2.3 The characteristic function corresponding to a normal random variable
Z = (Z1; : : : ; Zd) is given by (2.3), where m = EZ and C = [ci;j]; ci;j = Cov(Zi; Zj), is
the covariance matrix.

From (2.2) and (2.3) we get also

�(t) = exp(it �m� 1

2
(At) � (At)): (2.4)

In the centered case it is perhaps more intuitive to write B(x;y) = hx;yi; this bilinear
product might (in degenerate cases) turn out to be 0 on some non-zero vectors. In this
notation (2.4) can be written as

Eexp(it � Z) = exp�1

2
ht; ti: (2.5)

From the above discussion, we have the following multivariate generalization of (2.1).

Theorem 2.2.4 Each d-dimensional normal random variable Z has the same distribution
as m + A~
, where m 2 IRd is deterministic, A is a (symmetric) d � d matrix and
~
 = (
1; : : : ; 
d) is a random vector such that the components 
1; : : : ; 
d are independent
N(0; 1) random variables.

Proof. Clearly, Eexp(it � (m+A~
)) = exp(it �m)Eexp(it � (A~
)). Since the character-
istic function of ~
 is Eexp(ix � ~
) = exp�1

2
kxk2 and t � (A~
) = (AT t) � ~
, therefore we

get Eexp(it � (m+A~
)) = exp it �m exp�1
2
kAT tk2, which is another form of (2.4). 2

Theorem 2.2.4 can be actually interpreted as the almost sure representation. However,
if A is not of full rank, the number of independent N(0; 1) r. v. can be reduced. In addi-
tion, the representation Z �= m+A~
 from Theorem 2.2.4 is not unique if the symmetry
condition is dropped. Theorem 2.2.5 gives the same representation with non-symmetric
A = [e1; : : : ; ek]. The argument given below has more geometric 
avor. In�nite dimen-
sional generalizations are also known, see (8.4) and the comment preceding Lemma 8.1.1.

Theorem 2.2.5 Each d-dimensional normal random variable Z can be written as

Z = m+
kX

j=1


jej; (2.6)

where k � d;m 2 IRd; e1; e2; : : : ; ek are deterministic linearly independent vectors in IRd

and 
1; : : : ; 
k are independent identically distributed normal N(0; 1) random variables.

Proof. Without loss of generality we may assume EZ = 0 and establish the representation
with m = 0.

Let IH denote the linear span of the columns of A in IRd, where A is the matrix from
(2.4). From Theorem 2.2.4 it follows that with probability one Z 2 IH. Consider now IH
as a Hilbert space with a scalar product hx;yi, given by hx;yi = (Ax) � (Ay). Since the
null space of A and the column space of A have only zero vector in common, this scalar
product is non-degenerate, ie. hx;xi 6= 0 for IH 3 x 6= 0.
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Let e1; e2; : : : ; ek be the orthonormal (with respect to h�; �i) basis of IH, where k =
dim IH. By Theorem 2.2.4 Z is IH-valued. Therefore with probability one we can write
Z =

Pk
j=1 
jej, where 
j = hej;Zi are random coe�cients in the orthogonal expansion.

It remains to verify that 
1; : : : ; 
k are i. i. d. normal N(0; 1) r. v. With this in mind, we
use (2.4) to compute their joint characteristic function:

Eexp(i
kX

j=1

tj
j) = Eexp(i
kX

j=1

tjhej;Zi) = Eexp(ih
kX

j=1

tjej;Zi):

By (2.5)

Eexp(ih
kX

j=1

tjej;Zi) = exp(�1

2
h

kX
j=1

tjej;
kX

j=1

tjeji) = exp(�1

2

kX
j=1

t2j):

The last equality is a consequence of orthonormality of vectors e1; e2; : : : ; ek with respect
to the scalar product h�; �i. 2

The next theorem lists two important properties of the normal distribution that can
be easily veri�ed by writing the joint characteristic function. The second property is a
consequence of the polarization identity

jjjt+ sjjj2 + jjjt� sjjj2 = jjjtjjj2 + jjjsjjj2;
where

jjjxjjj2 := hx;xi := kAxk2; (2.7)

the proof is left as an exercise.

Theorem 2.2.6 If X;Y are independent with the same centered normal distribution,
then

a) X+Yp
2

has the same distribution as X;

b) X+Y and X�Y are independent.

Now we consider the multivariate normal density. The density of ~
 in Theorem 2.2.4 is
the product of the one-dimensional standard normal densities, ie.

f~
(x) = (2�)�d=2 exp(�1

2
kxk2):

Suppose that detC 6= 0, which ensures that A is nonsingular. By the change of variable
formula, from Theorem 2.2.4 we get the following expression for the multivariate normal
density.

Theorem 2.2.7 If Z is centered normal with the nonsingular covariance matrix C, then
the density of Z is given by

fZ(x) = (2�)�d=2(detA)�1 exp(�1

2
kA�1xk2);

or

fZ(x) = (2�)�d=2(detC)�1=2 exp(�1

2
C�1x � x);

where matrices A and C are related by (2.2).
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In the nonsingular case this immediately implies strong integrability.

Theorem 2.2.8 If Z is normal, then there is � > 0 such that

Eexp(�kZk2) <1:

Remark: Theorem 2.2.8 holds true also in the singular case and for Gaussian random variables with

values in in�nite dimensional spaces; for the proof based on Theorem 2.2.6, see Theorem 5.4.2 below.

The Hilbert space IH introduced in the proof of Theorem 2.2.5 is called the Reproducing
Kernel Hilbert Space (RKHS) of a normal distribution, cf. [5, 90]. It can be de�ned
also in more general settings. Suppose we want to consider jointly two independent
normal r. v. X and Y, taking values in IRd1 and IRd2 respectively, with corresponding
reproducing kernel Hilbert spaces IH1; IH2 and the corresponding dot products h�; �i1 and
h�; �i2. Then the IRd1+d2-valued random variable (X;Y) has the orthogonal sum IH1

L
IH2

as the Reproducing Kernel Hilbert Space.
This method shows further geometric aspects of jointly normal random variables.

Suppose an IRd1+d2-valued random variable (X;Y) is (jointly) normal and has IH as
the reproducing kernel Hilbert space (with the scalar product h�; �i). Recall that

IH =

(
A

"
x
y

#
:

"
x
y

#
2 IRd1+d2

)
. Let IHY be the subspace of IH spanned by the vec-

tors

("
0
y

#
: y 2 IRd2

)
; similarly let IHX be the subspace of IH spanned by the vectors"

x
0

#
. Let P be (the matrix of) the linear transformation IHX ! IHY obtained from the

h�; �i-orthogonal projection IH ! IHX by narrowing its domain to IHX . Denote Q = PT ;
Q represents the orthogonal projection in the dual norm de�ned in Section 2.6 below.

Theorem 2.2.9 If (X;Y) has jointly normal distribution on IRd1+d2, then random vec-
tors Y �QY and X are stochastically independent.

Proof. The joint characteristic function of X�QY and Y factors as follows:

�(t; s) = Eexp(it � (X�QY) + is �Y)

= Eexp(it �X�Pt �Y + is �Y)

= exp(�1

2
jjj
"

t
s�Pt

#
jjj2) = exp(�1

2
jjj
"

t
�Pt

#
jjj2) exp(�1

2
jjj
"

0
s

#
jjj2):

The last identity holds because by our choice of P, vectors

"
0
s

#
and

"
t

�Pt
#

are or-

thogonal with respect to scalar product h�; �i. 2

In particular, since EfXjYg = EfX�QYjYg+QY, we get

Corollary 2.2.10 If both X and Y have mean zero, then

EfXjYg = QY:
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For general multivariate normal random variables X and Y applying the above to
centered normal random variables X�mX and Y �mY respectively, we get

EfXjYg = a +QY; (2.8)

vector a = mX�QmY and matrix Q are determined by the expected values mX;mY and
by the (joint) covariance matrix C (uniquely if the covariance CY of Y is non-singular).
To �nd Q, multiply (2.8) (as a column vector) from the right by (Y � EY)T and take
the expected value. By Theorem 1.4.1(i) we get Q = R�C�1

Y
, where we have written C

as the (suitable) block matrix C =

"
CX R
RT CY

#
. An alternative proof of (2.8) (and of

Corollary 2.2.10) is to use the converse to Theorem 1.5.3.
Equality (2.8) is usually referred to as linearity of regression. For the bivariate normal

distribution it takes the form EfXjY g = � + �Y and it can be established by direct
integration; for more than two variables computations become more di�cult and the
characteristic functions are quite handy.

Corollary 2.2.11 Suppose (X;Y) has a (joint) normal distribution on IRd1+d2 and
IHX ; IHY are h; �; �i-orthogonal, ie. every component of X is uncorrelated with all com-
ponents of Y. Then X;Y are independent.

Indeed, in this case Q is the zero matrix; the conclusion follows from Theorem 2.2.9.

Example 2.2.1 In this example we consider a pair of (jointly) normal random variables
X1; X2. For simplicity of notation we suppose EX1 = 0; EX2 = 0. Let V ar(X1) =

�21; V ar(X2) = �22 and denote corr(X1; X2) = �. Then C =

"
�21 �
� �22

#
and the joint

characteristic function is

�(t1; t2) = exp(�1

2
t21�

2
1 �

1

2
t22�

2
2 � t1t2�):

If �1�2 6= 0 we can normalize the variables and consider the pair Y1 = X1=�1 and Y2 =

X2=�2. The covariance matrix of the last pair is CY =

"
1 �
� 1

#
; the corresponding scalar

product is given by *"
x1
x2

#
;

"
y1
y2

#+
= x1y1 + x2y2 + �x1y2 + �x2y1

and the corresponding RKHS norm is jjj
"
x1
x2

#
jjj = (x21+x22+2�x1x2)

1=2. Notice that when

� = �1 the RKHS norm is degenerate and equals jx1 � x2j.
Denoting � = sin 2�, it is easy to check that AY =

"
cos � sin �
sin � cos �

#
and its inverse

A�1
Y

= 1
cos 2�

"
cos � � sin �
� sin � cos �

#
exists if � 6= ��=4, ie. when �2 6= 1. This implies that

the joint density of Y1 and Y2 is given by

f(x; y) =
1

2� cos 2�
exp(� 1

2 cos2 2�
(x2 + y2 � 2xy sin 2�)): (2.9)
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We can easily verify that in this case Theorem 2.2.5 gives

Y1 = 
1 cos � + 
2 sin �;

Y2 = 
1 sin � + 
2 cos �

for some i.i.d normal N(0; 1) r. v. 
1; 
2. One way to see this, is to compare the variances
and the covariances of both sides. Another representation Y1 = 
1, Y2 = �
1 +

p
1� �2
2

illustrates non-uniqueness and makes Theorem 2.2.9 obvious in bivariate case.
Returning back to our original random variables X1; X2, we have X1 = 
1�1 cos � +


2�1 sin � and X2 = 
1�2 sin � + 
2�2 cos �; this representation holds true also in the de-
generate case.

To illustrate previous theorems, notice that Corollary 2.2.11 in the bivariate case follows
immediately from (2.9). Theorem 2.2.9 says in this case that Y1 � �Y2 and Y2 are inde-
pendent; this can also be easily checked either by using density (2.9) directly, or (easier)
by verifying that Y1 � �Y2 and Y2 are uncorrelated.

Example 2.2.2 In this example we analyze a discrete time Gaussian random walk
fXkg0�k�T . Let �1; �2; : : : be i. i. d. N(0; 1). We are interested in explicit formulas
for the characteristic function and for the density of the IRT -valued random variable
X = (X1; X2; : : : ; XT ), where

Xk =
kX

j=1

�j (2.10)

are partial sums.
Clearly, m = 0. Comparing (2.10) with (2.6) we observe that

A =

266664
1 0 : : : 0
1 1 : : : 0
...

. . .
...

1 1 : : : 1

377775 :

Therefore from (2.4) we get

�(t) = exp�1

2
(t21 + (t1 + t2)

2 + : : :+ (t1 + t2 + : : :+ tT )2):

To �nd the formula for joint density, notice that A is the matrix representation of the
linear operator, which to a given sequence of numbers (x1; x2; : : : ; xT ) assigns the sequence
of its partial sums (x1; x1 + x2; : : : ; x1 + x2 + : : :+ xT ). Therefore, its inverse is the �nite
di�erence operator � : (x1; x2; : : : ; xT ) 7! (x1; x2 � x1; : : : ; xT � xT�1). This implies

A�1 =

26666666664

1 0 0 : : : : : : 0
�1 1 0 : : : : : : 0

0 �1 1 : : : : : : 0
0 0 �1 : : : : : : 0
...

. . . . . .
...

0 : : : 0 : : : �1 1

37777777775
:
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Since detA = 1, we get

f(x) = (2�)�n=2 exp�1

2
(x21 + (x2 � x1)

2 + : : :+ (xT � xT�1)2): (2.11)

Interpreting X as the discrete time process X1; X2; : : :, the probability density function
for its trajectory x is given by f(x) = C exp(�1

2
k�xk2). Expression 1

2
k�xk2 can be

interpreted as proportional to the kinetic energy of the motion described by the path x;
assigning probabilities by Ce�Energy=(kT ) is a well known practice in statistical physics.
In continuous time, the derivative plays analogous role, compare Schilder's theorem [34,
Theorem 1.3.27].

2.3 Analytic characteristic functions

The characteristic function �(t) of the univariate normal distribution is a well de�ned
di�erentiable function of complex argument t. That is, � has analytic extension to complex
plane CC. The theory of functions of complex variable provides a powerful tool; we shall use
it to recognize the normal characteristic functions. Deeper theory of analytic characteristic
functions and stronger versions of theorems below can be found in monographs [99, 103].

De�nition 2.3.1 We shall say that a characteristic function �(t) is analytic if it can be
extended from the real line IR to the function analytic in a domain in complex plane CC.

Because of uniqueness we shall use the same symbol � to denote both.
Clearly, normal distribution has analytic characteristic function. Example 1.5.1

presents a non-analytic characteristic function.
We begin with the probabilistic (moment) condition for the existence of the analytic

extension.

Theorem 2.3.1 If a random variable X has �nite exponential moment Eexp(ajXj) <1,
where a > 0, then its characteristic function �(s) is analytic in the strip �a < =s < a.

Proof. The analytic extension is given explicitly: �(s) = Eexp(isX). It remains only
to check that �(s) is di�erentiable in the strip �a < =s < a. This follows either by
di�erentiation with respect to s under the expectation sign (the latter is allowed, since
EfjXj exp(jsXj)g < 1, provided �a < =s < a), or by writing directly the series ex-
pansion: �(s) =

P1
n=0 i

nEXnsn=n! (the last equality follows by switching the order of
integration and summation, ie. by Fubini's theorem). The series is easily seen to be
absolutely convergent for all �a � =s � a. 2

Corollary 2.3.2 If X is such that Eexp(ajXj) < 1 for every real a > 0, then its
characteristic function �(s) is analytic in CC.

The next result says that normal distribution is determined uniquely by its moments. For
more information on the moment problem, the reader is referred to the beautiful book by
N. I. Akhiezer [2].
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Corollary 2.3.3 If X is a random variable with �nite moments of all orders and such
that EXk = EZk; k = 1; 2; : : : ; where Z is normal, then X is normal.

Proof. By the Taylor expansion

Eexp(ajXj) =
X

akEjXjk=k! = Eexp(ajZj) <1
for all real a > 0. Therefore by Corollary 2.3.2 the characteristic function of X is analytic
in CC and it is determined uniquely by its Taylor expansion coe�cients at 0. However, by
Theorem 1.5.1(ii) the coe�cients are determined uniquely by the moments of X. Since
those are the same as the corresponding moments of the normal r. v. Z, both character-
istic functions are equal. 2

We shall also need the following re�nement of Corollary 2.3.3.

Corollary 2.3.4 Let �(t) be a characteristic function, and suppose there is �2 > 0 and
a sequence ftkg convergent to 0 such that �(tk) = exp(��2t2k) and tk 6= 0 for all k. Then
�(t) = exp(��2t2) for every t 2 IR.

Proof. The idea of the proof is simply to calculate all the derivatives at 0 of �(t) along
the sequence ftkg. Since the derivatives determine moments uniquely, by Corollary 2.3.3
we shall conclude that �(t) = exp(��2t2). The only nuisance is to establish that all the
moments of the distribution are �nite. This fact is established by modifying the usual
proof of Theorem 1.5.1(iii). Let �2

t be a symmetric second order di�erence operator, ie.

�2
t (g)(y) :=

g(y + t) + g(y � t)� 2g(y)

t2
:

The assumption that �(t) is di�erentiable 2n times along the sequence ftkg implies that

sup
k
j�2n

t(k)(�)(0)j = sup
k
j�2

t(k)�
2
t(k) : : :�

2
t(k)(�)(0)j <1:

Indeed, the assumption says that limk!1 �2n
t(k)(�)(0) exists for all n. Therefore to end the

proof we need the following result.

Claim 2.3.1 If �(t) is the characteristic function of a random variable X; t(k) ! 0 is a
given sequence such that t(k) 6= 0 for all k and

sup
k
j�2n

t(k)(�)(0)j <1

for an integer n, then EX2n <1.

The proof of the claim rests on the formula which can be veri�ed by elementary calcula-
tions:

f�2
t exp(iay)g(y)

���
y=x

= 4t�2 exp(iax) sin2(at=2):

This permits to express recurrently the higher order di�erences, giving

f�2n
t(k) exp(iay)g(y)

���
y=x

= 4nt�2n sin2n(at=2) exp(iax):



2.4. HERMITE EXPANSIONS 33

Therefore
j�2n

t(k)(�)(0)j = 4nt(k)�2nEsin2n(t(k)X=2)

� 4nt(k)�2nE1jXj�2=jt(k)j sin2n(t(k)X=2):

The graph of sin(x) shows that inequality j sin(x)j � 2
�
jxj holds for all jxj � �

2
. Therefore

j�2n
t(k)(�)(0)j �

�
2

�

�2n

E1jXj�2=jt(k)jX2n:

By the monotone convergence theorem

EX2n � lim sup
k!1

E1jXj�2=jt(k)jX2n <1;

which ends the proof. 2

The next result is converse to Theorem 2.3.1.

Theorem 2.3.5 If the characteristic function �(t) of a random variable X has the an-
alytic extension in a neighborhood of 0 in CC, and the extension is such that the Taylor
expansion series at 0 has convergence radius R � 1, then Eexp(ajXj) < 1 for all
0 � a < R.

Proof. By assumption, �(s) has derivatives of all orders. Thus the moments of all orders
are �nite and

mk = EXk = (�i)k @
k

@sk
�(s)

�����
s=0

; k � 1:

Taylor's expansion of �(s) at s = 0 is given by �(s) =
P1

k=0 i
kmks

k=k!. The series has
convergence radius R if and only if lim supk!1(mk=k!)1=k = 1=R. This implies that
for any 0 � a < A < R, there is k0, such that mk � A�kk! for all k � k0. Hence
Eexp(ajXj) =

P1
k=0 a

kmk=k! <1, which ends the proof of the theorem. 2

Theorems 2.3.1 and 2.3.5 combined together imply the following.

Corollary 2.3.6 If a characteristic function �(t) can be extended analytically to the circle
jsj < a, then it has analytic extension �(s) = Eexp(isX) to the strip �a < =s < a.

2.4 Hermite expansions

A normal N(0,1) r. v. Z de�nes a dot product hf; gi = Ef(Z)g(Z), provided that f(Z)
and g(Z) are square integrable functions on 
. In particular, the dot product is well
de�ned for polynomials. One can apply the usual Gram-Schmidt orthogonalization algo-
rithm to functions 1; Z; Z2; : : :. This produces orthogonal polynomials in variableZ known
as Hermite polynomials. Those play important role and can be equivalently de�ned by

Hn(x) = (�1)n exp(x2=2)
dn

dxn
exp(�x2=2):
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Hermite polynomials actually form an orthogonal basis of L2(Z). In particular, every
function f such that f(Z) is square integrable can be expanded as f(x) =

P1
n=1 fkHk(x),

where fk 2 IR are Fourier coe�cients of f(�); the convergence is in L2(Z), ie. in weighted
L2 norm on the real line, L2(IR; e

�x2=2dx).
The following is the classical Mehler's formula.

Theorem 2.4.1 For a bivariate normal r. v. X; Y with EX = EY = 0, EX2 = EY 2 =
1, EXY = �, the joint density q(x; y) of X; Y is given by

q(x; y) =
1X
k=0

�k=k!Hk(x)Hk(y)q(x)q(y); (2.12)

where q(x) = (2�)�1=2 exp(�x2=2) is the marginal density.

Proof. By Fourier's inversion formula we have

q(x; y) =
1

2�

Z Z
exp(itx + ity) exp(�1

2
t2 � 1

2
s2) exp(��ts) dt ds:

Since (�1)ktksk exp(itx + isy) = @2k

@xk@yk
exp(itx + isy), expanding e��ts into the Taylor

series we get

q(x; y) =
1X
k=0

�k

k!

@2k

@xk@yk
q(x)q(y):

2

2.5 Cramer and Marcinkiewicz theorems

The next lemma is a direct application of analytic functions theory.

Lemma 2.5.1 If X is a random variable such that Eexp(�X2) < 1 for some � > 0,
and the analytic extension �(z) of the characteristic function of X satis�es �(z) 6= 0 for
all z 2 CC, then X is normal.

Proof. By the assumption, f(z) = log�(z) is well de�ned and analytic for all z 2 CC.
Furthermore if z = x + iy is the decomposition of z 2 CC into its real and imaginary
parts, then <f(z) = log j�(z)j � log(Eexp jyXj). Notice that Eexp(tX) � C exp( t

2

2�
)

for all real t, see Problem 1.4. Indeed, since �X2 + t2=� � 2tX, therefore Eexp(tX) �
Eexp(�X2 + t2=a)=2 = C exp( t2

2�
). Those two facts together imply <f(z) � const + y2

2a
.

Therefore a variant of the Liouville theorem [144, page 87] implies that f(z) is a quadratic
polynomial in variable z, ie. f(z) = A +Bz + Cz2. It is easy to see that the coe�cients
are A = 0, B = iEfXg, C = �V ar(X)=2, compare Proposition 2.1.1. 2

From Lemma 2.5.1 we obtain quickly the following important theorem, due to H. Cramer
[29].

Theorem 2.5.2 If X1 and X2 are independent random variables such that X1 +X2 has
a normal distribution, then each of the variables X1; X2 is normal.
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Theorem 2.5.2 is celebrated Cramer's decomposition theorem; for extensions, see [99].
Cramer's theorem complements nicely the Central Limit Theorem in the following sense.
While the Central Limit Theorem asserts that the distribution of the sum of i. i. d. random
variables with �nite variances is close to normal, Cramer's theorem says that it cannot be
exactly normal, except when we start with a normal sequence. This resembles propagation
of chaos phenomenon, where one proves a dynamical system approaches chaotic behavior,
but it never reaches it except from initially chaotic con�gurations. We shall use Theorem
2.5.2 as a technical tool.

Proof of Theorem 2.5.2. Without loss of generality we may assume EX1 = EX2 = 0.
The proof of Theorem 1.6.1 (iii) implies that Eexp(aX2

j ) < 1; j = 1; 2. Therefore, by
Theorem 2.3.1, the corresponding characteristic functions �1(�); �2(�) are analytic. By
the uniqueness of the analytic extension, �1(s)�2(s) = exp(�s2=2) for all s 2 CC. Thus
�j(z) 6= 0 for all z 2 CC; j = 1; 2, and by Lemma 2.5.1 both characteristic functions cor-
respond to normal distributions. 2

The next theorem is useful in recognizing the normal distribution from what at �rst
sight seems to be incomplete information about a characteristic function. The result and
the proof come from Marcinkiewicz [106], cf. [105].

Theorem 2.5.3 Let Q(t) be a polynomial, and suppose that a characteristic function �
has the representation �(t) = expQ(t) for all t close enough to 0. Then Q is of degree at
most 2 and � corresponds to a normal distribution.

Proof. First note that formula �(s) = expQ(s), s 2 CC, de�nes the analytic extension
of �. Thus, by Corollary 2.3.6, �(s) = Eexp(isX), s 2 CC. By Theorem 2.5.2, it su�ces
to show that �(s)�(�s) corresponds to the normal distribution. Clearly �(s)�(�s) also
has the form exp(P (t)), where P (s) is a polynomial that has only even terms, ie. P (s) =Pn

k=0 aks
2k. Since �(s)�(�s) = j�(s)j2 is a real number for all s, the coe�cients a1; : : : ; an

of polynomial P (�) are real. Moreover, the n-th coe�cient satis�es an = �
2 < 0,
as the inequality j�(t)j � 1 holds for arbitrarily large real t. Therefore, taking z =
N exp(i�=(2n)), we obtain

j�(z)j � exp(N(
2 � �(N))) (2.13)

for large enough real N , where �(N) ! 0 as N ! 1. On the other hand, using the
explicit representation by expected value, we get

j�(z)j = jEexp(izX)j � Eexp(N sin(�=(2n))X)

= �(N sin(�=(2n))) = exp(P (N sin(�=(2n))))

� exp(N sin(�=(2n))(
2 + �(N))):

As N !1 the last inequality contradicts (2.13), unless sin(�=(2n)) = 1, ie. unless n = 1.
This means that P is of degree 2 and, since P (0) = 0, we have P (t) = �
2t for all t. 2
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2.6 Large deviations

Formula (2.3) shows that a multivariate normal distribution is uniquely determined by
the vector m of expected values and the covariance matrix C. However, to compute
probabilities of the events of interest might be quite di�cult. As Theorem 2.2.7 shows,
even writing explicitly the density is cumbersome in higher dimensions as it requires
inverting large matrices. Additional di�culties arise in degenerate cases.

Here we shall present the logarithmic term in the asymptotic expansion for P (X 2 nA)
as n ! 1. This is the so called large deviation estimate; it becomes more accurate for
less likely events. The main feature is that it has relatively simple form and applies to
all events. Higher order expansions are more accurate but work for fairly regular sets
A � IRd only.

Let us �rst de�ne the conjugate \norm" to the RKHS seminorm jjj � jjj de�ned by (2.7).

jjjyjjj? = sup
x2IRd; jjjxjjj=1

x � y:

The conjugate norm has all the properties of the norm except that it can attain value
1. To see this, and also to have a more explicit expression, decompose IRd into the
orthogonal sum of the null space of A and the range of A: IRd = N (A)�R(A); here A is
the symmetric matrix from (2.4). Since A : IRd ! R(A) is onto, there is a right-inverse
A�1 : R(A) !R(A) � IRd:

For y 2 R(A) we have

sup
kAxk=1

x � y = sup
kAxk=1

x �AA�1y = sup
kAxk=1

ATx �A�1y (2.14)

Since A is symmetric and A�1y 2 R(A), for y 2 R(A) we have by (2.14)

jjjyjjj? = sup
x2R(A); kxk=1

x �A�1y = kA�1yk:

For y 62 R(A) we write y = yN + yR, where 0 6= yN 2 N (A). Then we have
supkAxk=1 x � y � supx2N (A) x � yN = 1. Since C = A�A, we get

jjjyjjj? =

(
y �C�1y if y 2 R(C);

1 if y 62 R(C);
(2.15)

where C�1 is the right inverse of the covariance matrix C.
In this notation, the multivariate normal density is

f(x) = Ce�
1
2
jjjx�mjjj2?; (2.16)

where C is the normalizing constant and the integration has to be taken over the Lebesgue
measure � on the support supp(X) = fx : jjjxjjj? <1g.

To state the Large Deviation Principle, by A� we denote the interior of a Borel subset
A � IRd.
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Theorem 2.6.1 If X is Gaussian IRd-valued with the mean m and the covariance matrix
C, then for all measurable A � IRd

lim sup
n!1

1

n2
logP (X 2 nA) � � inf

x2A
1

2
jjjx�mjjj2? (2.17)

and

lim inf
n!1

1

n2
logP (X 2 nA) � � inf

x2A�

1

2
jjjx�mjjj2?: (2.18)

The usual interpretation is that the dominant term in the asymptotic expansion for
P ( 1

n
X 2 A) as n!1 is given by

exp(�n
2

2
inf
x2A

jjjx�mjjj2?):

Proof. Clearly, passing to X � m we can easily reduce the question to the centered
random vector X. Therefore we assume

m = 0:

Inequality (2.17) follows immediately from

P (X 2 nA) =
Z
supp(X)\A

Cn�ke�
n2

2
jjjxjjj2? dx

� Cn�k�(supp(X) \ A) sup
x2A

e�
n2

2
jjjxjjj2?;

where C = C(k) is the normalizing constant and k � d is the dimension of supp(X), cf.
(2.16). Indeed,

1

n2
logP (X 2 nA) � C

n2
� k

logn

n2
+

log�(supp(X) \ A)

n2
� 1

2
inf
x2A

jjjxjjj2?:

To prove inequality (2.18) without loss of generality we restrict our attention to open
sets A. Let x0 2 A. Then for all � > 0 small enough, the balls B(x0; �) = fx : kx�x0k <
�g are in A. Therefore

P (X 2 nA) � P (X 2 nD�) =
Z
D�

Cn�ke�
n2

2
jjjxjjj2? dx; (2.19)

where D� = B(x0; �)\ supp(X). On the support supp(X) the function x 7! jjjxjjj? is �nite
and convex; thus it is continuous. For every � > 0 one can �nd � such that jjjxjjj2? � jjjx0jjj2?��
for all x 2 D�. Therefore (2.19) gives

P (X 2 nA) � Cn�ke�(1��)
n2

2
jjjxjjj2?;

which after passing to the logarithms ends the proof. 2

Large deviation bounds for Gaussian vectors valued in in�nite dimensional spaces
and for Gaussian stochastic processes have similar form and involve the conjugate RKHS
norm; needless to say, the proof that uses the density cannot go through; for the general
theory of large deviations the reader is referred to [32].
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2.6.1 A numerical example

Consider a bivariate normal (X; Y ) with the covariance matrix

"
1 1
1 2

#
. The conjugate

RKHS norm is then

�����
�����
�����
"
x
y

#�����
�����
�����
?

= 2x2�2xy+y2 and the corresponding unit ball is the ellipse

2x2�2xy+y2 = 1. Figure 2.1 illustrates the fact that one can actually see the conjugated
RKHS norm. Asymptotic shapes in more complicated systems are more mysterious, see
[127].
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Figure 2.1: A sample of N = 1500 points from bivariate normal distribution.

2.7 Problems

Problem 2.1 If Z is the standard normal N(0; 1) random variable, show by direct inte-
gration that its characteristic function is �(z) = exp(�1

2
z2) for all complex z 2 CC.

Problem 2.2 Suppose (X;Y) 2 IRd1+d2 are jointly normal and have pairwise uncorre-
lated components, corr(Xi; Yj) = 0. Show that X;Y are independent.

Problem 2.3 For standardized bivariate normal X; Y with correlation coe�cient �, show
that P (X > 0; Y > 0) = 1

4
+ 1

2�
arcsin �.

Problem 2.4 Prove Theorem 2.2.6.

Problem 2.5 Prove that \moments" mk = EfXk exp(�X2)g are �nite and determine
the distribution of X uniquely.

Problem 2.6 Show that the exponential distribution is determined uniquely by its mo-
ments.

Problem 2.7 If �(s) is an analytic characteristic function, show that log�(ix) is a well
de�ned convex function of the real argument x.

Problem 2.8 (deterministic analogue of Theorem 2.5.2) Suppose �1; �2 are char-
acteristic functions such that �1(t)�2(t) = exp(it) for each t 2 IR. Show that �k(t) =
exp(itak); k = 1; 2; where a1; a2 2 IR.

Problem 2.9 (exponential analogue of Theorem 2.5.2) If X; Y are i. i. d. random
variables such that minfX; Y g has an exponential distribution, then X is exponential.



Chapter 3

Equidistributed linear forms

In Section 1.1 we present the classical characterization of the normal distribution by
stability. Then we use this to de�ne Gaussian measures on abstract spaces and we prove
the zero-one law. In Section 3.3 we return to the characterizations of normal distributions.
We consider a more di�cult problem of characterizations by the equality of distributions
of two general linear forms.

3.1 Two-stability

The main result of this section is the theorem due to G. Polya [122]. Polya's result was
obtained before the axiomatization of probability theory. It was stated in terms of positive
integrable functions and part of the conclusion was that the integrals of those functions
are one, so that indeed the probabilistic interpretation is valid.

Theorem 3.1.1 If X1; X2 are two i. i. d. random variables such that X1 and (X1 +
X2)=

p
2 have the same distribution, then X1 is normal.

It is easy to see that if X1 and X2 are i. i. d. random variables with the distribution
corresponding to the characteristic function exp(�jtjp), then the distributions of X1 and
(X1 + X2)=

p
p

2 are equal. In particular, if X1; X2 are normal N(0,1), then so is (X1 +
X2)=

p
2. Theorem 3.1.1 says that the above trivial implication can be inverted for p = 2.

Corresponding results are also known for p < 2, but in general there is no uniqueness, see
[133, 134, 135]. For p 6= 2 it is not obvious whether exp(�jtjp) is indeed a characteristic
function; in fact this is true only if 0 � p � 2; the easier part of this statement was given
as Problem 1.18. The distributions with this characteristic function are the so called
(symmetric) stable distributions.

The following corollary shows that p-stable distributions with p < 2 cannot have �nite
second moments.

Corollary 3.1.2 Suppose X1; X2 are i. i. d. random variables with �nite second moments
and such that for some scale factor � and some location parameter � the distribution of
X1 +X2 is the same as the distribution of �(X1 + �). Then X1 is normal.

Indeed, subtracting the expected value if necessary, we may assume EX1 = 0 and hence
� = 0. Then V ar(X1 +X2) = V ar(X1) +V ar(X2) gives � = 2�1=2 (except if X1 = 0; but

39
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this by de�nition is normal, so there is nothing to prove). By Theorem 3.1.1, X1 (and
also X2) is normal.

Proof of Theorem 3.1.1. Clearly the assumption of Theorem 3.1.1 is not changed, if
we pass to the symmetrizations fX; eY of X; Y . By Theorem 2.5.2 to prove the theorem, it
remains to show that fX is normal. Let �(t) be the characteristic function of fX; eY . Then

�(
p

2t) = �2(t) (3.1)

for all real t. Therefore recurrently we get

�(t2k=2) = �(t)2
k

(3.2)

for all real t. Take t0 such that �(t0) 6= 0; such t0 can be found as � is continuous and
�(0) = 1. Let �2 > 0 such that �(t0) = exp(��2). Then (3.2) implies �(t02

�k=2) =
exp(��22�k) for all k = 0; 1; : : :. By Corollary 2.3.4 we have �(t) = exp(��2t2) for all t,
and the theorem is proved. 2

3.2 Measures on linear spaces

Let V be a linear space over the �eld IR of real numbers (we shall also call V a (real)
vector space). Suppose V is equipped with a �-�eld F such that the algebraic operations
of scalar multiplication (x; t) 7! tx and of vector addition x;y 7! x + y are measurable
transformations V � IR ! V and V � V ! V with respect to the corresponding �-�elds
FNBIR, and FNF respectively. Let (
;M; P ) be a probability space. A measurable
function X : 
 ! V is called a V-valued random variable.

Example 3.2.1 Let V = IRd be the vector space of all real d-tuples with the usual Borel
�-�eld B. A V-valued random variable is called a d-dimensional random vector. Clearly
X = (X1; : : : ; Xd) and if one prefers, one can consider the family X1; : : : ; Xd rather than
X.

Example 3.2.2 Let V = C[0; 1] be the vector space of all continuous functions [0; 1] !
IR with the topology de�ned by the norm kfk := sup0�t�1 jf(t)j and with the �-�eld F
generated by all open sets. Then a V-valued random variable X is called a stochastic
process with continuous trajectories with time T = [0; 1]. The usual form is to write X(t)
for the random continuous function X evaluated at a point t 2 [0; 1].

Warning. Although it is known that every abstract random vector can be interpreted as
a random process with the appropriate choice of time set T , the natural choice of T (such
as T = 1; 2; : : : ; d in Example 3.2.1 and T = [0; 1] in Example 3.2.2) might sometimes fail.
For instance, let V = L2[0; 1] be the vector space of all (classes of equivalence) of square
integrable functions [0; 1] ! IR with the usual L2 norm kfk = (

R
f 2(t) dt)1=2. In general,

a V-valued random variable X cannot be represented as a stochastic process with time
T = [0; 1], because evaluation at a point t 2 T is not a well de�ned mapping. Although
L2[0; 1] is commonly thought as the square integrable functions, we are actually dealing
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with the classes of equivalence rather than with the genuine functions. For V = L2[0; 1]-
valued Gaussian processes, one can show that Xt exists almost surely as the limit in
probability of continuous linear functionals; abstract variants of this result can be found
in [146] and in the references therein.

The following de�nition of an abstract Gaussian random variable is motivated by
Theorem 3.1.1.

De�nition 3.2.1 A V -valued random variable X is E-Gaussian (E stays for the equality
of distributions) if the distribution of

p
2X is equal to the distribution of X + X0, where

X0 is an independent copy of X.

In Sections 5.2 and 5.4 we shall see that there are other equally natural candidates for the
de�nitions of a Gaussian vector. To distinguish between them, we shall keep the longer
name E-Gaussian instead of just calling it Gaussian. Fortunately, at least in familiar
situations, it does not matter which de�nition we use. This occurs whenever we have
plenty of measurable linear functionals. By Theorem 3.1.1 if L : V ! IR is a measurable
linear functional, then the IR-valued random variable X = L(X) is normal. When this
speci�es the probability measure on V uniquely, then all three de�nitions are equivalent,
Let us see, how this works in two simple but important cases.

Example 3.2.1 (continued) Suppose X = (X(1); X(2); : : : ; X(n)) is an IRn-valued
E-Gaussian random variable. Consider linear functionals L : IRn ! IR given by Lx 7!P
aixi; where a1; a2; : : : ; an 2 IR. Then the one-dimensional random variable a1X(1) +

a2X(2) + : : : + anX(n) has the normal distribution. This means that X is a Gaussian
vector in the usual sense (ie. it has multivariate normal distribution), as presented in
Section 2.2.

Example 3.2.2 (continued) Suppose X is a C[0; 1]-valued Gaussian random vari-
able. Consider the set of all linear functionals L : C[0; 1] ! IR that can be written in the
form

L = a1Et(1) + a2Et(2) + : : :+ anEt(n);
where a1; : : : ; an are real numbers and Et : C[0; 1] ! IR denotes the evaluation at point t
de�ned by Et(f) = f(t). Then L(X) =

P
aiX(ti) is normal. However, since the coe�-

cients a1; : : : ; an are arbitrary, this means that for each choice of t1; t2; : : : ; tn 2 [0; 1] the
n-dimensional random variable X(t1); X(t2); : : : ; X(tn) has a multivariate normal distri-
bution, ie. X(t) is a Gaussian stochastic process in the usual sense1.

The question that we want to address now is motivated by the following (false) intu-
ition. Suppose a measurable linear subspace IL � V is given. Think for instance about
IL = C1[0; 1] { the space of all continuously di�erentiable functions, considered as a sub-
space of C[0; 1] = V. In general, it seems plausible that some of the realizations of a
V-valued random variable X may happen to fall in IL, while other realizations fail to
be in IL. In other words, it seems plausible that with positive probability some of the
trajectories of a stochastic process with continuous trajectories are smooth, while other

1In general, a family of T -indexed random variables X(t)t2T is called a Gaussian process on T , if for
every n � 1; t1; : : : ; tn 2 T the n-dimensional random vector (X(t1); : : : ; X(tn)) has multivariate normal
distribution.
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trajectories are not. Strangely, this cannot happen for Gaussian vectors (and, more gen-
erally, for �-stable vectors). The result is due to Dudley and Kanter and provides an
example of the so called zero-one law. The most famous zero-one law is of course the one
due to Kolmogorov, see eg. [9, Theorem 22.3]; see also the appendix to [82, page 69]. The
proof given below follows [55]. Smole�nski [138] gives an elementary proof, which applies
also to other classes of measures. Krakowiak [89] proves the zero-one law when IL is a
measurable sub-group rather than a measurable linear subspace. Tortrat [143] considers
(among other issues) zero-one laws for Gaussian distributions on groups. Theorem 5.2.1
and Theorem 5.4.1 in the next chapter give the same conclusion under di�erent de�nitions
of the Gaussian random vector.

Theorem 3.2.1 If X is a V-valued E-Gaussian random variable and IL is a linear mea-
surable subspace of V, then P (X 2 IL) is either 0, or 1.

Proof. Let X1;X2; : : : be independent copies of X. Also, let us choose them to be
independent of X. By 2-stability and the linearity of IL we have

P (X1 +X2 2 IL) = P (
p

2X 2 IL) = P (X 2 IL): (3.3)

By induction, this gives

P (X1 +X2 + : : :+X2n 2 IL) = P (X 2 IL) (3.4)

for all n = 0; 1; : : :.
Let Z = X1 + X2. Clearly, Z is independent of X and 2-stability implies that X1 +

X2 + : : :+X2n+1 has the same distribution as Z + 2n=2X: Therefore (3.4) gives

P (Z+ 2n=2X 2 IL) = P (X 2 IL): (3.5)

Consider now events An = fZ 62 ILg \ fZ + 2n=2X 2 ILg. Since event fZ 2 ILg \ fZ +
2n=2X 2 ILg is the same as fZ 2 ILg \ fX 2 ILg, therefore by (3.5)

P (An) = P (Z+ 2n=2X 2 IL)� P (Z 2 IL)P (X 2 IL)

= P (X 2 IL)� P (Z 2 IL)P (X 2 IL):

By (3.3) this says that P (An) = P (X 2 IL)P (X 62 IL) does not depend on n.
Now let us observe that if m 6= n, then the events Am and An are disjoint. We shall

prove this by contradiction. Suppose both vectors Z + 2n=2X 2 IL and Z + 2m=2X 2 IL.
Then their di�erence (2n=2 � 2m=2)X is in IL, too. For m 6= n this implies X 2 IL and
therefore Z 2 IL. The latter contradicts the de�nition of An, proving that Am and An are
indeed disjoint.

The preceding two observations show that fAng is an in�nite sequence of disjoint
events with the same probability �xed P (An) = P (A1). This can happen only if
P (An) = 0, ie. when P (X 2 IL)P (X 62 IL) = 0, which ends the proof. 2

To make Theorem 3.2.1 more concrete, consider the following application.



3.3. LINEAR FORMS 43

Example 3.2.3 This example presents a simple-minded model of transmission of infor-
mation. Suppose that we have a choice of one of the two signals f(t), or g(t) be transmitted
by a noisy channel within unit time interval 0 � t � 1. To simplify the situation even
further, we assume g(t) = 0, ie. g represents \no message send". The noise (which is
always present) is a random and continuous function; we shall assume that it is repre-
sented by a C[0; 1]-valued Gaussian random variable W = fW (t)g0�t�1. We also assume
it is an \additive" noise.

Under these circumstances the signal received is given by a curve; it is either ff(t) +
W (t)g0�t�1, or fW (t)g0�t�1, depending on which of the two signals, f or g, was sent.
The objective is to use the received signal to decide, which of the two possible messages:
f(�) or 0 (ie. message, or no message) was sent.

Notice that, at least from the mathematical point of view, the task is trivial if f(�)
is known to be discontinuous; then we only need to observe the trajectory of the received
signal and check for discontinuities. There are of course numerous practical obstacles to
collecting continuous data, which we are not going to discuss here.

If f(�) is continuous, then the above procedure does not apply. Problem requires more
detailed analysis in this case. One may adopt the usual approach of testing the null
hypothesis that no signal was sent. This amounts to choosing a suitable critical region
IL � C[0; 1]. As usual in statistics, the decision is to be made according to whether the
observed trajectory falls into IL (in which case we decide f(�) was sent) or not (in which
case we decide that 0 was sent and that what we have received was just the noise). Clearly,
to get a sensible test we need P (f(�) +W (�) 2 IL) > 0 and P (W (�) 2 IL) < 1.

Theorem 3.2.1 implies that perfect discrimination is achieved if we manage to pick the
critical region in the form of a (measurable) linear subspace. Indeed, then by Theorem
3.2.1 P (W (�) 2 IL) < 1 implies P (W (�) 2 IL) = 0 and P (f(�) + W (�) 2 IL) > 0 implies
P (f(�) +W (�) 2 IL) = 1.

Unfortunately, it is not true that a linear space can always be chosen for the critical
region. For instance, if W (�) is the Wiener process (see Section 8.1), it is known that
such subspace cannot be found if (and only if !) f(�) is di�erentiable for almost all t andR

(df
dt

)2 dt < 1. The proof of this theorem is beyond the scope of this book (cf. Cameron-
Martin formula in [41]). The result, however, is surprising (at least for those readers,
who know that trajectories of the Wiener process are non-di�erentiable): it implies that,
at least in principle, each non-di�erentiable (everywhere) signal f(�) can be recognized
without errors despite having non-di�erentiable Wiener noise.

(A�ne subspaces for centered noise EWt = 0 do not work, see Problem 3.4)
For a recent work, see [44].

3.3 Linear forms

It is easily seen that if a1; : : : ; an and b1; : : : ; bn are real numbers such that the sets A =
fja1j; : : : ; janjg and B = fjb1j; : : : ; jbnjg are equal, then for any symmetric i. i. d. random
variables X1; : : : ; Xn the sums

Pn
k=1 akXk and

Pn
k=1 bkXk have the same distribution. On

the other hand, when n = 2; A = f1; 1g and B = f0;p2g Theorem 3.1.1 says that the
equality of distributions of linear forms

Pn
k=1 akXk and

Pn
k=1 bkXk implies normality. In

this section we shall consider two more characterizations of the normal distribution by the
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equality of distributions of linear combinations
Pn

k=1 akXk and
Pn

k=1 bkXk. The results
are considerably less elementary than Theorem 3.1.1.

We shall begin with the following generalization of Corollary 3.1.2 which we learned
from J. Weso lowski.

Theorem 3.3.1 Let X1; : : : ; Xn; n � 2, be i. i. d. square-integrable random variables and
let A = fa1; : : : ; ang be the set of real numbers such that A 6= f1; 0; : : : ; 0g. If X1 andPn

k=1 akXk have equal distributions, then X1 is normal.

The next lemma is a variant of the result due to C. R. Rao, see [73, Lemma 1.5.10].

Lemma 3.3.2 Suppose q(�) is continuous in a neighborhood of 0, q(0) = 0, and in a
neighborhood of 0 it satis�es the equation

q(t) =
nX

k=1

a2kq(akt); (3.6)

where a1; : : : ; an are given numbers such that jakj � � < 1 and
Pn

k=1 a
2
k = 1.

Then q(t) = const in some neighborhood of t = 0.

Proof. Suppose (3.6) holds for all jtj < �. Then jajtj < � and from (3.6) we get
q(ajt) =

Pn
k=1 a

2
kq(ajakt) for every 1 � j � n. Hence q(t) =

Pn
j=1

Pn
k=1 a

2
ja

2
kq(ajakt) and

we get recurrently

q(t) =
nX

j1=1

: : :
nX

jr=1

a2j1 : : : a
2
jrq(aj1 : : : ajrt)

for all r � 1. This implies

jq(t)� q(0)j � (
nX

k=1

a2k)
r sup
jaj��r

jq(at)� q(0)j = sup
jxj��r

jq(x)� q(0)j ! 0

as r!1 for all jtj < �. 2

Proof of Theorem 3.3.1. Without loss of generality we may assume V ar(X1) 6= 0.
Let � be the characteristic function of X and let Q(t) = log�(t). Clearly, Q(t) is well
de�ned for all t close enough to 0. Equality of distributions gives

Q(t) = Q(a1t) +Q(a2t) + : : :+Q(ant):

The integrability assumption implies that Q has two derivatives, and for all t close enough
to 0 the derivative q(�) = Q00(�) satis�es equation (3.6).

Since X1 and
Pn

k=1 akXk have equal variances,
Pn

k=1 a
2
k = 1. Condition jaij 6= 0; 1 im-

plies jaij < 1 for all 1 � i � n. Lemma 3.3.2 shows that q(�) is constant in a neighborhood
of t = 0 and ends the proof. 2

Comparing Theorems 3.1.1 and 3.3.1 the pattern seems to be that the less information
about coe�cients, the more information about the moments is needed. The next result
([106]) �ts into this pattern, too; [73, Section 2.3 and 2.4] present the general theory
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of active exponents which permits to recognize (by examining the coe�cients of linear
forms), when the equality of distributions of linear forms implies normality; see also
[74]. Variants of characterizations by equality of distributions are known for group-valued
random variables, see [50]; [49] is also pertinent.

Theorem 3.3.3 Suppose A = fja1j; : : : ; janjg and B = fjb1j; : : : ; jbnjg are di�erent sets
of real numbers and X1; : : : ; Xn are i. i. d. random variables with �nite moments of all
orders. If the linear forms

Pn
k=1 akXk and

Pn
k=1 bkXk are identically distributed, then X1

is normal.

We shall need the following elementary lemma.

Lemma 3.3.4 Suppose A = fja1j; : : : ; janjg and B = fjb1j; : : : ; jbnjg are di�erent sets of
real numbers. Then

(
nX

k=1

a2rk ) 6= (
nX

k=1

b2rk ) (3.7)

for all r � 1 large enough.

Proof. Without loss of generality we may assume that coe�cients are arranged in increas-
ing order ja1j � : : : � janj and jb1j � : : : � jbnj. Let M be the largest number m � n such
that jamj 6= jbmj. ( Clearly, at least one such m exists, because sets A;B consist of di�er-
ent numbers.) Then jakj = jbkj for k > M and

Pn
k=1 a

2r
k 6= Pn

k=1 b
2r
k for all r large enough.

Indeed, by the de�nition of M we have
P

k>M b2rk =
P

k>M a2rk but the remaining portions
of the sum are not equal,

P
k�M b2rk 6= P

k�M a2rk for r large enough; the latter holds true
because by our choice of M the limits limr!1(

P
k�M a2rk )1=(2r) = maxk�M jakj = jaM j and

limr!1(
P

k�M b2rk )1=(2r) = maxk�M jbkj = jbM j are not equal. 2

We also need the following lemma2 due to Marcinkiewicz [106].

Lemma 3.3.5 Let � be an in�nitely di�erentiable characteristic function and let Q(t) =
log�(t). If there is r � 1 such that Q(k)(0) = 0 for all k � r, then � is the characteristic
function of a normal distribution.

Proof. Indeed, �(z) = exp(
Pr

k=0
zk

k!
Q(k)(0)) is an analytic function and all derivatives

at 0 of the functions log �(�) and log�(�) are equal. Di�erentiating the (trivial) equality
�Q0 = �0, we get �(n+1) =

Pn
k=0(

n
k)�(n�k)Q(k+1), which shows that all derivatives at 0 of

�(�) and of �(�) are equal. This means that �(�) is analytic in some neighborhood of 0
and �(t) = �(t) = expP (t) for all small enough t, where P is a polynomial of the degree
(at most) r. Hence by Theorem 2.5.3, � is normal. 2

Proof of Theorem 3.3.3. Without loss of generality, we may assume that X1 is symmet-
ric. Indeed, if random variables X1; : : : ; Xn satisfy the assumptions of the theorem, then
so do their symmetrizations fX1; : : : ; fXn, see Section 1.6. If we could prove the theorem for
symmetric random variables, then fX1 would be be normal. By Theorem 2.5.2, this would

2For a recent application of this lemma to the Central Limit Problem, see [68].
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imply that X1 is normal. Hence it su�ces to prove the theorem under the additional sym-
metry assumption. Let � be the characteristic function of X's and let Q(t) = log�(t);Q
is well de�ned for all t close enough to 0. The assumption implies that Q has derivatives
of all orders and also that Q(a1t) +Q(a2t) + : : :+Q(ant) = Q(b1t) +Q(b2t) + : : :+Q(bnt).
Di�erentiating the last equality 2r times at t = 0 we obtain

nX
k=1

a2rk Q
(2r)(0) =

nX
k=1

b2rk Q
(2r)(0); r = 0; 1; : : : (3.8)

Notice that by (3.7), equality (3.8) implies Q(2r)(0) = 0 for all r large enough. Thus
by (3.8) (and by the symmetry assumption to handle the derivatives of odd order),
Q(k)(0) = 0 for all k � 1 large enough. Lemma 3.3.5 ends the proof. 2

3.4 Exponential analogy

Characterizations of the normal distribution frequently lead to analogous characterizations
of the exponential distribution. The idea behind this correspondence is that adding
random variables is replaced by taking their minimum. This is explained by the well known
fact that the minimum of independent exponential random variables is exponentially
distributed; the observation is due to Linnik [100], see [73, p. 87]. Monographs [57, 4],
present such results as well as the characterizations of the exponential distribution by
its intrinsic properties, such as lack of memory. In this book some of the exponential
analogues serve as exercises.

The following result, written in the form analogous to Theorem 0.0.1, illustrates how
the exponential analogy works. The i. i. d. assumption can easily be weakened to in-
dependence of X and Y (the details of this modi�cation are left to the reader as an
exercise).

Theorem 3.4.1 Suppose X; Y non-negative random variables such that
(i) for all a; b > 0 such that a + b = 1, the random variable minfX=a; Y=bg has the

same distribution as X;
(ii) X and Y are independent and identically distributed.
Then X and Y are exponential.

Proof. The following simple observation stays behind the proof.
If X; Y are independent non-negative random variables, then the tail distribution

function, de�ned for anyZ � 0 by NZ(x) = P (Z � x), satis�es

NminfX;Y g(x) = NX(x)NY (x): (3.9)

Using (3.9) and the assumption we obtain N(at)N(bt) = N(t) for all a; b; t > 0 such that
a+ b = 1. Writing t = x + y; a = x=(x + y); b = y=(x+ y) for arbitrary x; y > 0 we get

N(x + y) = N(x)N(y) (3.10)

Therefore to prove the theorem, we need only to solve functional equation (3.10) for
the unknown function N(�) such that 0 � N(�) � 1; N(�) is also right-continuous non-
increasing and N(x) ! 0 as x!1.
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Formula (3.10) shows recurrently that for all integer n and all x � 0 we have

N(nx) = N(x)n: (3.11)

Since N(0) = 1 and N(�) is right continuous, it follows from (3.11) that r = N(1) > 0.
Therefore (3.11) implies N(n) = rn and N(1=n) = r1=n (to see this, plug in (3.11) values
x = 1 and x = 1=n respectively). Hence N(n=m) = N(1=m)n = rn=m (by putting
x = 1=m in (3.11)), ie. for each rational q > 0 we have

N(q) = rq: (3.12)

Since N(x) is right-continuous, N(x) = limq&xN(q) = rx for each x � 0. It remains
to notice that r < 1, which follows from the fact that N(x) ! 0 as x ! 1. Therefore
r = exp(��) for some � > 0, and N(x) = exp(��x); x � 0. 2

3.5 Exponential distributions on lattices

The abstract notation of this section follows [43, page 43]. Let IL be a vector space with
norm k�k. Suppose that IL is also a lattice with the operations minimum ^ and maximum
_ which are consistent with the vector operations and with the norm. The related order
is then de�ned by x � y i� x _ y = y (or, alternatively: i� x ^ y = x). By consistency
with vector operations we mean that3

(x + y) ^ (z+ y) = y + (x ^ z) for all x;y; z 2 IL

(�x) ^ (�y) = �(x ^ y) for all x;y 2 IL; � � 0

and
�(x ^ y) = (�x) _ (�y):

Consistency with the norm means

kxk � kyk for all 0 � x � y

Moreover, we assume that there is a �-�eld F such that all the operations considered
are measurable.

Vector space IRd with
x ^ y = (minfxj; yjg)1�j�d (3.13)

with the norm: kxk = maxj jxjj satis�es the above requirements. Other examples are
provided by the function spaces with the usual norms; for instance, a familiar example is
the space C[0; 1] of all continuous functions with the standard supremum norm and the
pointwise minimum of functions as the lattice operation, is a lattice.

The following abstract de�nition complements [57, Chapter 5].

3See eg. [43, page 43] or [3].
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De�nition 3.5.1 A random variable X : 
 ! IL has exponential distribution if the
following two conditions are satis�ed: (i) X � 0;

(ii) if X0 is an independent copy of X then for any 0 < a < 1 random variables
X=a ^X0=(1� a) and X have the same distribution.

Example 3.5.1 Let IL = IRd with ^ de�ned coordinatewise by (3.13) as in the above
discussion. Then any IRd-valued exponential random variable has the multivariate expo-
nential distribution in the sense of Pickands, see [57, Theorem 5.3.7]. This distribution
is also known as Marshall-Olkin distribution.

Using the de�nition above, it is easy to notice that if (X1; : : : ; Xd) has the exponential
distribution, then minfX1; : : : ; Xdg has the exponential distribution on the real line. The
next result is attributed to Pickands see [57, Section 5.3].

Proposition 3.5.1 Let X = (X1; : : : ; Xd) be an IRd-valued exponential random variable.
Then the real random variable minfX1=a1; : : : ; Xd=adg is exponential for all a1; : : : ; ad >
0.

Proof. Let Z = minfX1=a1; : : : ; Xd=adg. Let Z 0 be an independent copy of Z. By
Theorem 3.4.1 it remains to show that

minfZ=a;Z 0=bg �= Z (3.14)

for all a; b > 0 such that a+ b = 1. It is easily seen that

minfZ=a;Z 0=bg = minfY1=a1; : : : ; Yd=adg;
where Yi = minfXi=a;X 0

i=bg and X0 is an independent copy of X. However by the de�-
nition, X has the same distribution as (Y1; : : : ; Yd), so (3.14) holds. 2

Remark: By taking a limit as aj ! 0 for all j 6= i, from Proposition 3.5.1 we obtain in particular that

each component Xi is exponential.

Example 3.5.2 Let IL = C[0; 1] with ff ^ gg(x) := minff(x); g(x)g. Then exponential
random variable X de�nes the stochastic process X(t) with continuous trajectories and
such that fX(t1); X(t2); : : : ; X(tn)g has the n-dimensional Marshall-Olkin distribution for
each integer n and for all t1; : : : ; tn in [0; 1].

The following result shows that the supremum supt jX(t)j of the exponential process from
Example 3.5.2 has the moment generating function in a neighborhood of 0. Corresponding
result for Gaussian processes will be proved in Sections 5.2 and 5.4. Another result on
in�nite dimensional exponential distributions will be given in Theorem 4.3.4.

Proposition 3.5.2 If IL is a lattice with the measurable norm k � k consistent with alge-
braic operation ^, then for each exponential IL-valued random variable X there is � > 0
such that Eexp(�kXk) <1.

Proof. The result follows easily from the trivial inequality

P (kXk � 2x) = P (kX ^X0k � x) � (P (kXk � x))2

and Corollary 1.3.7. 2
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3.6 Problems

Problem 3.1 (deterministic analogue of Theorem 3.1.1)) Show that if X; Y � 0
are i. i. d. and 2X has the same distribution as X + Y , then X; Y are non-random 4.

Problem 3.2 Suppose random variables X1; X2 satisfy the assumptions of Theorem 3.1.1
and have �nite second moments. Use the Central Limit Theorem to prove that X1 is
normal.

Problem 3.3 Let V be a metric space with a measurable metric d. We shall say that a
V-valued sequence of random variables Sn converges to Y in distribution, if there exist
a sequence Ŝn convergent to Y in probability (ie. P (d(Ŝn; Y ) > �) ! 0 as n ! 1 )
and such that Sn �= Ŝn (in distribution) for each n. Let Xn be a sequence of V-valued
independent random variables and put Sn = X1 + : : :+Xn. Show that if Sn converges in
distribution (in the above sense), then the limit is an E-Gaussian random variable5.

Problem 3.4 For a separable Banach-space valued Gaussian vector X de�ne the mean
m = EX as the unique vector that satis�es �(m) = E�(X) for all continuous linear func-
tionals � 2 V?. It is also known that random vectors with equal characteristic functions
�(�) = E exp i�(X) have the same probability distribution.

Suppose X is a Gaussian vector with the non-zero mean m. Show that for a measurable
linear subspace IL � V, if m 62 IL then P (X 2 IL) = 0.

Problem 3.5 (deterministic analogue of Theorem 3.3.2)) Show that if i. i. d. ran-
dom variables X; Y have moments of all orders and X + 2Y �= 3X, then X; Y are non-
random.

Problem 3.6 Show that if X; Y are independent and X + Y �= X, then Y = 0 a. s.

4Cauchy distribution shows that assumption X � 0 is essential.
5For motivation behind such a de�nition of weak convergence, see Skorohod [137].
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Chapter 4

Rotation invariant distributions

4.1 Spherically symmetric vectors

De�nition 4.1.1 A random vector X = (X1; X2; : : : ; Xn) is spherically symmetric if the
distribution of every linear form

a1X1 + a2X2 + : : :+ anXn
�= X1 (4.1)

is the same for all a1; a2; : : : ; an, provided a21 + a22 + : : :+ a2n = 1.

A slightly more general class of the so called elliptically contoured distributions has been
studied from the point of view of applications to statistics in [47]. Elliptically contoured
distributions are images of spherically symmetric random variables under a linear trans-
formation of IRn. Additional information can also be found in [48, Chapter 4], which is
devoted to the characterization problems and overlaps slightly with the contents of this
section.

Let �(t) be the characteristic function of X. Then

�(t) = �

0BBBB@ktk
266664

1
0
...
0

377775
1CCCCA ; (4.2)

ie. the characteristic function at t can be written as a function of ktk only. Conversely,
if �(t) is a characteristic function of a real random variable, then �(ktk) corresponds to
an IRn-valued random vector.

From the de�nition we also get the following.

Proposition 4.1.1 If X = (X1; : : : ; Xn) is spherically symmetric, then each of its
marginals Y = (X1; : : : ; Xk), where k � n, is spherically symmetric.

This fact is very simple; just consider linear forms (4.1) with ak+1 = : : : = an = 0.

Example 4.1.1 Suppose ~
 = (
1; 
2; : : : ; 
n) is the sequence of independent identically
distributed normal N(0; 1) random variables. Then ~
 is spherically symmetric. More-
over, for any m � 1; ~
 can be extended to a longer spherically invariant sequence

51
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(
1; 
2; : : : ; 
n+m). In Theorem 4.3.1 we will see that up to a random scaling factor, this
is essentially the only example of a spherically symmetric sequence with arbitrarily long
spherically symmetric extensions1.

In general a multivariate normal distribution is not spherically symmetric. But if X
is centered non-degenerated Gaussian r. v., then A�1X is spherically symmetric, see
Theorem 2.2.4. Spherical symmetry together with Theorem 4.1.2 is sometimes useful in
computations as illustrated in Problem 4.2.

Example 4.1.2 Suppose X = (X1; : : : ; Xn) has the uniform distribution on the sphere
kxk = r. Obviously, X is spherically symmetric. For k < n, vector Y = (X1; : : : ; Xk)
has the density

f(y) = C(r2 � kyk2)(n�k)=2�1; (4.3)

where C is the normalizing constant (see for instance, [48, formula (1.2.6)]). In particu-
lar, Y is spherically symmetric and absolutely continuous in IRk.

The density of real valued random variable Z = kYk at point z has an additional
factor coming from the area of the sphere of radius z in IRk, ie.

fZ(z) = Czk�1(r2 � z2)(n�k)=2�1: (4.4)

Here C = C(r; k; n) is again the normalizing constant. By rescaling, it is easy to see that
C = rn�2C1(k; n), where

C1(k; n) = (
Z 1

�1
zk�1(1� z2)(n�k)=2�1 dz)�1

=
2�(n=2)

�(k=2)�((n� k)=2)
=

2

B(k=2; (n� k)=2)
:

Therefore
fZ(z) = C1r

n�2zk�1(r2 � z2)(n�k)=2�1: (4.5)

Finally, let us point out that the conditional distribution of k(Xk+1; : : : ; Xn)k given Y is
concentrated at one point (r2 � kYk2)1=2.

From expression (4.3) it is easy to see that for �xed k, if n!1 and the radius is r =
p
n,

then the density of the corresponding Y converges to the density of the i. i. d. normal
sequence (
1; 
2; : : : ; 
k). (This well known fact is usually attributed to H. Poincar�e).

Calculus formulas of Example 4.1.2 are important for the general spherically symmetric
case because of the following representation.

Theorem 4.1.2 Suppose X = (X1; : : : ; Xn) is spherically symmetric. Then X = RU,
where random variable U is uniformly distributed on the unit sphere in IRn, R � 0 is real
valued with distribution R �= kXk, and random variables variables R;U are stochastically
independent.

1It would be interesting to �nd the conditions that allow to recognize when a given spherically sym-
metric random vector can be embedded as a marginal of a higher dimensional spherically symmetric
one.
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Proof. The �rst step of the proof is to show that the distribution of X is invariant
under all rotations UJ : IRn ! IRn. Indeed, since by de�nition �(t) = Eexp(it �X) =
Eexp(iktkX1), the characteristic function �(t) of X is a function of ktk only. Therefore
the characteristic function  of UJX satis�es

 (t) = Eexp(it �UJX) = Eexp(iUJT t �X) = Eexp(iktkX1) = �(t):

The groupO(n) of rotations of IRn (ie. the group of orthogonal n�nmatrices) is a compact
group; by � we denote the normalized Haar measure (cf. [59, Section 58]). Let G be an
O(n)-valued random variable with the distribution � and independent of X (G can be

actually written down explicitly; for example if n = 2;G =

"
cos � sin �
� sin � cos �

#
, where � is

uniformly distributed on [0; 2�].) Clearly X �= GX �= kXkGX=kXk conditionally on the
event kXk 6= 0. To take care of the possibility that X = 0, let � be uniformly distributed
on the unit sphere and put

U =

(
� if X = 0
GX=kXk if X 6= 0

:

It is easy to see that U is uniformly distributed on the unit sphere in IRn and that U;X
are independent. This ends the proof, since X �= GX = kXkU. 2

The next result explains the connection between spherical symmetry and linearity of re-
gression. Actually, condition (4.6) under additional assumptions characterizes elliptically
contoured distributions, see [61, 118].

Proposition 4.1.3 If X is a spherically symmetric random vector with �nite �rst mo-
ments, then

EfX1ja1X1 + : : :+ anXng = �
nX

k=1

akXk (4.6)

for all real numbers a1; : : : ; an, where � = a1
a21+:::+a

2
n

.

Sketch of the proof.
The simplest approach here is to use the converse to Theorem 1.5.3; if �(ktk2) denotes
the characteristic function of X (see (4.2)), then the characteristic function of X1; a1X1 +
: : :+anXn evaluated at point (t; s) is  (t; s) = �((s+a1t)

2 + (a2t)
2 + : : :+ (ant)

2). Hence

(a21 + : : :+ a2n)
@

@s
 (t; s)

�����
s=0

= a1
@

@t
 (t; 0):

Another possible proof is to use Theorem 4.1.2 to reduce (4.7) to the uniform case. This
can be done as follows. Using the well known properties of conditional expectations, we
have

EfX1ja1X1 + : : :+ anXng = EfRU1jR(a1U1 + : : :+ anUn)g
= EfEfRU1jR; a1U1 + : : :+ anUngjR(a1U1 + : : :+ anUn)g:

Clearly,
EfRU1jR; a1U1 + : : :+ anUng = REfU1jR; a1U1 + : : :+ anUng
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Figure 4.1: Linear regression for the uniform distribution on a circle.

and
EfU1jR; a1U1 + : : :+ anUng = EfU1ja1U1 + : : :+ anUng;

see Theorem 1.4.1 (ii) and (iii). Therefore it su�ces to establish (4.7) for the uniform
distribution on the unit sphere. The last fact is quite obvious from symmetry consider-
ations; for the 2-dimensional situation this can be illustrated on a picture. Namely, the
hyper-plane a1x1 + : : : + anxn = const intersects the unit sphere along a translation of
a suitable (n � 1)-dimensional sphere S; integrating x1 over S we get the same fraction
(which depends on a1; : : : ; an) of const. 2

The following theorem shows that spherical symmetry allows us to eliminate the as-
sumption of independence in Theorem 0.0.1, see also Theorem 7.2.1 below. The result
for rational � is due to S. Cambanis, S. Huang & G. Simons [25]; for related exponential
results see [57, Theorem 2.3.3].

Theorem 4.1.4 Let X = (X1; : : : ; Xn) be a spherically symmetric random vector such
that EkXk� <1 for some real � > 0. If

Efk(X1; : : : ; Xm)k�j(Xm+1; : : : ; Xn)g = const

for some 1 � m < n, then X is Gaussian.

Our method of proof of Theorem 4.1.4 will also provide easy access to the following
interesting result due to Szab lowski [140, Theorem 2], see also [141].

Theorem 4.1.5 Let X = (X1; : : : ; Xn) be a spherically symmetric random vector such
that EkXk2 < 1 and P (X = 0) = 0. Suppose c(x) is a real function with the property
that there is 0 � U � 1 such that 1=c(x) is integrable on each �nite sub-interval of the
interval [0; U ] and that c(x) = 0 for all x > U .

If for some 1 � m < n

Efk(X1; : : : ; Xm)k2j(Xm+1; : : : ; Xn)g = c(k(Xm+1; : : : ; Xn)k);
then the distribution of X is determined uniquely by c(x).
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To prove both theorems we shall need the following.

Lemma 4.1.6 Let X = (X1; : : : ; Xn) be a spherically symmetric random vector such that
P (X = 0) = 0 and let H denote the distribution of kXk. Then we have the following.

(a) For m < n r. v. k(Xm+1; : : : ; Xn)k has the density function g(x) given by

g(x) = Cxn�m�1
Z 1

x
r�n+2(r2 � x2)m=2�1H(dr); (4.7)

where C = 2�(1
2
n)(�(1

2
m)�(1

2
(n�m)))�1 is a normalizing constant of no further impor-

tance below.
(b) The distribution of X is determined uniquely by the distribution of its single com-

ponent X1.
(c) The conditional distribution of k(X1; : : : ; Xm)k given (Xm+1; : : : ; Xn) depends only

on the IRm�n-norm k(Xm+1; : : : ; Xn)k and

Efk(X1; : : : ; Xm)k�j(Xm+1; : : : ; Xn)g = h(k(Xm+1; : : : ; Xn)k);
where

h(x) =

R1
x r�n+2(r2 � x2)(m+�)=2�1H(dr)R1
x r�n+2(r2 � x2)m=2�1H(dr)

(4.8)

Sketch of the proof.
Formulas (4.7) and (4.8) follow from Theorem 4.1.2 by conditioning on R, see Example
4.1.2. Fact (b) seems to be intuitively obvious; it says that from the distribution of the
product U1R of independent random variables (where U1 is the 1-dimensional marginal
of the uniform distribution on the unit sphere in IRn) we can recover the distribution of
R. Indeed, this follows from Theorem 1.8.1 and (4.7) applied to m = n� 1: multiplying
g(x) = C

R1
x r�n+2(r2 � x2)(n�1)=2�1H(dr) by xu�1 and integrating, we get the formula

which shows that from g(x) we can determine the integrals
R1
0 rt�1H(dr), cf. (4.10)

below.2

Lemma 4.1.7 Suppose c�(�) is a function such that

Efk(X1; : : : ; Xm)k�j(Xm+1; : : : ; Xn)g = c�(k(Xm+1; : : : ; Xn)k2):
Then the function f(x) = x(m+1�n)=2g(x1=2), where g(:) is de�ned by (4.7), satis�es

c�(x)f(x) =
1

B(�=2; m=2)

Z 1

x
(y � x)�=2�1f(y) dy: (4.9)

Proof. As previously, let H(dr) be the distribution of kXk. The following formula for
the beta integral is well known, cf. [110].

(r2 � x2)(m+�)=2�1 =
2

B(�=2; m=2)

Z 1

x
(t2 � x2)�=2�1(r2 � t2)m=2�1 dt: (4.10)

Substituting (4.10) into (4.8) and changing the order of integration we get

c�(x2)g(x)
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= Cxn�m�1
2

B(�=2; m=2)

Z 1

x
(t2 � x2)�=2�1

Z 1

t
r�n+2(r2 � t2)m=2�1H(dr) dt:

Using (4.7) we have therefore

c�(x2)g(x) = xn�m�1
2

B(�=2; m=2)

Z 1

x
(t2 � r2)�=2�1tm+1�ng(t) dt:

Substituting f(�) and changing the variable of integration from t to t2 ends the proof of
(4.9). 2

Proof of Theorem 4.1.5. By Lemma 4.1.6 we need only to show that for � = 2 equation
(4.9) has the unique solution. Since f(�) � 0, it follows from (4.9) that f(y) = 0 for all
y � U . Therefore it su�ces to show that f(x) is determined uniquely for x < U . Since
the right hand side of (4.9) is di�erentiable, therefore from (4.9) we get 2 d

dx
(c(x)f(x)) =

�mf(x). Thus �(x) := c(x)f(x) satis�es equation

2� 0(x) = �m�(x)=c(x)

at each point 0 � x < U . Hence �(x) = C exp(�1
2
m
R x
0 1=c(t) dt). This shows that

f(x) =
C

c(x)
exp(�1

2
m
Z x

0

1

c(t)
dt)

is determined uniquely (here C > 0 is a normalizing constant). 2

Lemma 4.1.8 If �(s) is a periodic and analytic function of complex argument s with the
real period, and for real t the function t 7! log(�(t)�(t + C)) is real valued and convex,
then �(s) = const.

Proof. For all positive x we have

d2

dx2
log �(x) +

d2

dx2
log �(x) � 0: (4.11)

However it is known that d2

dx2
log �(x) =

P
n�0(n+x)�2 ! 0 as x!1, see [110]. Therefore

(4.11) and the periodicity of �(:) imply that d2

dx2
log �(x) � 0. This means that the �rst

derivative d
dx

log�(:) is a continuous, real valued, periodic and non-decreasing function of
the real argument. Hence d

dx
log �(x) = B 2 IR for all real x. Therefore log�(s) = A+Bs

and, since �(:) is periodic with real period, this implies B = 0. This ends the proof. 2

Proof of Theorem 4.1.4. There is nothing to prove, if X = 0. If P (X = 0) < 1 then
P (X = 0) = 0. Indeed, suppose, on the contrary, that P (X = 0) > 0. By Theorem 4.1.2
this means that p = P (R = 0) > 0 and that Efk(X1; : : : ; Xm)k�j(Xm+1; : : : ; Xn)g = 0
with positive probability p > 0. Therefore Efk(X1; : : : ; Xm)k�j(Xm+1; : : : ; Xn)g = 0 with
probability 1. Hence R = 0 and X = 0 a. s., a contradiction.
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Throughout the rest of this proof we assume without loss of generality that P (X =
0) = 0. By Lemmas 4.1.6 and 4.1.7, it remains to show that the integral equation

f(x) = K
Z 1

x
(y � x)��1f(y) dy (4.12)

has the unique solution in the class of functions satisfying conditions f(:) � 0 andR1
0 x(n�m)=2�1f(x) dx = 2.

Let M(s) = xs�1f(x)dx be the Mellin transform of f(:), see Section 1.8. It can be
checked that M(s) is well de�ned and analytic for s in the half-plane <s > 1

2
(n � m),

see Theorem 1.8.2. This holds true because the moments of all orders are �nite, a claim
which can be recovered with the help of a variant of Theorem 6.2.2, see Problem 6.6; for
a stronger conclusion see also [22, Theorem 2.2]. The Mellin transform applied to both
sides of (4.12) gives

M(s) = K
�(�)�(s)

�(� + s)
M(� + s):

Thus the Mellin transform M1(:) of the function f(Cx), where
C = (K�(�))�1=�, satis�es

M1(s) = M1(� + s)
�(s)

�(� + s)
:

This shows that M1(s) = �(s)�(s), where �(:) is analytic and periodic with real period
�. Indeed, since �(s) 6= 0 for <s > 0, function �(s) = M1(s)=�(s) is well de�ned and
analytic in the half-plane <s > 0. Now notice that �(:), being periodic, has analytic
extension to the whole complex plane.

Since f(:) � 0, logM1(x) is a well de�ned convex function of the real argument
x. This follows from the Cauchy-Schwarz inequality, which says that M1((t + s)=2) �
(M1(t)M1(s))

1=2. Hence by Lemma 4.1.8, �(s) = const.2

Remark: Solutions of equation (4.12) have been found in [62]. Integral equations of similar, but more

general form occurred in potential theory, see Deny [33], see also Bochner [11] for an early work; for

another proof and recent literature, see [126].

4.2 Rotation invariant absolute moments

The following beautiful theorem is due to M. S. Braverman [14]2.

Theorem 4.2.1 Let X; Y; Z be independent identically distributed random variables with
�nite moments of �xed order p 2 IR+ n 2IN. Suppose that there is constant C such that
for all real a; b; c

EjaX + bY + cZjp = C(a2 + b2 + c2)p=2: (4.13)

Then X; Y; Z are normal.

2In the same paper Braverman also proves a similar characterization of �-stable distributions.
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Condition (4.13) says that the absolute moments of a �xed order p of any axis, no matter
how rotated, are the same; this �ts well into the framework of Theorem 0.0.1.

Theorem 4.2.1 is a strictly 3-dimensional phenomenon, at least if no additional con-
ditions on random variables are imposed. It does not hold for pairs of i. i. d. random
variables, see Problem 4.3 below3. Theorem 4.2.1 cannot be extended to other values of
exponent p; if p is an even integer, then (4.13) is not strong enough to imply the normal
distribution (the easiest case to see this is of course p = 2).

Following Braverman's argument, we obtain Theorem 4.2.1 as a corollary to Theorem
3.1.1. To this end, we shall use the following result of independent interest.

Theorem 4.2.2 If p 2 IR+ n 2IN and X; Y; Z are independent symmetric p-integrable
random variables such that P (Z = 0) < 1 and

EjX + tZjp = EjY + tZjp for all real t; (4.14)

then X �= Y in distribution.

Theorem 4.2.2 resembles Problem 1.17, and it seems to be related to potential theory, see
[123, page 65] and [80, Section 6]. Similar results have functional analytic importance,
see Rudin [129]; also Hall [58] and Hardin [60] might be worth seeing in this context.
Koldobskii [80, 81] gives Banach space versions of the results and relevant references.

Theorem 4.2.1 follows immediately from Theorem 4.2.2 by the following argument.
Proof of Theorem 4.2.1 . Clearly there is nothing to prove, if C = 0, see also Problem
4.5. Suppose therefore C 6= 0. It follows from the assumption that EjX + Y + tZjp =
Ejp2X + tZjp for all real t. Note also that EjZjp = C 6= 0. Therefore Theorem 4.2.2
applied to X + Y , X 0 and Z, where X 0 is an independent copy of

p
2X, implies that

X + Y and
p

2X have the same distribution. Since X; Y are i. i. d., by Theorem 3.1.1
X; Y; Z are normal. 2

A related result

The next result can be thought as a version of Theorem 4.2.1 corresponding to p = 0. For
the proof see [85, 92, 96].

Theorem 4.2.3 If X = (X1; : : : ; Xn) is at least 3-dimensional random vector such that
its components X1; : : : ; Xn are independent, P (X = 0) = 0 and X=kXk has the uniform
distribution on the unit sphere in IRn, then X is Gaussian.

4.2.1 Proof of Theorem 4.2.2 for p = 1

We shall �rst present a slightly simpli�ed proof for p = 1 which is based on elementary
identity maxfx; yg = (x + y + jx � yj). This proof leads directly to the exponential
analogue of Theorem 4.2.1; the exponential version is given as Problem 4.4 below.

We shall begin with the lemma which gives an analytic version of condition (4.14).

3For more counter-examples, see also [15]; cf. also Theorems 4.2.8 and 4.2.9 below.
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Lemma 4.2.4 Let X1; X2; Y1; Y2 be symmetric independent random variables such that
EjYij <1 and EjXij <1; i = 1; 2. Denote Ni(t) = P (jXij � t);Mi(t) = P (jYij � t); t �
0; i = 1; 2. Then each of the conditions

Eja1X1 + a2X2j = Eja1Y1 + a2Y2j for all a1; a2 2 IR; (4.15)R1
0 N1(�)N2(x�) d� =

R1
0 M1(�)M2(x�) d� for all x > 0; (4.16)R1

0 N1(xt)N2(yt) dt =
R1
0 M1(xt)M2(yt) dt (4.17)

for all x; y � 0; jxj+ jyj 6= 0;

implies the other two.

Proof. For all real numbers x; y we have jx � yj = 2 maxfx; yg � (x + y). Therefore,
taking into account the symmetry of the distributions for all real a; b we have

EjaX1 � bX2j = 2EmaxfaX1; bX2g: (4.18)

For an integrable random variable Z we have EZ =
R1
0 P (Z � t) dt� R1

0 P (�Z � t) dt,
see (1.3). This identity applied to Z = maxfaX1; bX2g, where a; b � 0 are �xed, gives

EmaxfaX1; bX2g =
Z 1

0
P (Z � t) dt�

Z 1

0
P (Z � �t) dt

=
Z 1

0
P (aX1 � t) dt+

Z 1

0
P (bX2 � t) dt

�
Z 1

0
P (aX1 � t)P (bX2 � t) dt�

Z 1

0
P (aX1 � �t)P (bX2 � �t) dt:

Therefore, from (4.18) after taking the symmetry of distributions into account, we obtain

EjaX1 � bX2j = 2aEX+
1 + 2bEX+

2 � 4
Z 1

0
P (aX1 � t)P (bX2 � t) dt;

where X+
i = maxfXi; 0g; i = 1; 2. This gives

EjaX1 � bX2j = 2aEX+
1 + 2bEX+

2 � 4
Z 1

0
N1(t=a)N2(t=b) dt: (4.19)

Similarly

EjaY1 � bY2j = 2aEY +
1 + 2bEY +

2 � 4
Z 1

0
M1(t=a)M2(t=b) dt: (4.20)

Once formulas (4.19) and (4.20) are established, we are ready to prove the equivalence of
conditions (4.15)-(4.17).

(4.15))(4.16): If condition (4.15) is satis�ed, then EjXij = EjYij; i = 1; 2 and thus by
symmetry EX+

i = EY +
i ; i = 1; 2. Therefore (4.19) and (4.20) applied to a = 1; b = 1=x

imply (4.16) for any �xed x > 0.
(4.16) )(4.17): Changing the variable in (4.16) we obtain (4.17) for all x > 0; y > 0.

Since EjYij < 1 and EjXij < 1 we can pass in (4.17) to the limit as x ! 0, while y is
�xed, or as y! 0, while x is �xed, and hence (4.17) is proved in its full generality.

(4.17))(4.15): If condition (4.17) is satis�ed, then taking x = 0; y = 1 or x = 1; y = 0
we obtain EjXij = EjYij; i = 1; 2 and thus by symmetry EX+

i = EY +
i ; i = 1; 2. Therefore
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identities (4.19) and (4.20) applied to a = 1=x; b = 1=y imply (4.15) for any a1 > 0; a2 < 0.
Since EjYij < 1 and EjXij < 1, we can pass in (4.15) to the limit as a1 ! 0, or as
a2 ! 0. This proves that equality (4.15) for all a1 � 0; a2 � 0. However, since Xi; Yi,
i = 1; 2, are symmetric, this proves (4.15) in its full generality. 2

The next result translates (4.15) into the property of the Mellin transform. A similar
analytical identity is used in the proof of Theorem 4.2.3.

Lemma 4.2.5 Let X1; X2; Y1; Y2 be symmetric independent random variables such that
EjYjj < 1 and EjXjj < 1; j = 1; 2. Let 0 < u < 1 be �xed. Then condition (4.15) is
equivalent to

EjX1ju+itEjX2j1�u�it = EjY1ju+itEjY2j1�u�it for all t 2 IR: (4.21)

Proof. By Lemma 2.4.3, it su�ce to show that conditions (4.21) and (4.16) are equivalent.
Proof of (4.16))(4.21): Multiplying both sides of (4.16) by x�u�it, where t 2 IR is

�xed, integrating with respect to x in the limits from 0 to 1 and changing the order of
integration (which is allowed, since the integrals are absolutely convergent), then substi-
tuting x = y=� , we get Z 1

0
� it+u�1N1(�) dt

Z 1

0
y�u�itN2(y) dy

=
Z 1

0
� it+u�1M1(�) d�

Z 1

0
y�u�itM2(y) dy:

This clearly implies (4.21), since, eg.Z 1

0
� it+u�1Nj(�) d� = EjXjju+it=(u+ it); j = 1; 2

(this is just tail integration formula (1.2)).
Proof of (4.21))(4.16): Notice that

�j(t) :=
uEjXjju+it

(u+ it)EjXjju ; j = 1; 2

is the characteristic function of a random variable with the probability density function
fj;u(x) := Cj exp(xu)Nj(exp(x)); x 2 IR; j = 1; 2, where Cj = Cj(u) is the normalizing
constant. Indeed,Z 1

�1
eixt exp(xu)Nj(exp(x)) dx =

Z 1

0
yityu�1Nj(y) dy = EjXjju+it=(u+ it)

and the normalizer Cj(u) = u=EjXjju is then chosen to have �j(0) = 1; j = 1; 2. Similarly

 j(t) :=
uEjYjju+it

(u+ it)EjYjju

is the characteristic function of a random variable with the probability density function
gj;u(x) := Kj exp(xu)Mj(exp(x)); x 2 IR, where Kj = u=EjYjju; j = 1; 2. Therefore (4.21)
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implies that the following two convolutions are equal f1;u � �f2;1�u = g1;u � �g2;1�u, where
�f2(x) = f2(�x); �g2(x) = g2(�x). Since (4.21) implies C1(u)C2(1� u) = K1(u)K2(1� u),
a simple calculation shows that the equality of convolutions impliesZ 1

�1
exN1(e

x)N2(e
yex) dx =

Z 1

�1
exM1(e

x)M2(e
yex) dx

for all real y. The last equality di�ers from (4.16) by the change of variable only. 2

Now we are ready to prove Theorem 4.2.2. The conclusion of Lemma 4.2.5 suggests
using the Mellin transform EjXju+it; t 2 IR. Recall from Section 1.8 that if for some
�xed u > 0 we have EjXju < 1, then the function EjXju+it; t 2 IR, determines the
distribution of jXj uniquely. This and Lemma 4.2.5 are used in the proof of Theorem
4.2.2.
Proof of Theorem 4.2.2. Lemma 4.2.5 implies that for each 0 < u < 1;�1 < t <1

EjXju+itEjZj1�u�it = EjY ju+itEjZj1�u�it: (4.22)

Since EjZjs is an analytic function in the strip 0 < <s < 1, see Theorem 1.8.2, and
EjZj = C 6= 0 by (4.13), therefore the equation EjZju+it = 0 has at most a countable
number of solutions (u; t) in the strip 0 < u < 1 and �1 < t <1. Indeed, the equation
has at most a �nite number of solutions in each compact set | otherwise we would have
Z = 0 almost surely by the uniqueness of analytic extension. Therefore one can �nd
0 < u < 1 such that EjZju+it 6= 0 for all t 2 IR. For this value of u from (4.22) we obtain

EjXj1�u�it = EjY j1�u�it (4.23)

for all real t, which by Theorem 1.8.1 proves that random variables X and Y have the
same distribution. 2

4.2.2 Proof of Theorem 4.2.2 in the general case

The following lemma shows that under assumption (4.14) all even moments of order less
than p match.

Lemma 4.2.6 Let k = [p=2]. Then (4.14) implies

EjXj2j = EjY j2j (4.24)

for j = 0; 1; : : : ; k:

Proof. For j � k the derivatives @j

@tj
jtX +Zjp are integrable. Therefore (4.24) follows by

the consecutive di�erentiation (under the integral signs) of the equation EjtX + Zjp =
EjtY + Zjp at t = 0. 2

The following is a general version of (4.21).
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Lemma 4.2.7 Let 0 < u < p be �xed. Then condition (4.14) and

EjXju+itEjZjp�u�it = EjY ju+itEjZjp�u�it for all t 2 IR: (4.25)

are equivalent.

Proof. We prove only the implication (4.14))(4.25); we will not use the other one.
Let k = [p=2]. The following elementary formula follows by the change of variable4

jajp = Cp

Z 1

0

0@cos ax�
kX

j=0

(�1)ja2jx2j

1A dx

xp+1
(4.26)

for all a.
Since our variables are symmetric, applying (4.26) to a = X + �Z and a = Y + �Z

from (4.14) and Lemma 4.2.6 we get

Z 1

0

(�X(x)� �Y (x))�Z(�x)

xp+1
dx = 0 (4.27)

and the integral converges absolutely. Multiplying (4.27) by ��p+u+it�1, integrating with
respect to � in the limits from 0 to 1 and switching the order of integrals we getZ 1

0

�X(x)� �Y (x)

xp+1

Z 1

0
��p+u+it�1�Z(�x) d� dx = 0: (4.28)

Notice that Z 1

0
��p+u+it�1�Z(�x) d� = xp�u�it

Z 1

0
��p+u+it�1�Z(�) d�

= xp�u�it�(�p + u+ it)EjZjp�u�it:
Therefore (4.28) implies

�(�p + u+ it)�(�u� it)
�
EjXju+it � EjY ju+it

�
EjZjp�u�it = 0:

This shows that identity (4.25) holds for all values of t, except perhaps a for a countable
discrete set arising from the zeros of the Gamma function. Since EjY jz is analytic in the
strip �1 < <z < p, this implies (4.25) for all t. 2

Proof of Theorem 4.2.2 (general case). The proof of the general case follows the
previous argument for p = 1 with (4.25) replacing (4.21). 2

4Notice that our choice of k ensures integrability.
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4.2.3 Pairs of random variables

Although in general Theorem 4.2.1 doesn't hold for a pair of i. i. d. variables, it is possible
to obtain a variant for pairs under additional assumptions. Braverman [16] obtained the
following result.

Theorem 4.2.8 Suppose X; Y are i. i. d. and there are positive p1 6= p2 such that
p1; p2 62 2IN and EjaX + bY jpj = Cj(a

2 + b2)pj for all a; b 2 IR, j = 1; 2. Then X is
normal.

Proof of Theorem 4.2.8. Suppose 0 < p1 < p2. Denote by Z the standard normal
N(0,1) random variable and let

fp(s) =
EjXjp=2+s
EjZjp=2+s :

Clearly fp is analytic in the strip �1 < p=2 + <s < p2.
For �p1=2 < <s < p2=2 by Lemma 4.2.7 we have

fp1(s)fp1(�s) = C1 (4.29)

and
fp2(s)fp2(�s) = C2 (4.30)

Put r = 1
2
(p2 � p1). Then fp2(s) = fp1(s + r) in the strip �p1=2 < <s < p1=2. Therefore

(4.30) implies
f(r + s)f(r � s) = C2;

where to simplify the notation we write f = fp1. Using now (4.29) we get

f(r + s) =
C2

f(r � s)
=
C2

C1
f(s� r) (4.31)

Equation (4.31) shows that the function �(s) := Ksf(s), where K = (C1=C2)
1
2r , is periodic

with real period 2r. Furthermore, since p1 > 0, �(s) is analytic in the strip of the width
strictly larger than 2r; thus it extends analytically to CC. By Lemma 4.1.8 this determines
uniquely the Mellin transform of jXj. Namely,

EjXjs = CKsEjZjs:
Therefore in distribution we have the representation

X �= KZ�; (4.32)

where K is a constant, Z is normal N(0,1), and � is a f0; 1g-valued independent of Z
random variable such that P (� = 1) = C.

Clearly, the proof is concluded if C = 0 (X being degenerate normal). If C 6= 0 then
by (4.32)

EjtX + uY jp (4.33)

= C(1� C)2(t2 + u2)p=2EjZjp + C(1� C)(jtjp + jujp)EjZjp:
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Therefore C = 1, which ends the proof. 2

The next result comes from [23] and uses stringent moment conditions; Braverman [16]
gives examples which imply that the condition on zeros of the Mellin transform cannot
be dropped.

Theorem 4.2.9 Let X; Y be symmetric i. i. d. random variables such that

Eexp(�jXj2) <1
for some � > 0, and EjXjs 6= 0 for all s 2 CC such that <s > 0. Suppose there is a
constant C such that for all real a; b

EjaX + bY j = C(a2 + b2)1=2:

Then X; Y are normal.

The rest of this section is devoted to the proof of Theorem 4.2.9.
The function �(s) = EjXjs is analytic in the half{plane <s > 0. Since EjZjs =

��1=2Ks�( s+1
2

), where K = �1=2EjZj > 0 and �(:) is the Euler gamma function, there-
fore (4.21) means that �(s) = ��1=2Ks�(s)�( s+1

2
), where �(s) := �1=2K�s�(s)=�( s+1

2
) is

analytic in the half-plane <s > 0; �(�s) = �(s) and satis�es

�(s)�(1� s) = 1 for 0 < <s < 1: (4.34)

We shall need the following estimate, in which without loss of generality we may assume
0 < �K < 1 (choose � > 0 small enough).

Lemma 4.2.10 There is a constant C > 0 such that j�(s)j � Cjsj(�K)�<s for all s in
the half-plane <s � 1

2
.

Proof. Since Eexp(�2jXj2) <1 for some � > 0, therefore P (jXj � t) � Ce��
2t2 , where

C = Eexp(�2jXj2), see Problem 1.4. This implies

j�(s)j � C1jsj��<s�(
1

2
<s);<s > 0: (4.35)

In particular j�(s)j � C exp(o(jsj2)), where o(x)=x! 0 as x!1.
Consider now function u(s) = �(s)(�K)s=s, which is analytic in <s > 0. Clearly

ju(s)j � C exp(o(jsj2)) as jsj ! 1. Moreover ju(1
2

+ it)j � const for all real t by (4.34);
for all real x

ju(x)j = �1=2x�1�x�(x)=�(
x+ 1

2
) � C1�(

1

2
x)=�(

x + 1

2
) � �1=2C;

by (4.35). Therefore by the Phragm�en-Lindel�of principle, see, eg. [97, page 50 Theorem
22], applied twice to the angles �1

2
� � arg s � 0, and 0 � arg s � 1

2
�, the Lemma is

proved. 2

By Lemma 4.2.5 Theorem 4.2.9 follows from the next result.
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Lemma 4.2.11 Suppose X is a symmetric random variable satisfying

Eexp(�2jXj2) <1

for some � > 0, and
EjXjs 6= 0

for all s 2 C, such that <s > 0. Let Z be a centered normal random variable such that

EjXj1=2+itEjXj1=2�it = EjZj1=2+itEjZj1=2�it (4.36)

for all t 2 IR. Then X is normal.

Proof.
We shall use Lemma 4.2.10 to show that �(s) = C1C

s
2 for some real C1; C2 > 0. It is

clear that �(s) 6= 0 if <s > 0. Therefore �(s) = log�(s) is a well de�ned function which
is analytic in the half-plane <s > 0. The function v(s) := <(�(�is)) = log j�(�is)j is
harmonic in the half-plane =s > �1

2
and lim supjsj!1 v(s)=jsj < 1 by Lemma 4.2.10.

Furthermore by (4.34) we have v(t) = 0 for real t. By the Nevanlina integral representa-
tion, see [97, page 233, Theorem 4]

v(x+ iy) =
y

�

Z 1

�1
v(t)

(t� x)2 + y2
dt+ ky

for some real constant k and for all real x; y with y > 0. This in particular implies that
�(y + 1

2
) = <(�(y + 1

2
)) = v(�iy) = cy. Thus by the uniqueness of analytic extension we

get �(s) = C1C
s
2 and hence

�(s) = ��1=2KsC1C
s
2�(

s+ 1

2
) (4.37)

for some constants C1; C2 such that C2
1C2 = 1 (the latter is the consequence of (4.34)).

Formula (4.37) shows that the distribution of X is given by (4.32). To exclude the possi-
bility that P (X = 0) 6= 0 it remains to verify that C1 = 1. This again follows from (4.33).
By Theorem 1.8.1, the proof is completed. 2

4.3 In�nite spherically symmetric sequences

In this section we present results that hold true for in�nite sequences only and which
might fail for �nite sequences.

De�nition 4.3.1 An in�nite sequence X1; X2; : : : is spherically symmetric if the �nite
sequence X1; X2; : : : ; Xn is spherically symmetric for all n.

The following provides considerably more information than Theorem 4.1.2.
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Theorem 4.3.1 ([132]) If an in�nite sequence X = (X1; X2; : : :) is spherically sym-
metric, then there is a sequence of independent identically distributed Gaussian random
variables ~
 = (
1; 
2; : : :) and a non-negative random variable R independent of ~
 such
that

X = R~
:

This result is based on exchangeability.

De�nition 4.3.2 A sequence (Xk) of random variables is exchangeable, if the joint dis-
tribution of X�(1); X�(2); : : : ; X�(n) is the same as the joint distribution of X1; X2; : : : ; Xn

for all n � 1 and for all permutations � of f1; 2; : : : ; ng.

Clearly, spherical symmetry implies exchangeability. The following beautiful theorem
due to B. de Finetti [31] points out the role of exchangeability in characterizations as a
substitute for independence; for more information and the references see [79].

Theorem 4.3.2 Suppose that X1; X2; : : : is an in�nite exchangeable sequence. Then there
exist a �-�eld N such that X1; X2; : : : are N -conditionally i. i. d., that is

P (X1 < a1; X2 < a2; : : : ; Xn < anjN )

= P (X1 < a1jN )P (X1 < a2jN ) : : : P (X1 < anjN )

for all a1; : : : ; an 2 IR and all n � 1.

Proof. Let N be the tail �-�eld, ie.

N =
1\
k=1

�(Xk; Xk+1; : : :)

and put Nk = �(Xk; Xk+1; : : :). Fix bounded measurable functions f; g; h and denote

Fn = f(X1; : : : ; Xn);

Gn;m = g(Xn+1; : : : ; Xm+n);

Hn;m;N = h(Xm+n+N+1; Xm+n+N+2; : : :);

where n;m;N � 1. Exchangeability implies that

EFnGn;mHn;m;N = EFnGn+r;mHn;m;N

for all r � N . Since Hn;m;N is an arbitrary bounded Nm+n+N+1-measurable function, this
implies

EfFnGn;mjNm+n+N+1g = EfFnGn+r;mjNm+n+N+1g:
Passing to the limit as N !1, see Theorem 1.4.3, this gives

EfFnGn;mjNg = EfFnGn+r;mjNg:
Therefore

EfFnGn;mjNg = EfGn+r;mEfFnjNn+r+1gjNg:
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Since EfFnjNn+r+1g converges in L1 to EfFnjNg as r !1, and since g is bounded,

EfGn+r;mEfFnjNn+r+1gjNg

is arbitrarily close (in the L1 norm) to

EfGn+r;mEfFnjNgjNg = EfFnjNgEfGn+r;mjNg

as r !1. By exchangeability EfGn+r;mjNg = EfGn;mjNg almost surely, which proves
that

EfFnGn;mjNg = EfFnjNgEfGn;mjNg:
Since f; g are arbitrary, this proves N -conditional independence of the sequence. Us-
ing the exchangeability of the sequence once again, one can see that random variables
X1; X2; : : : have the same N -conditional distribution and thus the theorem is proved. 2

Proof of Theorem 4.3.1. Let N be the tail �-�eld as de�ned in the proof of Theorem
4.3.2. By assumption, sequences

(X1; X2; : : :);

(�X1; X2; : : :);

(2�1=2(X1 +X2); X3; : : :);

(2�1=2(X1 +X2); 2
�1=2(X1 �X2); X3; X4; : : :)

are all identically distributed and all have the same tail �-�eld N . Therefore, by The-
orem 4.3.2 random variables X1; X2; are N -conditionally independent and identically
distributed; moreover, each variable has the symmetric N -conditional distribution and
N -conditionally X1 has the same distribution as 2�1=2(X1 + X2). The rest of the ar-
gument repeats the proof of Theorem 3.1.1. Namely, consider conditional characteristic
function �(t) = Efexp(itX1)jNg. With probability one �(1) is real by N -conditional
symmetry of distribution and �(t) = (�(2�1=2t))2. This implies

�(2�n=2) = (�(1))1=2
n

(4.38)

almost surely, n = 0; 1; : : :. Since �(2�n=2) ! �(0) = 1 with probability 1, we have
�(1) 6= 0 almost surely. Therefore on a subset 
0 � 
 of probability P (
0) = 1, we have
�(1) = exp(�R2), where R2 � 0 is N -measurable random variable. Applying5 Corollary
2.3.4 for each �xed ! 2 
0 we get that �(t) = exp(�tR2) for all real t.
2

The next corollary shows how much simpler the theory of in�nite sequences is, compare
Theorem 4.1.4.

5Here we swept some dirt under the rug: the argument goes through, if one knows that except on a
set of measure 0, �(:) is a characteristic function. This requires using regular conditional distributions,
see, eg. [9, Theorem 33.3.].
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Corollary 4.3.3 Let X = (X1; X2; : : :) be an in�nite spherically symmetric sequence such
that EjXkj� <1 for some real � > 0 and all k = 1; 2; : : :. Suppose that for some m � 1

Efk(X1; : : : ; Xm)k�j(Xm+1; Xm+2; : : :)g = const: (4.39)

Then X is Gaussian.

Proof. From Theorem 4.3.1 it follows that

Efk(X1; : : : ; Xm)k�j(Xm+1; Xm+2; : : :)g

= EfR�k(
1; : : : ; 
m)k�j(Xm+1; Xm+2; : : :)g:
However, R is measurable with respect to the tail �-�eld, and hence it also is
�(Xm+1; Xm+2; : : :)-measurable for all m. Therefore

Efk(X1; : : : ; Xm)k�j(Xm+1; Xm+2; : : :)g

= R�Efk(
1; : : : ; 
m)k�jR(
m+1; 
m+2; : : :)g
= R�E fEfk(
1; : : : ; 
m)k�jR; (
m+1; 
m+2; : : :)g jR(
m+1; 
m+2; : : :)g :

Since R and ~
 are independent, we �nally get

Efk(X1; : : : ; Xm)k�j(Xm+1; Xm+2; : : :)g

= R�Efk(
1; : : : ; 
m)k�j(
m+1; 
m+2; : : :)g = C�R
�:

Using now (4.39) we have R = const almost surely and hence X is Gaussian. 2

The following corollary of Theorem 4.3.2 deals with exponential distributions as de�ned in
Section 3.5. Diaconis & Freedman [35] have a dozen of de Finetti{style results, including
this one.

Theorem 4.3.4 If X = (X1; X2; : : :) is an in�nite sequence of non-negative random
variables such that random variable minfX1=a1; : : : ; Xn=ang has the same distribution as
(a1 + : : : + an)�1X1 for all n and all a1; : : : ; an > 0 , then X = �~�, where � and ~� are
independent random variables and ~� = (�1; �2; : : :) is a sequence of independent identically
distributed exponential random variables.

Sketch of the proof: Combine Theorem 3.4.1 with Theorem 4.3.2 to get the result for the
pair X1; X2. Use the reasoning from the proof of Theorem 3.4.1 to get the representation
for any �nite sequence X1; : : : ; Xn, see also Proposition 3.5.1.
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4.4 Problems

Problem 4.1 Prove the converse of (4.2). Namely, if �(s) is the characteristic function
of a one-dimensional random variable, then there is a spherically symmetric (X1; : : : ; Xn)
such that �(ktk) is its characteristic function.

Problem 4.2 For centered bivariate normal r. v. X; Y with variances 1 and correlation
coe�cient � (see Example 2.2.1), show that EfjXj jY jg = 2

�
(
p

1� �2 + � arcsin �).

Problem 4.3 Let X; Y be i. i. d. random variables with the probability density function
de�ned by f(x) = Cjxj�3 exp(�1=x2), where C is a normalizing constant, and x 2 IR.
Show that for any choice of a; b 2 IR we have

EjaX + bY j = K(a2 + b2)1=2;

where K = EjXj.

Problem 4.4 Using the methods used in the proof of Theorem 4.2.1 for p = 1 prove the
following.

Theorem 4.4.1 Let X; Y; Z � 0 be i. i. d. and integrable random variables.
Suppose that there is a constant C 6= 0 such that EminfX=a; Y=c; Z=cg =
C=(a+ b + c) for all a; b; c > 0. Then X; Y; Z are exponential.

Problem 4.5 (deterministic analogue of theorem 4.2.1) Show that if X; Y are in-
dependent with the same distribution, and EjaX + bY j = 0 for some a; b 6= 0, then X; Y
are non-random.
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Chapter 5

Independent linear forms

In this chapter the property of interest is the independence of linear forms in independent
random variables. In Section 5.1 we give a characterization result that is both simple
to state and to prove; it is nevertheless of considerable interest. Section 5.2 parallels
Section 3.2. We use the characteristic property of the normal distribution to de�ne ab-
stract group-valued Gaussian random variables. In this broader context we again obtain
the zero-one law; we also prove an important result about the existence of exponential
moments. In Section 5.3 we return to characterizations, generalizing Theorem 5.1.1. We
show that the stochastic independence of arbitrary two linear forms characterizes the nor-
mal distribution. We conclude the chapter with abstract Gaussian results when all forces
are joined.

5.1 Bernstein's theorem

The following result due to Bernstein [8] characterizes normal distribution by the in-
dependence of the sum and the di�erence of two independent random variables. More
general but also more di�cult result is stated in Theorem 5.3.1 below. An early precur-
sor is Narumi [114], who proves a variant of Problem 5.4.The elementary proof below is
adapted from Feller [54, Chapter 3].

Theorem 5.1.1 If X1; X2 are independent random variables such that X1+X2 and X1�
X2 are independent, then X1 and X2 are normal.

The next result is an elementary version of Theorem 2.5.2.

Lemma 5.1.2 If X;Z are independent random variables such that Z and X + Z are
normal, then X is normal.

Indeed, the characteristic function � of random variable X satis�es

�(t) exp(�(t�m)2=�2) = exp(�(t�M)2=S2)

for some constants m;M; �; S. Therefore �(t) = exp(at2 + bt+ c), for some real constants
a; b; c, and by Proposition 2.1.1, � corresponds to the normal distribution.

71
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Lemma 5.1.3 If X;Z are independent random variables and Z is normal, then X + Z
has a non-vanishing probability density function which has derivatives of all orders.

Proof. Assume for simplicity that Z is N(0; 2�1=2). Consider f(x) = Eexp(�(x�X)2).

Then f(x) 6= 0 for each x, and since each derivative dk

dyk
exp(�(y � X)2) is bounded

uniformly in variables y;X, therefore f(�) has derivatives of all orders. It remains to
observe that ��1=2f(�) is the probability density function of X +Z. This is easily veri�ed
using the cumulative distribution function:

P (X + Z � t) = ��1=2
Z 1

�1
exp(�z2)

Z


IX�t�z dP dz

= ��1=2
Z



�Z 1

�1
exp(�z2)Iz+X�t dz

�
dP

= ��1=2
Z



�Z 1

�1
exp(�(y �X)2)Iy�t dy

�
dP

= ��1=2
Z t

�1
Eexp(�(y �X)2) dy:

2

Proof of Theorem 5.1.1. Let Z1; Z2 be i. i. d. normal random variables, independent
of X's. Then random variables Yk = Xk + Zk; k = 1; 2, satisfy the assumptions of the
theorem, cf. Theorem 2.2.6. Moreover, by Lemma 5.1.3, each of Yk's has a smooth non-
zero probability density function fk(x); k = 1; 2. The joint density of the pair Y1+Y2; Y1�
Y2 is 1

2
f1(

x+y
2

)f2(
x�y
2

) and by assumption it factors into the product of two functions, the
�rst being the function of x, and the other being the function of y only. Therefore the
logarithms Qk(x) := log fk(

1
2
x); k = 1; 2, are twice di�erentiable and satisfy

Q1(x+ y) +Q2(x� y) = a(x) + b(y) (5.1)

for some twice di�erentiable functions a; b (actually a = Q1 + Q2). Taking the mixed
second order derivative of (5.1) we obtain

Q00
1(x + y) = Q00

2(x� y): (5.2)

Taking x = y this shows that Q00
1(x) = const. Similarly taking x = �y in (5.2) we

get that Q00
2(x) = const. Therefore Qk(2x) = Ak + Bkx + Ckx

2, and hence fk(x) =
exp(Ak +Bkx+Ckx

2); k = 1; 2. As a probability density function, fk has to be integrable,
k = 1; 2. Thus Ck < 0, and then Ak = �1

2
log(�2�Ck) is determined uniquely from the

condition that
R
fk(x) dx = 1. Thus fk(x) is a normal density and Y1; Y2 are normal. By

Lemma 5.1.2 the theorem is proved. 2

5.2 Gaussian distributions on groups

In this section we shall see that the conclusion of Theorem 5.1.1 is related to integrability
just as the conclusion of Theorem 3.1.1 is related to the fact that the normal distribution
is a limit distribution for sums of i. i. d. random variables, see Problem 3.3.
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Let CG be a group with a �-�eld F such that group operation x;y 7! x + y, is a
measurable transformation (CG � CG;F 
 F) ! (CG;F). Let (
;M; P ) be a probability
space. A measurable function X : (
;M) ! (CG;F), is called a CG-valued random
variable and its distribution is called a probability measure on CG.

Example 5.2.1 Let CG = IRd be the vector space of all real d-tuples with vector addition
as the group operation and with the usual Borel �-�eld B. Then a CG-valued random
variable determines a probability distribution on IRd.

Example 5.2.2 Let CG = S1 be the group of all complex numbers z such that jzj = 1
with multiplication as the group operation and with the usual Borel �-�eld F generated by
open sets. A distribution of CG-valued random variable is called a probability measure on
S1.

De�nition 5.2.1 A CG-valued random variable X is I-Gaussian (letter I stays here for
independence) if random variables X+X0 and X�X0, where X0 is an independent copy
of X, are independent.

Clearly, any vector space is an Abelian group with vector addition as the group operation.
In particular, we now have two possibly distinct notions of Gaussian vectors: the E-
Gaussian vectors introduced in Section 3.2 and the I-Gaussian vectors introduced in this
section. In general, it seems to be not known, when the two de�nitions coincide; [143]
gives related examples that satisfy suitable versions of the 2-stability condition (as in our
de�nition of E-Gaussian) without being I-Gaussian.

Let us �rst check that at least in some simple situations both de�nitions give the same
result.

Example 5.2.1 (continued) If CG = IRd and X is an IRd-valued I-Gaussian random
variable, then for all a1; a2; : : : ; ad 2 IR the one-dimensional random variable a1X(1) +
a2X(2) + : : : + adX(d) has the normal distribution. This means that X is a Gaussian
vector in the usual sense, and in this case the de�nitions of I-Gaussian and E-Gaussian
random variables coincide. Indeed, by Theorem 5.1.1, if L : CG ! IR is a measurable
homomorphism, then the IR-valued random variable X = L(X) is normal.

In many situations of interest the reasoning that we applied to IRd can be repeated
and both the de�nitions are consistent with the usual interpretation of the Gaussian
distribution. An important example is the vector space C[0; 1] of all continuous functions
on the unit interval.

To some extend, the notion of I-Gaussian variable is more versatile. It has wider
applicability because less algebraic structure is required. Also there is some 
exibility in
the choice of the linear forms; the particular linear combination X+X0 and X�X0 seems
to be quite arbitrary, although it might be a bit simpler for algebraic manipulations,
compare the proofs of Theorem 5.2.2 and Lemma 5.3.2 below. This is quite di�erent from
Section 3.2; it is known, see [73, Chapter 2] that even in the real case not every pair of
linear forms could be used to de�ne an E-Gaussian random variable. Besides, I-Gaussian
variables satisfy the following variant of E-condition. In analogy with Section 3.2, for
any CG-valued random variable X we may say that X is E 0-Gaussian, if 2X has the same
distribution as X1 +X2 +X3 +X4, where X1;X2;X3;X4 are four independent copies of
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X. Any symmetric I-Gaussian random variable is always E 0-Gaussian in the above sense,
compare Problem 5.1. This observation allows to repeat the proof of Theorem 3.2.1 in
the I-Gaussian case, proving the zero-one law. For simplicity, we chose to consider only
random variables with values in a vector space V; notation 2nx makes sense also for
groups { the reader may want to check what goes wrong with the argument below for
non-Abelian groups.

Theorem 5.2.1 If X is a V-valued I-Gaussian random variable and IL is a linear mea-
surable subspace of V, then P (X 2 IL) is either 0, or 1.

Indeed, let X1; : : : ;Xn; : : : be independent copies of X; taken to be also independent from
X. Recurrently we see that X1 + : : : + X4n and 2nX have the same distribution for all
n � 1. Since IL is a linear subspace of V, we have P (X1 + : : : + X4n 2 IL) = P (X 2 IL).
Put Z = X1+X2+X3+X4. Since X1+ : : :+X4n+1 has the same distribution as Z+2nX,
therefore P (Z+2nX 2 IL) = P (X 2 IL) does not depend on n. As in the proof of Theorem
3.2.1, de�ne events An = fZ 62 ILg\fZ+2nX 2 ILg. It is again easily veri�ed that events
fAngn�1 are disjoint; therefore P (An) = P (X 2 IL)P (X 62 IL) = 0. 2

The main result of this section, Theorem 5.2.2, needs additional notation. This no-
tation is natural for linear spaces. Let CG be a group with a translation invariant metric
d(x;y), ie. suppose d(x + z;y + z) = d(x;y) for all x;y; z 2 CG. Such a metric d(�; �) is
uniquely de�ned by the function x 7! D(x) := d(x; 0). Moreover, it is easy to see that
D(x) has the following properties: D(x) = D(�x) and D(x + y) � D(x) + D(y) for all
x;y 2 CG. Indeed, by translation invariance D(�x) = d(�x; 0) = d(0;x) = d(x; 0) and
D(x+ y) = d(x+ y; 0) � d(x+ y;y) + d(y; 0) = D(x) +D(y).

Theorem 5.2.2 Let CG be a group with a measurable translation invariant metric d(:; :).
If X is an I-Gaussian CG-valued random variable, then Eexp �d(X; 0) < 1 for some
� > 0.

More information can be gained in concrete situations. To mention one such example of
great importance, consider a C[0; 1]-valued I-Gaussian random variable, ie. a Gaussian
stochastic process with continuous trajectories. Theorem 5.2.2 says that

Eexp �( sup
0�t�1

jX(t)j) <1

for some � > 0. On the other hand, C[0; 1] is a normed space and another (equivalent)
de�nition applies; Theorem 5.4.1 below implies stronger integrability property

Eexp �( sup
0�t�1

jX(t)j2) <1

for some � > 0. However, even the weaker conclusion of Theorem 5.2.2 implies that
the real random variable sup0�t�1 jX(t)j has moment generating function and that all
its moments are �nite. Lemma 5.3.2 below is another application of the same line of
reasoning.
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Proof of Theorem 5.2.2. Consider a real function N(x) := P (D(X) � x), where as
before D(x) := d(x; 0). We shall show that there is x0 such that

N(2x) � 8(N(x� x0))
2 (5.3)

for each x � x0. By Corollary 1.3.7 this will end the proof.
Let X1;X2 be the independent copies of X. Inequality (5.3) follows from the fact that

event fD(X1) � 2xg implies that either the event fD(X1) � 2xg \ fD(X2) � 2x0g, or
the event fD(X1 +X2) � 2(x� x0)g \ fD(X1 �X2) � 2(x� x0)g occurs.

Indeed, let x0 be such that P (D(X2) � 2x0) � 1
2
. If D(X1) � 2x and D(X2) < 2x0

then D(X1�X2) � D(X1)�D(X2) � 2(x� x0). Therefore using independence and the
trivial bound P (D(X1 +X2) � 2a) � P (D(X1) � a) + P (D(X2) � a), we obtain

P (D(X1) � 2x) � P (D(X1) � 2x)P (D(X2) � 2x0)

+P (D(X1 +X2) � 2(x� x0))P (D(X1 �X2) � 2(x� x0))

� 1

2
N(2x) + 4N2(x� x0)

for each x � x0. 2

More theory of Gaussian distributions on groups can be developed when more struc-
ture is available, although technical di�culties arise; for instance, the Cramer theorem
(Theorem 2.5.2) fails on the torus, see Marcinkiewicz [107]. Series expansion questions
(cf. Theorem 2.2.5 and the remark preceding Theorem 8.1.3) are studied in [24], see also
references therein. One can also study Gaussian distributions on normed vector spaces.
In Section 5.4 below we shall see to what extend this extra structure is helpful, for inte-
grability question; there are deep questions speci�c to this situation, such as what are the
properties of the distribution of the real r. v. kXk; see [55]. Another research subject,
entirely left out from this book, are Gaussian distributions on Lie groups; for more infor-
mation see eg. [153]. Further information about abstract Gaussian random variables, can
be found also in [27, 49, 51, 52].

5.3 Independence of linear forms

The next result generalizes Theorem 5.3.1 to more general linear forms of a given indepen-
dent sequence X1; : : : ; Xn. An even more general result that admits also zero coe�cients
in linear forms, was obtained independently by Darmois [30] and Skitovich [136]. Multi-
dimensional variants of Theorem 5.3.1 are also known, see [73]. Banach space version of
Theorem 5.3.1 was proved in [89].

Theorem 5.3.1 If X1; : : : ; Xn is a sequence of independent random variables such that
the linear forms

Pn
k=1 akXk and

Pn
k=1 bkXk have all non-zero coe�cients and are inde-

pendent, then random variables Xk are normal for all 1 � k � n.

Our proof of Theorem 5.3.1 uses additional information about the existence of moments,
which then allows us to use an argument from [104] (see also [75]). Notice that we don't
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allow for vanishing coe�cients; the latter case is covered by [73, Theorem 3.1.1] but the
proof is considerably more involved1.

We need a suitable generalization of Theorem 5.2.2, which for simplicity we state
here for real valued random variables only. The method of proof seems also to work in
more general context under the assumption of independence of certain nonlinear statistics,
compare [101, Section 5.3.], [73, Section 4.3] and Lemma 7.4.2 below.

Lemma 5.3.2 Let a1; : : : ; an; b1; : : : ; bn be two sequences of non-zero real numbers. If
X1; : : : ; Xn is a sequence of independent random variables such that two linear formsPn

k=1 akXk and
Pn

k=1 bkXk are independent, then random variables Xk; k = 1; 2; : : : ; n
have �nite moments of all orders.

Proof. We shall repeat the idea from the proof of Theorem 5.2.2 with suitable technical
modi�cations. Suppose that 0 < � � jakj; jbkj � K < 1 for k = 1; 2; : : : ; n. For x � 0
denote N(x) := maxj�n P (jXjj � x) and let C = 2nK=�. For 1 � j � n we have trivially

P (jXjj � Cx) � P (jXjj � Cx; jXkj � x 8k 6= j)

+
nX

k 6=j
P (jXjj � x)P (jXkj � x):

Notice that the event Aj := fjXjj � Cxg \ fjXkj � x 8k 6= jg implies that both
jPn

k=1 akXkj � nKx and jPn
k=1 bkXkj � nKx. Indeed,

j
nX

k=1

akXkj � jXjjjajj �
X

k; k 6=j
jakXkj � (�C � nK)x = nKx

and the second inclusion follows analogously. By independence of the linear forms this
shows that

P (jXjj � Cx) � P (j
nX

k=1

akXkj � nKx)P (j
nX

k=1

bkXkj � nKx)

+
nX

k 6=j
P (jXjj � x)P (jXkj � x):

Therefore N(Cx) � P (jPn
k=1 akXkj � nKx)P (jPn

k=1 bkXkj � nKx)+nN2(x). Using the
trivial bound

P (j
nX

k=1

akXkj � nKx) � nN(x);

we get
N(Cx) � 2n2N2(x):

Corollary 1.3.3 now ends the proof. 2

Proof of Theorem 5.3.1. We shall begin with reducing the theorem to the case with
more information about the coe�cients of the linear forms. Namely, we shall reduce the
proof to the case when all ak = 1, and all bk are di�erent.

1The only essential use of non-vanishing coe�cients is made in the proof of Lemma 5.3.2.
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Since all ak are non-zero, normality of Xk is equivalent to normality of akXk; hence
passing to X 0

k = akXk, we may assume that ak = 1; 1 � k � n. Then, as the second step of
the reduction, without loss of generality we may assume that all bj's are di�erent. Indeed,
if, eg. b1 = b2, then substituting X 0

1 = X1 + X2 we get (n � 1) independent random
variables X 0

1; X3; X4; : : : ; Xn which still satisfy the assumptions of Theorem 5.3.1; and
if we manage to prove that X 0

1 is normal, then by Theorem 2.5.2 the original random
variables X1; X2 are normal, too.

The reduction argument allows without loss of generality to assume that ak = 1; 1 �
k � n and 0 6= b1 6= b2 6= : : : 6= bn. In particular, the coe�cients of linear forms satisfy the
assumption of Lemma 5.3.2. Therefore random variables X1; : : : ; Xn have �nite moments
of all orders and linear forms

Pn
k=1Xk and

Pn
k=1 bkXk are independent.

The joint characteristic function of
Pn

k=1Xk;
Pn

k=1 bkXk is

�(t; s) =
nY

k=1

�k(t+ bks);

where �k is the characteristic function of random variable Xk; k = 1; : : : ; n. By indepen-
dence of linear forms �(t; s) factors

�(t; s) = 	1(t)	2(s):

Hence
nY

k=1

�k(t+ bks) = 	1(t)	2(s): (5.4)

Passing to the logarithms Qk = log�k in a neighborhood of 0, from (5.4) we obtain

nX
k=1

Qk(t+ bks) = w1(t) + w2(s): (5.5)

By Lemma 5.3.2 functions Qk and wj have derivatives of all orders, see Theorem 1.5.1.
Consecutive di�erentiation of (5.5) with respect to variable s at s = 0 leads to the following
system of equations

nX
k=1

bkQ
0
k(t) = w02(0);

nX
k=1

b2kQ
00
k(t) = w002(0); (5.6)

...
nX

k=1

bnkQ
(n)
k (t) = w

(n)
2 (0):

Di�erentiation with respect to t gives now

nX
k=1

bkQ
(n)
k (t) = 0;

nX
k=1

b2kQ
(n)
k (t) = 0; (5.7)
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...
nX

k=1

bn�1k Q
(n)
k (t) = 0;

nX
k=1

bnkQ
(n)
k (t) = const

(clearly, the last equation was not di�erentiated).

Equations (5.7) form a system of linear equations (5.7) for unknown values Q
(n)
k (t); 1 �

k � n. Since all bj are non-zero and di�erent, therefore the determinant of the system

is non-zero2. The unique solution Q
(n)
k (t) of the system is Q

(n)
k (t) = constk and does not

depend on t. This means that in a neighborhood of 0 each of the characteristic functions
�k(�) can be written as �k(t) = exp(Pk(t)), where Pk is a polynomial of at most n-th
degree. Theorem 2.5.3 now concludes the proof. 2

Remark: Additional integrability information was used to solve equation (5.5). In general equation

(5.5) has the same solution but the proof is more di�cult, see [73, Section A.4.].

5.4 Strongly Gaussian vectors

Following Fernique, we give yet another de�nition of a Gaussian random variable.
Let V be a linear space and let X be an V-valued random variable. Denote by X0 an

independent copy of X.

De�nition 5.4.1 X is S-Gaussian ( S stays here for strong) if for all real � random
variables cos(�)X0+sin(�)X; and sin(�)X0�cos(�)X are independent and have the same
distribution as X.

Clearly any S-Gaussian random vector is both I-Gaussian and E-Gaussian, which moti-
vates the adjective \strong". Let us quickly show how Theorems 3.2.1 and 5.2.1 can be
obtained for S-Gaussian vectors. The proofs follow Fernique [55].

Theorem 5.4.1 If X is an V -valued S-Gaussian random variable and IL is a linear
measurable subspace of V, then P (X 2 IL) is either equal to 0, or to 1.

Proof. Let X;X0 be independent copies of X. For each 0 < � < �=2, let X� =
cos(�)X+ sin(�)X0, and consider the event

A(�) = f! : X�(!) 2 ILg \ fX�=2��(!) 62 ILg:
Clearly P (A(�)) = P (X 2 IL)P (X 62 IL). Moreover, it is easily seen that fA(�)g0<�<�=2
are pairwise disjoint events. Indeed, if A(�)\A(�) 6= ;, then we would have vectors v;w
such that cos(�)v + sin(�)w 2 IL; cos(�)v + sin(�)w 2 IL, which for � 6= � implies that
v;w 2 IL. This contradicts cos(�=2� �)v + sin(�=2� �)w 62 IL. Therefore P (A(�)) = 0
for each � and in particular P (X 2 IL)P (X 62 IL) = 0, which ends the proof. 2

2This is the Vandermonde determinant and it equals b1 : : : bn
Q

j<i(bj � bi).
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The next result is taken from Fernique [56]. It strengthens considerably the conclusion of
Theorem 3.2.2.

Theorem 5.4.2 Let V be a normed linear space with the measurable norm k�k. If X is an
S-Gaussian V-valued random variable, then there is � > 0 such that Eexp(�kXk2) <1.

Proof. As previously, let N(x) := P (kXk � x). Let X1;X2 be independent copies of X.
It follows from the de�nition that

kX1k; kX2k
and

2�1=2kX1 +X2k; 2�1=2kX1 �X2k
are two pairs of independent copies of kXk. Therefore for any 0 � y � x we have the
following estimate

N(x) = P (kX1k � x; kX2k � y) + P (kX1k � x; kX2k < y)

� N(x)N(y) + P (kX1 +X2k � x� y)P (kX1 �X2k � x� y):

Thus
N(x) � N(x)N(y) +N2(2�1=2(x� y)): (5.8)

Take x0 such that N(x0) � 1
2
. Substituting t =

p
2x in (5.8) we get

N(
p

2t) � 2N2(t� t0) (5.9)

for each t � t0. This is similar to, but more precise than (5.3). Corollary 1.3.6 ends the
proof. 2

5.5 Joint distributions

Suppose X1; : : : ; Xn; n � 1, are (possibly dependent) random variables such that the joint
distribution of n linear forms L1; L2; : : : ; Ln in variables X1; : : : ; Xn is given. Then, except
in the degenerate cases, the joint distribution of (L1; L2; : : : ; Ln) determines uniquely the
joint distribution of (X1; : : : ; Xn). The point to be made here is that if X1; : : : ; Xn are
independent, then even degenerate transformations provide a lot of information. This
phenomenon is responsible for results in Chapters 3 and 5. More general results which
have little to do with the Gaussian distribution are also known. For instance, if X1; X2; X3

are independent, then the joint distribution �(dx; dy) of the pair X1 � X2; X2 � X3 de-
termines the distribution of X1; X2; X3 up to a change of location, provided that the
characteristic function of � does not vanish, see [73, Addendum A.3]. This result was
found independently by a number of authors, see [84, 119, 124]; for related results see also
[86, 151]. Nonlinear functions were analyzed in [87] and the references therein.
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5.6 Problems

Problem 5.1 Let X1; X2; : : : and Y1; Y2; : : : be two sequences of i. i. d. copies of random
variables X; Y respectively. Suppose X; Y have �nite second moments and are such that
U = X + Y and V = X � Y are independent. Observe that in distribution X �= X1 =
1
2
(U + V ) �= 1

2
(X1 + Y1 + X2 � Y2), etc. Use this observation and the Central Limit

Theorem to prove Theorem 5.1.1 under the additional assumption of �niteness of second
moments.

Problem 5.2 Let X and Y be two independent identically distributed random variables
such that U = X + Y and V = X � Y are also independent. Observe that 2X = U + V
and hence the characteristic function �(�) of X satis�es equation �(2t) = �(t)�(t)�(�t).
Use this observation to prove Theorem 5.1.1 under the additional assumption of i. i. d.

Problem 5.3 (Deterministic version of Theorem 5.1.1) Suppose X;U; V are inde-
pendent and X + U;X + V are independent. Show that X is non-random.

The next problem gives a one dimensional converse to Theorem 2.2.9.

Problem 5.4 (From [114]) Let X; Y be (dependent) random variables such that for
some number � 6= 0;�1 both X � �Y and Y are independent and also Y � �X and
X are independent. Show that (X; Y ) has bivariate normal distribution.



Chapter 6

Stability and weak stability

The stability problem is the question of to what extent the conclusion of a theorem is
sensitive to small changes in the assumptions. Such description is, of course, vague until
the questions of how to quantify the departures both from the conclusion and from the
assumption are answered. The latter is to some extent arbitrary; in the characterization
context, typically, stability reasoning depends on the ability to prove that small changes
(measured with respect to some measure of smallness) in assumptions of a given character-
ization theorem result in small departures (measured with respect to one of the distances
of distributions) from the normal distribution.

Below we present only one stability result; more about stability of characterizations
can be found in [73, Chapter 9], see also [102]. In Section 6.2 we also give two results that
establish what one may call weak stability. Namely, we establish that moderate changes
in assumptions still preserve some properties of the normal distribution. Theorem 6.2.2
below is the only result of this chapter used later on.

6.1 Coe�cients of dependence

In this section we introduce a class of measures of departure from independence, which we
shall call coe�cients of dependence. There is no natural measure of dependence between
random variables; those de�ned below have been used to de�ne strong mixing conditions
in limit theorems; for the latter the reader is referred to [65]; see also [10, Chapter 4].

To make the de�nition look less arbitrary, at �rst we consider an in�nite parametric
family of measures of dependence. For a pair of �-�elds F ;G let

�r;s(F ;G) = supfjP (A \ B)� P (A)P (B)j
P (A)rP (B)s

: A 2 F ; B 2 G non-trivialg

with the range of parameters 0 � r � 1; 0 � s � 1; r + s � 1. Clearly, �r;s is a
number between 0 and 1. It is obvious that �r;s = 0 if and only if the �-�elds F ;G
are independent. Therefore one could use each of the coe�cients �r;s as a measure of
departure from independence.

Fortunately, among the in�nite number of coe�cients of dependence thus introduced,
there are just four really distinct, namely �0;0; �0;1; �1;0, and �1=2;1=2. By this we mean
that the convergence to zero of �r;s (when the �-�elds F ;G vary) is equivalent to the

81
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convergence to 0 of one of the above four coe�cients. And since �0;1 and �1;0 are mirror
images of each other, we are actually left with three coe�cients only.

The formal statement of this equivalence takes the form of the following inequalities.

Proposition 6.1.1 If r + s < 1, then �r;s � (�0;0)
1�r�s.

If r + s = 1 and 0 < r � 1
2
� s < 1, then �r;s � (�1=2;1=2)

2r.

Proof. The �rst inequality follows from the fact that

jP (A \ B)� P (A)P (B)j
P (A)rP (B)s

= jP (A \ B)� P (A)P (B)j1�r�sjP (BjA)� P (B)jrjP (AjB)� P (A)js
� jP (A \ B)� P (A)P (B)j1�r�s:

The second one is a consequence of

jP (A \ B)� P (A)P (B)j
P (A)rP (B)s

=

 jP (A \ B)� P (A)P (B)j
P (A)1=2P (B)1=2

!2r

jP (AjB)� P (A)js�r � (�1=2;1=2)
2r

2

Coe�cients �0;0 and �0;1; �1;0 are the basis for the de�nition of classes of stationary se-
quences called in the limit theorems literature strong-mixing and uniform strong mixing
(called also �-mixing); �1=2;1=2 is equivalent to the maximal correlation coe�cient (6.3),
which is the basis of the so called �-mixing condition. Monograph [39] gives recent expo-
sition and relevant references; see also [42, pp. 380{385].

There is also a whole continuous spectrum of non-equivalent coe�cients �r;s when
r + s > 1. As those coe�cients may attain value 1, they are less frequently used; one
notable exception is �1;1, which is the basis of the so called  -mixing condition and occurs
occasionally in the assumptions of some limit theorems. Condition equivalent to �1;1 <1
and conditions related to �r;s with r+s > 1 are also employed in large deviation theorems,
see [34, condition (U) and Chapter 5].

The following bounds1 for the covariances between random variables in Lp(F) and in
Lq(F) will be used later on.

Proposition 6.1.2 If X is F-measurable with p-th moment �nite (1 � p � 1) and Y
is G-measurable with q-th moment �nite (1 � q � 1 ) and 1=p+ 1=q � 1, then

jEXY � EXEY j (6.1)

� 4(�0;0)
1�1=p�1=q(�1;0)

1=p(�0;1)
1=qkXkpkY kq

where kXkp = (EjXjp)1=p if p <1 and kXk1 = ess supjXj.
1Similar results are also known for �0;0 and �1=2;1=2. The latter is more di�cult and is due to

R. Bradley, see [13, Theorem 2.2 ] and the references therein.
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Proof. We shall prove the result for p = 1; q = 1 and p = q = 1 only; these are the
only cases we shall actually need; for the general case, see eg. [46, page 347 Corollary
2.5] or [65].

Let M = ess supjY j. Switching the order of integration (ie. by Fubini's theorem) we
get, see Problem 1.1,

jEXY � EXEY j
= j R1�1 RM�M (P (X � t; Y � s)� P (X � t)P (Y � s)) dt dsj
� R1

�1
RM
�M jP (X � t; Y � s)� P (X � t)P (Y � s)j dt ds: (6.2)

Since jP (X � t; Y � s)�P (X � t)P (Y � s)j � �1;0P (X � t) (which is good for positive
t) and jP (X � t; Y � s) � P (X � t)P (Y � s)j = jP (X < t; Y � s) � P (X < t)P (Y �
s)j � �1;0P (X � t) (which works well for negative t), inequality (6.2) implies

jEXY � EXEY j � �1;0

Z 1

0

Z M

�M
P (X � t) dt ds

+�1;0

Z 1

0

Z M

�M
P (X � �t) dt ds = 2�1;0EjXj kY k1:

Similar argument using jP (X � t; Y � s)� P (X � t)P (Y � s)j � �0;0 gives

jEXY � EXEY j � 4�0;0kXk1kY k1:
2

6.1.1 Normal case

Here we review without proofs the relations between the dependence coe�cients in the
multivariate normal case. Ideas behind the proofs can be found in the solutions to the
Problems 6.2, 6.4, and 6.5.

The �rst result points points out that the coe�cients �0;1 and �1;0 are of little interest
in the normal case.

Theorem 6.1.3 Suppose (X;Y) 2 IRd1+d2 are jointly normal and �0;1(X;Y) < 1. Then
X;Y are independent.

Denote by � the maximal correlation coe�cient

� = supfcorr(f(X)g(Y)) : f(X); g(Y) 2 L2g: (6.3)

The following estimate due to Kolmogorov & Rozanov [83] shows that in the normal case
the maximal correlation coe�cient (6.3) can be estimated by �0;0. In particular, in the
normal case we have

�1=2;1=2 � 2��0;0:

Theorem 6.1.4 Suppose X;Y 2 IRd1+d2 are jointly normal. Then

corr(f(X); g(Y)) � 2��0;0(X;Y)

for all square integrable f; g.
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The next inequality is known as the so called Nelson's hypercontractive estimate [116]
and is of importance in mathematical physics. It is also known in general that inequality
(6.4) implies a bound for maximal correlation, see [34, Lemma 5.5.11].

Theorem 6.1.5 Suppose (X;Y) 2 IRd1+d2 are jointly normal. Then

Ef(X)g(Y) � kf(X)kpkg(Y )kp (6.4)

for all p-integrable f; g, provided p � 1 + �, where � is the maximal correlation coe�cient
(6.3).

6.2 Weak stability

A weak version of the stability problem may be described as allowing relatively large
departures from the assumptions of a given theorem. In return, only a selected part of
the conclusion is to be preserved. In this section the part of the characterization conclusion
that we want to preserve is integrability. This problem is of its own interest. Integrability
results are often useful as a �rst step in some proofs, see the proof of Theorem 5.3.1, or
the proof of Theorem 7.5.1 below.

As a simple example of weak stability we �rst consider Theorem 5.1.1, which says that
for independent r. v. X; Y we have �1;0(X + Y;X � Y ) = 0 only in the normal case.
We shall show that if the coe�cient of dependence �1;0(X + Y;X � Y ) is small, then the
distribution of X still has some �nite moments. The method of proof is an adaptation of
the proof of Theorem 5.2.2.

Proposition 6.2.1 Suppose X; Y are independent random variables such that random
variables X + Y and X � Y satisfy �1;0(X + Y;X � Y ) < 1

2
. Then X and Y have �nite

moments EjXj� <1 for � < � log2(2�1;0).

Proof. Let N(x) = maxfP (jXj � x); P (jY j � x)g. Put � = �1;0. We shall show that
for each � > 2�, there is x0 > 0 such that

N(2x) � �N(x� x0) (6.5)

for all x � x0.
Inequality (6.5) follows from the fact that the event fjXj � 2xg implies that either

fjXj � 2xg \ fjY j � 2yg or fjX + Y j � 2(x � y)g \ fjX � Y j � 2(x � y)g holds
(make a picture). Therefore, using the independence of X; Y , the de�nition of � =
�1;0(X + Y;X � Y ) and trivial bound P (jX + Y j � a) � P (jXj � 1

2
a) + P (jY j � 1

2
a) we

obtain
P (jXj � 2x) � P (jXj � 2x)P (jY j � 2y)

+P (jX + Y j � 2(x� y))(�+ P (jX � Y j � 2(x� y)))

� N(2x)N(2y) + 2�N(x� y) + 4N2(x� y):

For any � > 0 pick y so that N(2y) � �=(1 + �). This gives N(2x) � (1 + �)2�N(x� y) +
4(1 + �)N2(x� y) for all x > y. Now pick x0 � y such that N(x� y) � ��=(1 + �) for all
x > y. Then

N(2x) � 2(1 + 2�)�N(x� y) � 2(1 + 3�)�N(x� x0)
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for all x � x0. Since � > 0 is arbitrary, this ends the proof of (6.5).
By Theorem 1.3.1 inequality (6.5) concludes the proof, eg. by formula (1.2).
2

In Chapter 7 we shall consider assumptions about conditional moments. In Section 7.5
we need the integrability result which we state below. The assumptions are motivated
by the fact that a pair X; Y with the bivariate normal distribution has linear regressions
EfXjY g = a0 + a1Y and EfY jXg = b0 + b1X, see (2.8); moreover, since X � (a0 +
a1Y ) and Y are independent (and similarly Y � (b0 + b1X) and X are independent), see
Theorem 2.2.9, therefore the conditional variances V ar(XjY ) and V ar(Y jX) are non-
random. These two properties do not characterize the normal distribution, see Problem
7.7. However, the assumption that regressions are linear and conditional variances are
constant might be considered as the departure from the assumptions of Theorem 5.1.1
on the one hand and from the assumptions of Theorem 7.5.1 on the other. The following
somehow surprising fact comes from [20]. For similar implications see also [19] and [22,
Theorem 2.2].

Theorem 6.2.2 Let X; Y be random variables with �nite second moments and suppose
that

EfjX � (a0 + a1Y )j2jY g � const (6.6)

and
EfjY � (b0 + b1X)j2jXg � const (6.7)

for some real numbers a0; a1; b0; b1 such that a1b1 6= 0; 1;�1. Then X; Y have �nite
moments of all orders.

In the proof we use the conditional version of Chebyshev's inequality stated as Problem
1.9.

Lemma 6.2.3 If F is a �-�eld and EjXj <1, then

P (jXj > tjF) � EfjXj jFg=t

almost surely.

Proof. Fix t > 0 and let A 2 F . By the de�nition of the conditional expectationZ
A
P (jXj > tjF) dP = EfIAIjXj>tg � EfjXj=tIAIjXj>tg � t�1EfjXjIAg:

This end the proof by Lemma 1.4.2. 2

Proof of Theorem 6.2.2. First let us observe that without losing generality we may
assume a0 = b0 = 0. Indeed, by triangle inequality (EfjX�a1Y j2jY g)1=2 � ja0j+(EfjX�
(a0 + a1Y )j2jY g)1=2 � const; and the analogous bound takes care of (6.7). Furthermore,
by passing to �X or �Y if necessary, we may assume a = a1 > 0 and b = b1 > 0. Let
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N(x) = P (jXj � x) +P (jY j � x). We shall show that there are constants K;C > 0 such
that

N(Kx) � CN(x)=x2: (6.8)

This will end the proof by Corollary 1.3.4.
To prove (6.8) we shall proceed as in the proof of Theorem 5.2.2. Namely, the event

fjXj � Kxg, where x > 0 is �xed and K will be chosen later, can be decomposed into
the sum of two disjoint events fjXj � Kxg \ fjY j � xg and fjXj � Kxg \ fjY j < xg.
Therefore trivially we have

P (jXj � Kx) � P (jXj � x; jY j � x) (6.9)

+P (jXj � Kx; jY j < x) = P1 + P2 (say) :

For K large enough the second term on the right hand side of (6.9) can be estimated by
conditional Chebyshev's inequality from Lemma 6.2.3. Using trivial estimate jY � bXj �
bjXj � jY j we get

P2 � P (jY � bXj � (Kb� 1)x; jXj � Kx) (6.10)

=
R
jXj�Kx P (jY � bXj � (Kb� 1)xjX) dP � constN(Kx)=x2:

To estimate P1 in (6.9), observe that the event fjXj � xg implies that either jX � aY j �
Cx, or jY � bXj � Cx, where C = j1� abj=(1 + a). Indeed, suppose both are not true,
ie. jY � bXj < Cx and jX � aY j < Cx. Then we obtain trivially

j1� abjjXj = jX � abXj � jX � aY j+ ajY � bXj < C(1 + a)x:

By our choice of C, this contradicts jXj � x.
Using the above observation and conditional Chebyshev's inequality we obtain

P1 � P (jX � aY j � Cx; jY j � x)

+P (jY � bXj � Cx; jXj � x) � C1N(x)=x2:

This, together with (6.9) and (6.10) implies P (jXj � Kx) � CN(x)=x2 for anyK > 1=b
with constant C depending on K but not on x. Similarly P (jY j � Kx) � CN(x)=x2 for
any K > 1=a, which proves (6.8). 2

6.3 Stability

In this section we shall use the coe�cient �0;0 to analyze the stability of a variant2 of
Theorem 5.1.1 which is based on the approach sketched in Problem 5.2.

Theorem 6.3.1 Suppose X; Y are i. i. d. with the cumulative distribution function F (�).
Assume that EX = 0; EX2 = 1 and EjXj3 = K <1 and let �(�) denote the cumulative
distribution function of the standard normal distribution. If �0;0(X+Y ;X�Y ) < �, then

sup
x
jF (x)� �(x)j � C(K)�1=3: (6.11)

2Compare [112]. The proof below is taken from [73, section 9.2].
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The following corollary is a consequence of Theorem 6.3.1 and Proposition 6.2.1.

Corollary 6.3.2 Suppose X; Y are i. i. d. with the cumulative distribution function F (�).
Assume that EX = 0; EX2 = 1. If �1;0(X + Y ;X � Y ) < �, then there is C < 1 such
that (6.11) holds.

Indeed, by Proposition 6.2.1 the third moment exists if � < e�3=2; choosing large enough
C inequality (6.11) holds true trivially for � � e�3=2.

The next lemma gives the estimate of the left hand side of (6.11) in terms of charac-
teristic functions. Inequality (6.12) is called smoothing inequality { a name well motivated
by the method of proof; it is due to Esseen [45].

Lemma 6.3.3 Suppose F;G are cumulative distribution functions with the characteristic
functions �;  respectively. If G is di�erentiable, then for all T > 0

sup
x
jF (x)�G(x)j � 1

�

Z T

�T
j�(t)�  (t)j dt=t+

12

�T
sup
x
jG0(x)j: (6.12)

Proof. By the approximation argument, it su�ces to prove (6.12) for F;G di�erentiable
and with integrable characteristic functions only. Indeed, one can approximate F uni-
formly by the cumulative distribution functions F�, obtained by convoluting F with the
normal N(0; �) distribution, compare Lemma 5.1.3. The approximation, clearly, does not
a�ect (6.12). That is, if (6.12) holds true for the approximants, then it holds true for the
actual cdf's as well.

Let f; g be the densities of F and G respectively. The inversion formula for character-
istic functions gives

f(x) =
1

2�

Z 1

�1
e�itx�(t) dt;

g(x) =
1

2�

Z 1

�1
e�itx (t) dt:

From this we obtain

F (x)�G(x) =
i

2�

Z 1

�1
e�itx

�(t)�  (t)

t
dt:

The latter formula can be checked, for instance, by verifying that both sides have the
same derivative, so that they may di�er by a constant only. The constant has to be 0,
because the left hand side has limit 0 at 1 (a property of cdf) and the right hand side
has limit 0 at 1 (eg. because we convoluted with the normal distribution while doing
our approximation step; another way of seeing what is the asymptotic at 1 of the right
hand side is to use the Riemann-Lebesgue theorem, see eg. [9, p. 354 Theorem 26.1]).

This clearly implies

sup
x
jF (x)�G(x)j � 1

2�

Z 1

�1
j�(t)�  (t)j dt=t: (6.13)

This inequality, while resembling (6.12), is not good enough; it is not preserved by our ap-
proximation procedure, and the right hand side is useless when the density of F doesn't
exist. Nevertheless (6.13) would do, if one only knew that the characteristic functions
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vanish outside of a �nite interval. To achieve this, one needs to consider one more convo-
lution approximation, this time we shall use density hT (x) = 1

�T
1�cos(Tx)

x2
. We shall need

the fact that the characteristic function �T (t) of hT (x) vanishes for jtj � T (and we shall
not need the explicit formula �T (t) = 1�jtj=T for jtj � T , cf. Example 1.5.1). Denote by
FT and GT the cumulative distribution functions corresponding to convolutions f ?hT and
g?hT respectively. The corresponding characteristic functions are �(t)�T (t) and  (t)�T (t)
respectively and both vanish for jtj � T . Therefore, inequality (6.13) applied to FT and
GT gives

supx jFT (x)�GT (x)j (6.14)

� 1
2�

R T
�T j(�(t)�  (t))�T (t)j dt=t � 1

2�

Z T

�T
j�(t)�  (t)j dt=t:

It remains to verify that supx jFT (x)�GT (x)j does not di�er too much from supx jF (x)�
G(x)j. Namely, we shall show that

sup
x
jF (x)�G(x)j � 2 sup

x
jFT (x)�GT (x)j+ 12

�T
sup
x
jG0(x)j; (6.15)

which together with (6.14) will end the proof of (6.12). To verify (6.15), put M =
supx jG0(x)j and pick x0 such that

sup
x
jF (x)�G(x)j = jF (x0)�G(x0)j:

Such x0 can be found, because F and G are continuous and F (x) � G(x) vanishes as
x ! �1. Suppose supx jF (x)�G(x)j = G(x0)� F (x0). (The other case: supx jF (x)�
G(x)j = F (x0)�G(x0) is handled similarly, and is done explicitly in [54, XVI. x3]). Since
F is non-decreasing, and the rate of growth of G is bounded by M , for all s � 0 we get

G(x0 � s)� F (x0 � s) � G(x0)� F (x0)� sM:

Now put a = G(x0)�F (x0)
2M

; t = x0 + a; x = a� s. Then for all jxj � a we get

G(t� x)� F (t� x) � 1

2
(G(x0)� F (x0)) +Mx: (6.16)

Notice that

GT (t)� FT (t) =
1

�T

Z 1

�1
(F (t� x)�G(t� x))(1� cos Tx)x�2 dx

� 1

�T

Z a

�a
(F (t� x)�G(t� x))(1� cosTx)x�2 dx

� sup
x
jF (x)�G(x)j 2

�T

Z 1

a
y�2 dy:

Clearly,

sup
x
jF (x)�G(x)j 2

�T

Z 1

a
y�2 dy = (G(x0)� F (x0))

2

�T
a�1 = 4M=(�T )



6.3. STABILITY 89

by our choice of a. On the other hand (6.16) gives

1

�T

Z a

�a
(F (t� x)�G(t� x))(1� cosTx)x�2 dx

� 1

�T

Z a

�a
Mx(1� cos Tx)x�2 dx

+
1

2
(G(x0)� F (x0))(1� 2

�T

Z 1

a
y�2 dy)

=
1

2
(G(x0)� F (x0))� 2M=(�T );

here we used the fact that the �rst integral vanishes by symmetry. Therefore G(x0) �
F (x0) � 2(GT (x0 + a)� FT (x0 + a)) + 12M=(�T ), which clearly implies (6.15). 2

Proof of Theorem 6.3.1. Clearly only small � > 0 are of interest. Throughout the proof
C will denote a constant depending on K only, not always the same at each occurrence.
Let �(:) be the characteristic function of X. We have Eexp it(X + Y ) exp it(X � Y ) =
�(2t) and Eexp it(X + Y )Eexp it(X � Y ) = (�(t))3�(�t). Therefore by a complex valued
variant of (6.1) with p = q = 1, see Problem 6.1, we have

j�(2t)� (�(t))3�(�t)j � 16�: (6.17)

We shall use (6.12) with T = ��1=3 to show that (6.17) implies (6.11). To this end we
need only to establish that for some C > 0

1

�T

Z T

�T
j�(t)� e�

1
2
t2 j=t dt � C�1=3: (6.18)

Put h(t) = �(t)� e�
1
2
t2 . Since EX = 0; EX2 = 1 and EjXj3 < 1, we can choose � > 0

small enough so that
jh(t)j � C0jtj3 (6.19)

for all jtj � �1=3. From (6.17) we see that

jh(2t)j = j�(2t)� exp(�2t2)j � 16�+ j(�(t))3�(�t)� exp(�2t2)j:

Since �(t) = exp(�1
2
t2) + h(t), therefore we get

jh(2t)j � 16�+
3X

r=0

 
4
r

!
exp(�1

2
rt2)jh(t)j4�r: (6.20)

Put tn = �1=32n, where n = 0; 1; 2; : : : ; [1� 2
3

log2(�)], and let hn = maxfjh(t)j : tn�1 � t �
tng. Then (6.20) implies

hn+1 � 16�+ 4 exp(�1

2
t2n)hn(1 +

3

2
hn + h2n) + h4n: (6.21)
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Claim 6.3.1 Relation (6.21) implies that for all su�ciently small � > 0 we have

hn � 2(C0 + 44)�4n exp(�t204n=6); (6.22)

h4n � �; (6.23)

where 0 � n � [1� 2
3

log2(�)], and C0 is a constant from (6.19).

Claim 6.3.1 now ends the proof. Indeed,

Z T

�T
j�(t)� e�

1
2
t2 j=t dt = 2

Z t0

0
jh(t)j=t dt+ 2

nX
i=1

Z ti

ti�1

jh(t)j=t dt

� 2C0� + 2
nX
i=1

hi=ti�1
Z ti

ti�1

1 dt � 2C0� + 4
nX
i=1

(C0 + 44)�4ne�t
2
04

n=6

� 2C0�+ 24(C0 + 44)
�

t20

Z 1

0
e�x dx � C�1=3:

2

Proof of Claim 6.3.1. We shall prove (6.23) by induction, and (6.22) will be established

in the induction step. By (6.19), inequality (6.23) is true for n = 1, provided � < C
�4=3
0 .

Suppose m � 0 is such that (6.23) holds for all n � m. Since 3
2
hn + h2n < 3�1=4 = �, thus

(6.21) implies

hm+1 � 32�+ 4 exp(�1

2
t2n)hm(1 + �)

� 32�
n�1X
j=1

4j(1 + �)j exp(�1

2

jX
k=1

t2n�k) + 4n(1 + �)n exp(�1

2

nX
k=1

t2n�k)h1

= 32�
n�1X
j=1

4j(1 + �)j exp(�t20(4n � 4n�j)=6) + 4n(1 + d)n exp(�t20(4n � 1)=6)h1:

Therefore
hm+1 � (h1 + 44�)(1 + �)n4ne�t

2
04

n=6: (6.24)

Since
(1 + �)n � (1 + 3�1=4)2�

2
3
log2(�) � 2

and

4ne�t
2
04

n=6 � 4��4=3 exp(�1

6
��2=3) � ��2=3

for all � > 0 small enough, therefore, taking (6.19) into account, we get hm+1 � 2(44 +
C0)�

1=3 � �1=4, provided � > 0 is small enough. This proves (6.23) by induction. Inequal-
ity (6.22) follows now from (6.24). 2
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6.4 Problems

Problem 6.1 Show that for complex valued random variables X; Y

jEXY � EXEY j � 16�0;0kXk1kY k1:

(The constant is not sharp.)

Problem 6.2 Suppose (X; Y ) 2 IR2 are jointly normal and �0;1(X; Y ) < 1. Show that
X; Y are independent.

Problem 6.3 Suppose (X; Y ) 2 IR2 are jointly normal with correlation coe�cient �.
Show that Ef(X)g(Y ) � kf(X)kpkg(Y )kp for all p-integrable f(X); g(Y ), provided p �
1 + j�j.
Hint: Use the explicit expression for conditional density and H�older and Jensen inequal-
ities.

Problem 6.4 Suppose (X; Y ) 2 IR2 are jointly normal with correlation coe�cient �.
Show that

corr(f(X); g(Y )) � j�j
for all square integrable f(X), g(Y ).

Problem 6.5 Suppose X; Y 2 IR2 are jointly normal. Show that

corr(f(X); g(Y )) � 2��0;0(X; Y )

for all square integrable f(X); g(Y ).
Hint: See Problem 2.3.

Problem 6.6 Let X; Y be random variables with �nite moments of order � � 1 and
suppose that

EfjX � aY j�jY g � const;

EfjY � bXj�jXg � const

for some real numbers a; b such that ab 6= 0; 1;�1. Show that X and Y have �nite moments
of all orders.

Problem 6.7 Show that the conclusion of Theorem 6.2.2 can be strengthened to
EjXjjXj <1.
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Chapter 7

Conditional moments

In this chapter we shall use assumptions that mimic the behavior of conditional moments
that would have followed from independence. Strictly speaking, corresponding character-
ization results do not generalize the theorems that assume independence, since weakening
of independence is compensated by the assumption that the moments of appropriate or-
der exist. However, besides just complementing the results of the previous chapters, the
theory also has its own merits. Reference [37] points out the importance of description of
probability distributions in terms of conditional distributions in statistical physics. From
the mathematical point of view, the main advantage of conditional moments is that they
are \less rigid" than the distribution assumptions. In particular, conditional moments
lead to characterizations of some non-Gaussian distributions, see Problems 7.8 and 7.9.

The most natural conditional moment to use is, of course, the conditional expecta-
tion EfZjFg itself. As in Section 4.1, we shall also use absolute conditional moments
EfjZj�jFg, where � is a positive real number. Here we concentrate on � = 2, which
corresponds to the conditional variance. Recall that the conditional variance of a square-
integrable random variable Z is de�ned by the formula

V ar(ZjF) = Ef(Z � EfZjFg)2jFg = EfZ2jFg � (EfZjFg)2:

7.1 Finite sequences

We begin with a simple result related to Theorem 5.1.1, compare [73, Theorem 5.3.2]; cf.
also Problem 7.1 below.

Theorem 7.1.1 If X1; X2 are independent identically distributed random variables with
�nite �rst moments, and for some � 6= 0;�1

EfX1 � �X2j�X1 +X2g = 0; (7.1)

then X1 and X2 are normal.

Proof. Let � be a characteristic function of X1. The joint characteristic function of the
pair X1 � �X2; �X1 +X2 has the form �(t+ �s)�(s� �t). Hence, by Theorem 1.5.3,

�0(�s)�(s) = ��(�s)�0(s):

93
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Integrating this equation we obtain log�(�s) = �2 log�(s) in some neighborhood of 0.
If �2 6= 1, this implies that �(��n) = exp(C��2n) for some complex constant C. This

by Corollary 2.3.4 concludes the proof in each of the cases 0 < �2 < 1 and �2 > 1 (in
each of the cases one needs to choose the correct sign in the exponent of ��n). 2

Note that aside from the integrability condition, Theorem 7.1.1 resembles Theorem 5.1.1:
clearly (7.1) follows if we assume that X1��X2 and �X1+X2 are independent. There are
however two major di�erences: parameter � is not allowed to take values �1, and X1; X2

are assumed to have equal distributions. We shall improve upon both in our Theorem
7.1.2 below. But we will use second order conditional moments, too.

The following result is a special but important case of a more di�cult result [73,
Theorem 5.7.1]; i. i. d. variant of the latter is given as Theorem 7.2.1 below.

Theorem 7.1.2 Suppose X1; X2 are independent random variables with �nite second mo-
ments such that

EfX1 �X2jX1 +X2g = 0; (7.2)

Ef(X1 �X2)
2jX1 +X2g = const; (7.3)

where const is a deterministic number. Then X1 and X2 are normal.

Proof. Without loss of generality, we may assume that X; Y are standardized random
variables, ie. EX = EY = 0; EX2 = EY 2 = 1 (the degenerate case is trivial). The joint
characteristic function �(t; s) of the pair X+Y;X�Y equals �X(t+s)�Y (t�s), where �X
and �Y are the characteristic functions of X and Y respectively. Therefore by Theorem
1.5.3 condition (7.2) implies �0X(s)�Y (s) = �X(s)�0Y (s). This in turn gives �Y (s) = �X(s)
for all real s close enough to 0.

Condition (7.3) by Theorem 1.5.3 after some arithmetics yields

�00X(s)�Y (s) + �X(s)�00Y (s)� 2�0X(s)�0Y (s) + 2�X(s)�Y (s) = 0:

This leads to the following di�erential equation for unknown function �(s) = �Y (s) =
�X(s)

�00=�� (�0=�)2 + 1 = 0; (7.4)

valid in some neighborhood of 0. The solution of (7.4) with initial conditions �00(0) =
�1; �0(0) = 0 is given by �(s) = exp(�1

2
s2), valid in some neighborhood of 0. By Corol-

lary 2.3.4 this ends the proof of the theorem. 2

Remark: Theorem 7.1.2 also has Poisson, gamma, binomial and negative binomial distribution variants,

see Problems 7.8 and 7.9.

Remark: The proof of Theorem 7.1.2 shows that for independent random variables condition (7.2)

implies their characteristic functions are equal in a neighborhood of 0. Diaconis & Ylvisaker [36, Remark

1] give an example that the variables do not have to be equidistributed. (They also point out the relevance

of this to statistics.)
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7.2 Extension of Theorem 7.1.2

The next result is motivated by Theorem 5.3.1. Theorem 7.2.1 holds true also for non-
identically distributed random variables, see eg. [73, Theorem 5.7.1] and is due to Laha
[93, Corollary 4.1]; see also [101].

Theorem 7.2.1 Let X1; : : : ; Xn be a sequence of square integrable independent identically
distributed random variables and let a1; a2; : : : ; an, and b1; b2; : : : ; bn be given real numbers.
De�ne random variables X; Y by X =

Pn
k=1 akXk; Y =

Pn
k=1 bkXk and suppose that for

some constants �; � we have
EfXjY g = �Y + � (7.5)

and
V ar(XjY ) = const; (7.6)

where const is a deterministic number. If for some 1 � k � n we have ak� �bk 6= 0, then
X1 is Gaussian.

Lemma 7.2.2 Under the assumptions of Theorem 7.2.1, all moments of random variable
X1 are �nite.

Indeed, consider N(x) = P (jX1j � x). Clearly without loss of generality we may assume
a1b1 6= 0. Event fjX1j � Cxg, where C is a (large) constant to be chosen later, can be
decomposed into the sum of disjoint events

A = fjX1j � Cxg \
n[
j=2

fjXjj � xg

and

B = fjX1j � Cxg \
n\
j=2

fjXjj < xg:

Since P (A) � (n� 1)P (jX1j � Cx; jX2j � x), therefore P (jX1j � Cx) � P (A) + P (B) �
nN2(x) + P (B).

Clearly, if jX1j � Cx and all other jXjj < x, then jP akXk��P bkXkj � (Cja1��b1j�P jak � �bkj)x and similarly jP bkXkj � (Cjb1j �P jbjj)x. Hence we can �nd constants
C1; C2 > 0 such that

P (B) � P (jX � �Y j > C1x; jY j > C2x):

Using conditional version of Chebyshev's inequality and (7.6) we get

N(Cx) � nN2(x) + C3N(C2x)=x2: (7.7)

This implies that moments of all orders are �nite, see Corollary 1.3.4. Indeed, since
N(x) � C=x2, inequality (7.7) implies that there are K <1 and � > 0 such that

N(x) � KN(�x)=x2

for all large enough x.
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Proof of Theorem 7.2.1. Without loss of generality, we shall assume that EX1 = 0
and V ar(X1) = 1. Then � = 0. Let Q(t) be the logarithm of the characteristic function
of X1, de�ned in some neighborhood of 0. Equation (7.5) and Theorem 1.5.3 implyX

akQ
0(tbk) = �

X
bkQ

0(tbk): (7.8)

Similarly (7.6) implies X
a2kQ

00(tbk) = ��2 + �2
X

b2kQ
00(tbk): (7.9)

Di�erentiating (7.8) we get X
akbkQ

00(tbk) = �
X

b2kQ
00(tbk);

which multiplied by 2� and subtracted from (7.9) gives after some calculationX
(ak � �bk)

2Q00(tbk) = ��2: (7.10)

Lemma 7.2.2 shows that all moments of X exist. Therefore, di�erentiating (7.10) we
obtain X

(ak � �bk)
2b2rk Q

(2r+2)(0) = 0 (7.11)

for all r � 1.
This shows that Q(2r+2)(0) = 0 for all r � 1. The characteristic function � of random

variable X1 � X2 satis�es �(t) = exp(2
P

r t
2rQ(2r)(0)=(2r)!); hence by Theorem 2.5.1 it

corresponds to the normal distribution. By Theorem 2.5.2, X1 is normal. 2

Remark: Lemma 7.2.2 can be easily extended to non-identically distributed random variables.

7.3 Application: the Central Limit Theorem

In this section we shall show how the characterization of the normal distribution might be
used to prove the Central Limit Theorem. The following is closely related to [10, Theorem
19.4].

Theorem 7.3.1 Suppose that pairs (Xn; Yn) converge in distribution to independent r. v.
(X; Y ). Assume that

(a) fX2
ng and fY 2

n g are uniformly integrable;

(b) EfXnjXn + Yng � 2�1=2(Xn + Yn) ! 0 in L1 as n!1;

(c)
V ar(XnjXn + Yn) ! 1=2 in L1 as n!1: (7.12)

Then X is normal.

Our starting point is the following variant of Theorem 7.2.1.



7.3. CENTRAL LIMIT THEOREM 97

Lemma 7.3.2 Suppose X; Y are nondegenerate (ie. EX2EY 2 6= 0 ) centered indepen-
dent random variables. If there are constants c;K such that

EfXjX + Y g = c(X + Y ) (7.13)

and
V ar(XjX + Y ) = K; (7.14)

then X and Y are normal.

Proof. Let QX ; QY denote the logarithms of the characteristic functions of X; Y respec-
tively. By Theorem 1.5.3 (see also Problem 1.19, with Q(t; s) = QX(t + s) + QY (s)),
equation (7.13) implies

(1� c)Q0
X(s) = cQ0

Y (s) (7.15)

for all s close enough to 0.
Di�erentiating (7.15) we see that c = 0 implies EX2 = 0; similarly, c = 1 implies

Y = 0. Therefore, without loss of generality we may assume c(1 � c) 6= 0 and QX(s) =
C1 + C2QY (s) with C2 = c=(1� c).

From (7.14) we get

Q00
X(s) = �K + c2(Q00

X(s) +Q00
Y (s));

which together with (7.15) implies Q00
Y (s) = const. 2

Proof of Theorem 7.3.1. By uniform integrability, the limiting r. v. X; Y satisfy the
assumption of Lemma 7.3.2. This can be easily seen from Theorem 1.5.3 and (1.18), see
also Problem 1.21. Therefore the conclusion follows. 2

7.3.1 CLT for i. i. d. sums

Here is the simplest application of Theorem 7.3.1.

Theorem 7.3.3 Suppose �j are centered i. i. d. with E�2 = 1. Put Sn =
Pn

j=1 �j. Then
1p
n
Sn is asymptotically N(0,1) as n!1.

Proof. We shall show that every convergent in distribution subsequence converges to
N(0; 1). Having bounded variances, pairs ( 1p

n
Sn;

1p
n
S2n) are tight and one can select a

subsequence nk such that both components converge (jointly) in distribution. We shall
apply Theorem 7.3.1 to Xk = 1p

nk
Snk ; Xk + Yk = 1p

nk
S2nk .

(a) The i. i. d. assumption implies that 1
n
S2
n are uniformly integrable, cf. Proposition

1.7.1. The fact that the limiting variables (X; Y ) are independent is obvious as X; Y arise
from sums over disjoint blocks.

(b) EfSnjS2ng = 1
2
S2n by symmetry, see Problem 1.11.

(c) To verify (7.12) notice that S2
n =

Pn
j=1 �

2
j +

P
k 6=j �j�k. By symmetry

Ef�21 jS2n;
2nX
j=1

�2jg
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=
1

2n

2nX
j=1

�2j

and
Ef�1�2jS2n;

X
k 6=j; k;j�2n

�j�kg

=
1

2n(2n� 1)

X
k 6=j; k;j�2n

�j�k =
1

2n(2n� 1)
(S2

2n �
2nX
j=1

�2j ):

Therefore

V ar(SnjS2n) =
n

4n� 2
Ef

2nX
j=1

�2j jS2ng �
1

4(2n� 1)
S2
2n:

Since 1
n

Pn
j=1 �

2
j ! 1 in L1, this implies (7.12). 2

7.4 Application: independence of empirical mean

and variance

For a normal distribution it is well known that the empirical mean and the empirical
variance are independent. The next result gives a converse implication; our proof is a
version of the proof sketched in [73, Remark on page 103], who give also a version for
non-identically distributed random variables.

Theorem 7.4.1 Let X1; : : : ; Xn be i. i. d. and denote �X = 1
n

Pn
j=1Xj, S

2 = 1
n

Pn
j=1X

2
j �

�X2. If n � 2 and �X;S2 are independent, then X1 is normal.

The following lemma resembles Lemma 5.3.2 and replaces [73, Theorem 4.3.1].

Lemma 7.4.2 Under the assumption of Theorem 7.4.1, the moments of X1 are �nite.

Proof. Let q = (2n)�1. Then

P (jX1j > t) (7.16)

� Pn
j=2 P (jX1j > t; jXjj > qt) + P (jX1j > t; jX2j � qt; : : : ; jXnj � qt):

Clearly, one can �nd T such that

nX
j=2

P (jX1j > t; jXjj > qt)

= (n� 1)P (jX1j > t)P (jX1j > qt) � 1

2
P (jX1j > t)

for all t > T . Therefore

P (jX1j > t) � 2P (jX1j > t; jX2j � qt; : : : ; jXnj � qt): (7.17)



7.5. INFINITE SEQUENCES AND CONDITIONAL MOMENTS 99

Event fjX1j > t; jX2j � qt; : : : ; jXnj � qtg implies j �Xj > (1� nq)t=n. It also implies
S2 > 1

n
(X1 � �X)2 > 1

4n
t2. Therefore by independence

P (jX1j > t; jX2j � qt; : : : ; jXnj � qt)

� P
�
j �Xj > 1

2n
t
�
P
�
S2 >

1

4n
t2
�

� nP
�
jX1j > 1

2n
t
�
P
�
S2 >

1

4n
t2
�
:

� P
�
j �Xj > 1

2n
t
�
P
�
S2 >

1

4n
t2
�

� nP
�
jX1j > 1

2n
t
�
P
�
S2 >

1

4n
t2
�
:

This by (7.17) and Corollary 1.3.3 ends the proof. Indeed, n � 2 is �xed and P (S2 > 1
4n
t2)

is arbitrarily small for large t. 2

Proof of Theorem 7.4.1. By Lemma 7.4.2, the second moments are �nite. Therefore
the independence assumption implies that the corresponding conditional moments are
constant. We shall apply Lemma 7.3.2 with X = X1 and Y =

Pn
j=2Xj.

The assumptions of this lemma can be quickly veri�ed as follows. Clearly, EfX1j �Xg =
�X by i. i. d., proving (7.13). To verify (7.14), notice that again by symmetry ( i. i. d.)

EfX2
1 j �Xg = Ef 1

n

nX
j=1

X2
j j �Xg = EfS2j �Xg+ �X2:

By independence, EfS2j �Xg = ES2 = const, verifying (7.14) with K = const. 2

7.5 In�nite sequences and conditional moments

In this section we present results that hold true for in�nite sequences only; they fail for
�nite sequences. We consider assumptions that involve �rst two conditional moments
only. They resemble (7.5) and (7.6) but, surprisingly, independence assumption can be
omitted when in�nite sequences are considered.

To simplify the notation, we limit our attention to L2-homogeneous Markov chains
only. A similar non-Markovian result will be given in Section 8.3 below. Problem 7.7
shows that Theorem 7.5.1 is not valid for �nite sequences.

Theorem 7.5.1 Let X1; X2; : : : be an in�nite Markov chain with �nite and non-zero
variances and assume that there are numbers c1 = c1(n); : : : ; c7 = c7(n), such that the
following conditions hold for all n = 1; 2; : : :

EfXn+1jXng = c1Xn + c2; (7.18)

EfXn+1jXn; Xn+2g = c3Xn + c4Xn+2 + c5; (7.19)
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V ar(Xn+1jXn) = c6; (7.20)

V ar(Xn+1jXn; Xn+2) = c7: (7.21)

Furthermore, suppose that correlation coe�cient � = �(n) between random variables Xn

and Xn+1 does not depend on n and �2 6= 0; 1. Then (Xk) is a Gaussian sequence.

Notation for the proof. Without loss of generality we may assume that each Xn is a
standardized random variable, ie. EXn = 0; EX2

n = 1. Then it is easily seen that c1 = �,
c2 = c5 = 0, c3 = c4 = �=(1 + �2), c6 = 1� �2, c7 = (1� �2)=(1 + �2). For instance, let us
show how to obtain the expression for the �rst two constants c1; c2. Taking the expected
value of (7.18) we get c2 = 0. Then multiplying (7.18) by Xn and taking the expected
value again we get EXnXn+1 = c1EX

2
n. Calculation of the remaining coe�cients is based

on similar manipulations and the formula EXnXn+k = �k; the latter follows from (7.18)
and the Markov property. For instance,

c7 = EX2
n+1 � (�=(1 + �2))2E(Xn +Xn+2)

2 = 1� 2�2=(1 + �2):

The �rst step in the proof is to show that moments of all orders of Xn; n = 1; 2; : : : are
�nite. If one is willing to add the assumptions reversing the roles of n and n+ 1 in (7.18)
and (7.20), then this follows immediately from Theorem 6.2.2 and there is no need to
restrict our attention to L2-homogeneous chains. In general, some additional work needs
to be done.

Lemma 7.5.2 Moments of all orders of Xn; n = 1; 2; : : : are �nite.

Sketch of the proof: Put X = Xn; Y = Xn+1, where n � 1 is �xed. We shall use
Theorem 6.2.2. From (7.18) and (7.20) it follows that (6.7) is satis�ed. To see that (6.6)
holds, it su�ces to show that EfXjY g = �Y and V ar(XjY ) = 1� �2.

To this end, we show by induction that

EfXn+rjXn; Xn+kg = ak;rXn + bk;rXn+k (7.22)

is linear for 0 � r � k.
Once (7.22) is established, constants can easily be computed analogously to compu-

tation of cj in (7.18) and (7.19). Multiplying the last equality by Xn, then by Xn+k and

taking the expectations, we get bk;r = �k�r��k+r
1��2k and ak;r = �r � bk;r�

k.

The induction proof of (7.22) goes as follows. By (7.19) the formula is true for k = 2
and all n � 1. Suppose (7.22) holds for some k � 2 and all n � 1. By the Markov
property

EfXn+rjXn; Xn+k+1g
= EXn;Xn+k+1EfXn+rjXn; Xn+kg

= ak;rXn + bk;rEfXn+kjXn; Xn+k+1g:
This reduces the proof to establishing the linearity of EfXn+kjXn; Xn+k+1g.

We now concentrate on the latter. By the Markov property, we have

EfXn+kjXn; Xn+k+1g
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= EXn;Xn+k+1EfXn+kjXn+1; Xn+k+1g
= bk+1;1Xn+k+1 + ak+1;1EfXn+1jXn; Xn+k+1g:

We have ak+1;1 = �k�1 1��2
1��2k ; in particular, ak+1;1 = sinh(log �)= sinh(k log �) so that one

can easily see that 0 < ak+1;1 < 1. Since

EfXn+1jXn; Xn+k+1g = EXn;Xn+k+1EfXn+1jXn; Xn+kg
= ak;1Xn + bk;1EfXn+kjXn; Xn+k+1g;

we get

EfXn+kjXn; Xn+k+1g (7.23)

= bk+1;1Xn+k+1 + ak+1;1ak;1Xn + ak+1;1bk;1EfXn+kjXn; Xn+k+1g:

Notice that bk;1 = �k�1 1��2
1��2k = ak+1;1. In particular 0 < ak+1;1bk;1 < 1. Therefore (7.23)

determines EfXn+kjXn; Xn+k+1g uniquely as a linear function of Xn and Xn+k+1. This
ends the proof of (7.22).

Explicit formulas for coe�cients in (7.22) show that bk;1 ! 0 and ak;1 ! � as k !1.
Applying conditional expectation EXnf:g to (7.22) we get EfXn+1jXng = limk!1(aXn +
bEfXn+kjXng) = �Xn, which establishes required EfXjY g = �Y .

Similarly, we check by induction that

V ar(Xn+rjXn; Xn+k) = c (7.24)

is non-random for 0 � r � k; here c is computed by taking the expectation of (7.24); as
in the previous case, c depends on �; r; k.

Indeed, by (7.21) formula (7.24) holds true for k = 2. Suppose it is true for some
k � 2, ie. EfX2

n+rjXn; Xn+kg = c + (akXn + bkXn+k)
2, where ak = ak;r, bk = bk;r come

from (7.22). Then
EfX2

n+rjXn; Xn+k+1g
= EXn;Xn+k+1EfX2

n+kjXn+1; Xn+kg
= c+ EXn;Xn+k+1(akXn + bkXn+k)

2

= b2EXn;Xn+k+1fX2
n+kg+ quadratic polynomial in Xn:

We write again
EfX2

n+kjXn; Xn+k+1g
= EXn;Xn+k+1EfX2

n+kjXn+1; Xn+k+1g
= b2EfX2

n+1jXn; Xn+k+1g+ quadratic polynomial in Xn+k+1:

Since
EfX2

n+1jXn; Xn+k+1g
= EXn;Xn+k+1EfX2

n+1jXn; Xn+kg
= �2EfX2

n+kjXn; Xn+k+1g+ quadratic polynomial in Xn

and since �2b2 6= 1 (those are the same coe�cients that were used in the �rst part of
the proof; namely, � = ak+1;1, b = bk;1.) we establish that EfX2

n+rjXn; Xn+kg is a
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quadratic polynomial in variables Xn; Xn+k. A more careful analysis permits to recover
the coe�cients of this polynomial to see that actually (7.24) holds.

This shows that (6.6) holds and by Theorem 6.2.2 all the moments of Xn; n � 1, are
�nite. 2
We shall prove Theorem 7.5.1 by showing that all mixed moments of fXng are equal to the
corresponding moments of a suitable Gaussian sequence. To this end let ~
 = (
1; 
2; : : :) be
the mean zero Gaussian sequence with covariances E
i
j equal to EXiXj for all i; j � 1.
It is well known that the sequence 
1; 
2; : : : satis�es (7.18){(7.21) with the same constants
c1; : : : ; c7, see Theorem 2.2.9. Moreover, (
1; 
2; : : :) is a Markov chain, too.

We shall use the variant of the method of moments.

Lemma 7.5.3 If X = (X1; : : : ; Xd) is a random vector such that all moments

EX
i(1)
1 : : : X

i(d)
d = E


i(1)
1 : : : 


i(d)
d

are �nite and equal to the corresponding moments of a multivariate normal random vari-
able Z = (
1; : : : ; 
d), then X and Z have the same (normal) distribution.

Proof. It su�ce to show that Eexp(it �X) = Eexp(it � Z) for all t 2 IRd and all d � 1.
Clearly, the moments of (t �X) are given by

E(t �X)k =
X

i(1)+:::+i(d)=k

t
i(1)
1 : : : t

i(d)
d EX

i(1)
1 : : :X

i(d)
d

=
X

i(1)+:::+i(d)=k

t
i(1)
1 : : : t

i(d)
d E


i(1)
1 : : : 


i(d)
d

= E(t � Z)k; k = 1; 2; : : :

One dimensional random variable (t �X) satis�es the assumption of Corollary 2.3.3; thus
Eexp(it �X) = Eexp(it � Z), which ends the proof. 2

The main di�culty in the proof is to show that the appropriate higher centered con-
ditional moments are the same for both sequences X and ~
; this is established in Lemma
7.5.4 below. Once Lemma 7.5.4 is proved, all mixed moments can be calculated easily
(see Lemma 7.5.5 below) and Lemma 7.5.3 will end the proof.

Lemma 7.5.4 Put X0 = 
0 = 0. Then

Ef(Xn � �Xn�1)kjXn�1g = Ef(
n � �
n�1)kj
n�1g (7.25)

for all n; k = 1; 2 : : :

Proof. We shall show simultaneously that (7.25) holds and that

Ef(Xn+1 � �2Xn�1)kjXn�1g = Ef(
n+1 � �2
n�1)kj
n�1g (7.26)

for all n; k = 1; 2 : : :. The proof of (7.25) and (7.26) is by induction with respect
to parameter k. By our choice of (
1; 
2; : : :), formula (7.25) holds for all n and for
the �rst two conditional moments, ie. for k = 0; 1; 2. Formula (7.26) is also easily
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seen to hold for k = 1; indeed, from the Markov property EfXn+1 � �2Xn�1jXn�1g =
EfEfXn+1jXngjXn�1g � �2Xn�1 = 0. We now check that (7.26) holds for k = 2, too.
This goes by simple re-arrangement, the Markov property and (7.20):

Ef(Xn+1 � �2Xn�1)2jXn�1g

= Ef(Xn+1 � �Xn)2 + �2(Xn � �Xn�1)2 + 2�(Xn � �Xn�1)(Xn+1 � �Xn)jXn�1g
= Ef(Xn+1 � �Xn)2jXn�1g+ �2Ef(Xn � �Xn�1)2jXn�1g

= Ef(Xn+1 � �Xn)2jXng+ �2Ef(Xn � �Xn�1)2jXn�1g = 1� �4:

Since the same computation can be carried out for the Gaussian sequence (
k), this
establishes (7.26) for k = 2.

Now we continue the induction part of the proof. Suppose (7.25) and (7.26) hold for
all n and all k � m, where m � 2. We are going to show that (7.25) and (7.26) hold for
k = m + 1 and all n � 1. This will be established by keeping n � 1 �xed and producing
a system of two linear equations for the two unknown conditional moments

x = Ef(Xn+1 � �2Xn�1)m+1jXn�1g

and
y = Ef(Xn � �Xn�1)m+1jXn�1g:

Clearly, x; y are random; all the identities below hold with probability one.
To obtain the �rst equation, consider the expression

W = Ef(Xn � �Xn�1)(Xn+1 � �2Xn�1)mjXn�1g: (7.27)

We have
Ef(Xn � �Xn�1)(Xn+1 � �Xn)mjXn�1g

= EfEfXn � �Xn�1jXn�1; Xn+1g(Xn+1 � �2Xn�1)mjXn�1g:
Since by (7.19)

EfXn � �Xn�1jXn�1; Xn+1g = �=(1 + �2)(Xn+1 � �2Xn�1);

hence
W = �=(1 + �2)Ef(Xn+1 � �2Xn�1)m+1jXn�1g: (7.28)

On the other hand we can write

W = E f(Xn � �Xn�1) ((Xn+1 � �Xn) + �(Xn � �Xn�1))
m jXn�1g :

By the binomial expansion

((Xn+1 � �Xn) + �(Xn � �Xn�1))
m

=
mX
k=0

 
m
k

!
�k(Xn+1 � �Xn)m�k(Xn � �Xn�1)k:
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Therefore the Markov property gives

W =
mX
k=0

 
m
k

!
�kE

n
(Xn � �Xn�1)k+1Ef(Xn+1 � �Xn)m�kjXng jXn�1g

= �mEf(Xn � �Xn�1)m+1jXn�1g+R;

where

R =
m�1X
k=0

 
m
k

!
�kE

n
(Xn � �Xn�1)k+1Ef(Xn+1 � �Xn)m�kjXng jXn�1g

is a deterministic number, since Ef(Xn+1��Xn)m�kjXng and Ef(Xn��Xn�1)k+1jXn�1g
are uniquely determined and non-random for 0 � k � m� 1.

Comparing this with (7.28) we get the �rst equation

�=(1 + �2)x = �my +R (7.29)

for the unknown (and at this moment yet random) x and y.
To obtain the second equation, consider

V = Ef(Xn � �Xn�1)2(Xn+1 � �2Xn�1)m�1jXn�1g: (7.30)

We have
Ef(Xn � �Xn�1)2(Xn+1 � �2Xn�1)m�1jXn�1g

= E
n
Ef(Xn � �Xn�1)2jXn�1; Xn+1g(Xn+1 � �2Xn�1)m�1 jXn�1g :

Since
Xn � �Xn�1

= Xn � �=(1 + �2)(Xn+1 +Xn�1) + �=(1 + �2)(Xn+1 � �2Xn�1);

by (7.19) and (7.21) we get

Ef(Xn � �Xn�1)2jXn�1; Xn+1g

= (1� �2)=(1 + �2) +
�
�=(1 + �2)(Xn+1 � �2Xn�1)

�2
:

Hence
V =

�
�=(1 + �2)

�2
Ef(Xn+1 � �2Xn�1)m+1jXn�1g+R0; (7.31)

where by induction assumption R0 = c7Ef(Xn+1 � �2Xn�1)m�1jXn�1g is uniquely deter-
mined and non-random. On the other hand we have

V = E
n

(Xn � �Xn�1)2 ((Xn+1 � �Xn) + �(Xn � �Xn�1))
m�1 jXn�1

o
:

By the binomial expansion

((Xn+1 � �Xn) + �(Xn � �Xn�1))
m�1

=
m�1X
k=0

 
m� 1
k

!
(Xn+1 � �Xn)m�k�1(Xn � �Xn�1)k:
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Therefore the Markov property gives
V =

m�1X
k=0

 
m� 1
k

!
�kE

n
(Xn � �Xn�1)k+2Ef(Xn+1 � �Xn)m�k�1jXng

���Xn�1
o

= �m�1Ef(Xn � �Xn�1)m+1jXn�1g+R00;

where
R00 =

m�2X
k=0

 
m� 1
k

!
�kE

n
(Xn � �Xn�1)k+2Ef(Xn+1 � �Xn)m�k�1jXng

���Xn�1
o

is a non-random number, since by induction assumption, for 0 � k � m � 2 both
Ef(Xn+1��Xn)m�k�1jXng and Ef(Xn��Xn�1)k+2jXn�1g are uniquely determined non-
random numbers.

Equating both expression for V gives the second equation:

�m�1y = (
�

1 + �2
)2x +R1; (7.32)

where again R1 is uniquely determined and non-random.
The determinant of the system of two linear equations (7.29) and (7.32) is �m=(1 +

�2)2 6= 0. Therefore conditional moments x; y are determined uniquely. In particular,
they are equal to the corresponding moments of the Gaussian distribution and are non-
random. This ends the induction, and the lemma is proved. 2

Lemma 7.5.5 Equalities (7.25) imply that X and ~
 have the same distribution.

Proof. By Lemma 7.5.3, it remains to show that

EX
i(1)
1 : : : X

i(d)
d = E


i(1)
1 : : : 


i(d)
d (7.33)

for every d � 1 and all i(1); : : : ; i(d) 2 IN. We shall prove (7.33) by induction with respect
to d. Since EXi = 0 and Ef�jX0g = Ef�g, therefore (7.33) for d = 1 follows immediately
from (7.25).

If (7.33) holds for some d � 1, then write Xd+1 = (Xd+1��Xd)+�Xd. By the binomial
expansion

EX
i(1)
1 : : :X

i(d)
d X

i(d+1)
d+1 (7.34)

=
Pi(d+1)

j=0

 
i(d+ 1)

j

!
�i(d+1)�jEX i(1)

1 : : :X i(d)
d Ef(Xd+1 � �Xd)

jjXdgX i(d+1)�j
d :

Since by assumption

Ef(Xd+1 � �Xd)
jjXdg = Ef(
d+1 � �
d)

jj
dg
is a deterministic number for each j � 0, and since by induction assumption

EX
i(1)
1 : : :X

i(d)+i(d+1)�j
d = E


i(1)
1 : : : 


i(d)+i(d+1)�j
d ;

therefore (7.34) ends the proof. 2
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7.6 Problems

Problem 7.1 Show that if X1 and X2 are i. i. d. then

EfX1 �X2jX1 +X2g = 0:

Problem 7.2 Show that if X1 and X2 are i. i. d. symmetric and

Ef(X1 +X2)
2jX1 �X2g = const;

then X1 is normal.

Problem 7.3 Show that if X; Y are independent integrable and EfXjX+Y g = EX then
X = const.

Problem 7.4 Show that if X; Y are independent integrable and EfXjX + Y g = X + Y
then Y = 0.

Problem 7.5 ([36]) Suppose X; Y are independent, X is nondegenerate, Y is integrable,
and EfY jX + Y g = a(X + Y ) for some a.

(i) Show that jaj � 1.
(ii) Show that if EjXjp <1 for some p > 1, then EjY jp <1. Hint By Problem 7.3,

a 6= 1.

Problem 7.6 ([36, page 122]) Suppose X; Y are independent, X is nondegenerate nor-
mal, Y is integrable, and EfY jX + Y g = a(X + Y ) for some a.

Show that Y is normal.

Problem 7.7 Let X; Y be (dependent) symmetric random variables taking values �1.
Fix 0 � � � 1=2 and choose their joint distribution as follows.

PX;Y (�1; 1) = 1=2� �;

PX;Y (1;�1) = 1=2� �;

PX;Y (�1;�1) = 1=2 + �;

PX;Y (1; 1) = 1=2 + �:

Show that
EfXjY g = �Y and EfY jXg = �Y ;

V ar(XjY ) = 1� �2 and V ar(Y jX) = 1� �2

and the correlation coe�cient satis�es � 6= 0;�1.

Problems below characterize some non-Gaussian distributions, see [12, 131, 148].

Problem 7.8 Prove the following variant of Theorem 7.1.2:
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If X1; X2 are i. i. d. random variables with �nite second moments, and

V ar(X1 �X2jX1 +X2) = 
(X1 +X2);

where IR 3 
 6= 0 is a non-random constant, then X1 (and X2) is an a�ne
transformation of a random variable with the Poisson distribution (ie. X1 has
the displaced Poisson type distribution).

Problem 7.9 Prove the following variant of Theorem 7.1.2:

If X1; X2 are i. i. d. random variables with �nite second moments, and

V ar(X1 �X2jX1 +X2) = 
(X1 +X2)
2;

where IR 3 
 > 0 is a non-random constant, then X1 (and X2) is an a�ne
transformation of a random variable with the gamma distribution (ie. X1 has
displaced gamma type distribution).
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Chapter 8

Gaussian processes

In this chapter we shall consider characterization questions for stochastic processes. We
shall treat a stochastic process X as a function Xt(!) of two arguments t 2 [0; 1] and
! 2 
 that are measurable in argument !, ie. as an uncountable family of random
variables fXtg0�t�1. We shall also encounter processes with continuous trajectories, that
is processes where functions Xt(!) depend continuously on argument t (except on a set
of !'s of probability 0).

8.1 Construction of the Wiener process

The Wiener process was constructed and analyzed by Norbert Wiener [150] (please note
the date). In the literature, the Wiener process is also called the Brownian motion, for
Robert Brown, who frequently (and apparently erroneously) is credited with the �rst
observations of chaotic motions in suspension; Nelson [115] gives an interesting historical
introduction and lists relevant works prior to Brown. Since there are other more exact
mathematical models of the Brownian motion available in the literature, cf. Nelson [115]
(see also [17]), we shall stick to the above terminology. The reader should be however
aware that in probabilistic literature Wiener's name is nowadays more often used for the
measure on the space C[0; 1], generated by what we shall call the Wiener process.

The simplest way to de�ne the Wiener process is to list its properties as follows.

De�nition 8.1.1 The Wiener process fWtg is a Gaussian process with continuous tra-
jectories such that

W0 = 0; (8.1)

EWt = 0 for all t � 0; (8.2)

EWtWs = minft; sg for all t; s � 0: (8.3)

Recall that a stochastic process fXtg0�t�1 is Gaussian, if the n-dimensional r. v.
(Xt1 ; : : : ; Xtn) has multivariate normal distribution for all n � 1 and all t1; : : : ; tn 2 [0; 1].
A stochastic process fXtgt2[0;1] has continuous trajectories if it is de�ned by a C[0; 1]-
valued random vector, cf. Example 3.2.2. For in�nite time interval t 2 [0;1), a stochastic
process has continuous trajectories if its restriction to t 2 [0; N ] has continuous trajecto-
ries for all N 2 IN.

109
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The de�nition of the Wiener process lists its important properties. In particular,
conditions (8.1){(8.3) imply that the Wiener process has independent increments, ie.
W0;Wt � W0;Wt+s � Wt; : : : are independent. The de�nition has also one obvious de-
�ciency; it does not say whether a process with all the required properties does exist
(the Kolmogorov Existence Theorem [9, Theorem 36.1] does not guarantee continuity of
the trajectories.) In this section we answer the existence question by an analytical proof
which matches well complex analysis methods used in this book; for a couple of other
constructions, see Ito & McKean [66].

The �rst step of construction is to de�ne an appropriate Gaussian random variable Wt

for each �xed t. This is accomplished with the help of the series expansion (8.4) below. It
might be worth emphasizing that every Gaussian process Xt with continuous trajectories
has a series representation of a form X(t) = f0(t) +

P

kfk(t), where f
kg are i. i. d.

normal N(0; 1) and fk are deterministic continuous functions. Theorem 2.2.5 is a �nite
dimensional variant of this expansion. Series expansion questions in more abstract setup
are studied in [24], see also references therein.

Lemma 8.1.1 Let f
kgk�1 be a sequence of i. i. d. normal N(0; 1) random variables. Let

Wt =
2

�

1X
k=0

1

2k + 1

k sin(2k + 1)�t: (8.4)

Then series (8.4) converges, fWtg is a Gaussian process and (8.1), (8.2) and (8.3) hold
for each 0 � t; s � 1

2
.

Proof. Obviously series (8.4) converges in the L2 sense (ie. in mean-square), so random
variables fWtg are well de�ned; clearly, each �nite collectionWt1 ; : : : ;Wtk is jointly normal
and (8.1), (8.2) hold. The only fact which requires proof is (8.3). To see why it holds, and
also how the series (8.4) was produced, for t; s � 0 write minft; sg = 1

2
(jt + sj � jt� sj).

For jxj � 1 expand f(x) = jxj into the Fourier series. Standard calculations give

jxj =
1

2
� 4

�2

1X
k=0

1

(2k + 1)2
cos(2k + 1)�x: (8.5)

Hence by trigonometry

minft; sg =
2

�2

1X
k=0

1

(2k + 1)2
(cos ((2k + 1)�(t� s))� cos ((2k + 1)�(t+ s)))

=
4

�2

1X
k=0

1

(2k + 1)2
sin((2k + 1)�t) sin((2k + 1)�s):

From (8.4) it follows that EWtWs is given by the same expression and hence (8.3) is
proved. 2

To show that series (8.4) converges in probability1 uniformly with respect to t, we need
to analyze sup0�t�1=2 j

P
k�n

1
2k+1


k sin(2k + 1)�tj. The next lemma analyzes instead the

expression supfz2CC:jzj=1g j
P

k�n
1

2k+1

kz

2k+1j, the latter expression being more convenient
from the analytic point of view.

1Notice that this su�ces to prove the existence of the Wiener process fWtg0�t�1=2!
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Lemma 8.1.2 There is C > 0 such that

E sup
jzj=1

�����
nX

k=m

1

2k + 1

kz

2k+1

�����
4

� C(n�m)

 
nX

k=m

1

(2k + 1)2

!2

(8.6)

for all m;n � 1.

Proof. By Cauchy's integral formula

 
nX

k=m

1

2k + 1

kz

2k+1

!4

= z2m
 
n�mX
k=0

1

2k + 2m + 1

kz

2k+1

!4

= z2m
1

2�i

I
L

 
n�mX
k=0

1

2k + 2m+ 1

k�

2k+1

!4
1

� � z
d�;

where L � CC is the circle j�j = 1 + 1=(n�m).
Therefore

sup
jzj=1

�����
nX

k=m

1

2k + 1

kz

2k+1

�����
4

� sup
jzj=1

1

j� � zj
1

2�

I
L

�����
n�mX
k=0

1

2k + 2m+ 1

k+m�

2k+1

�����
4

d�:

Obviously supjzj=1
1

j��zj = n�m, and furthermore we have j�2k+1j � (1+1=(n�m))2k+1 �
e3 for all 0 � k � n�m and all � 2 L. Hence

E sup
jzj=1

�����
nX

k=m

1

2k + 1

kz

2k+1

�����
4

� C(n�m)
I
L
E

�����
n�mX
k=0

1

2k + 2m+ 1

k�

2k+1

�����
4

d�

� C1(n�m)

 
n�mX
k=0

1

(2k + 2m+ 1)2

!2

;

which concludes the proof. 2

Now we are ready to show that the Wiener process exists.

Theorem 8.1.3 There is a Gaussian process fWtg0�t�1=2 with continuous trajectories
and such that (8.1), (8.2), and (8.3) hold.

Proof. Let Wt be de�ned by (8.4). By Lemma 8.1.1, properties (8.1){(8.3) are satis�ed
and fWtg is Gaussian. It remains to show that series

P1
k=0

1
2k+1


k sin(2k+1)�t converges in

probability with respect to the supremum norm in C[0; 1
2
]. Indeed, each term of this series

is a C[0; 1
2
]-valued random variable and limit in probability de�nes fWtg0�t�1=2 2 C[0; 1

2
]

on the set of !'s of probability one. We need therefore to show that for each � > 0

P ( sup
0�t�1=2

�����
1X
k=n

1

2k + 1

k sin(2k + 1)�t

����� > �) ! 0 as n!1:
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Since sin(2k + 1)�t is the imaginary part of z2k+1 with z = ei�t, it su�ces to show that

P (supjzj=1

���P1
k=n

1
2k+1


kz
2k+1

��� > �) ! 0 as n ! 1. Let r be such that 2r�1 < n � 2r.

Notice that by triangle inequality (for the L4-norm) we have0@E sup
jzj=1

�����
1X
k=n

1

2k + 1

kz

2k+1

�����
4
1A1=4

�
0@E sup

jzj=1

�����
2rX
k=n

1

2k + 1

kz

2k+1

�����
4
1A1=4

+
1X
j=r

0B@E sup
jzj=1

������
2j+1X

k=2j+1

1

2k + 1

kz

2k+1

������
4
1CA

1=4

:

From (8.6) we get 0@E sup
jzj=1

�����
2rX
k=n

1

2k + 1

kz

2k+1

�����
4
1A1=4

� C2�r=4;

and similarly 0B@Efsup
jzj=1

������
2j+1X

k=2j+1

1

2k + 1

kz

2k+1

������
4

g
1CA

1=4

� C2�j=4

for every j � r. Therefore0@E sup
jzj=1

�����
1X
k=n

1

2k + 1

kz

2k+1

�����
4
1A1=4

� C2�r=4 +
1X

j=r+1

C2�j=4 � Cn�1=4 ! 0

as n ! 1 and convergence in probability (in the uniform metric) follows from Cheby-
shev's inequality. 2

Remark: Usually the Wiener process is considered on unbounded time interval [0;1). One way of
constructing such a process is to glue in countably many independent copiesW;W 0;W 00; : : : of the Wiener
process fWtg0�t�1=2 constructed above. That is put

fWt =

8>>><>>>:
Wt for 0 � t � 1

2 ;

W1=2 +W 0
t�1=2 for 1

2 � t � 1;

W1=2 +W 0
1 +W 00

t�1=2 for 1 � t � 3
2 ;

...

Since each copy W (k) starts at 0, this construction preserves the continuity of trajectories, and the

increments of the resulting process are still independent and normal.

8.2 Levy's characterization theorem

In this section we shall characterize Wiener process by the properties of the �rst two
conditional moments. We shall use conditioning with respect to the past �-�eld Fs =
�fXt : t � sg of a stochastic process fXtg. The result is due to P. Levy [98, Theorem
67.3]. Dozzi [40, page 147 Theorem 1] gives a related multi-parameter result.
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Theorem 8.2.1 If a stochastic process fXtg0�t�1 has continuous trajectories, is square
integrable, and

EfXtjFsg = Xs for all s � t; (8.7)

V ar(XtjFs) = t� s for all s � t; (8.8)

then fXtg is the Wiener process.

Conditions (8.7) and (8.8) resemble assumptions made in Chapter 7, cf. Theorems 7.2.1
and 7.5.1. Clearly, formulas (8.7) and (8.8) hold also true for the Poisson process; hence
the assumption of continuity of trajectories is essential. The actual role of the continuity
assumption is hardly visible, until a stochastic integrals approach is adopted (see, eg.
[41, Section 2.11]); then it becomes fairly clear that the continuity of trajectories allows
insights into the future of the process (compare also Theorem 7.5.1; the latter can be
thought as a discrete-time analogue of Levy's theorem.). Neveu [117, Ch. 7] proves
several other discrete time versions of Theorem 8.2.1 that are of di�erent nature.
Proof of Theorem 8.2.1. Let 0 � s � 1 be �xed. Put �(t; u) = Efexp(iuXt+s)jFsg.
Clearly �(�; �) is continuous with respect to both arguments. We shall show that

@

@t
�(t; u) = �1

2
u2�(t; u) (8.9)

almost surely (with the derivative de�ned with respect to convergence in probability).
This will conclude the proof, since equation (8.9) implies

�(t; u) = �(0; u)e�tu
2=2 (8.10)

almost surely. Indeed, (8.10) means that the increments Xt+s�Xs are independent of the
past Fs and have normal distribution with mean 0 and variance t, ie. fXtg is a Gaussian
process, and (8.1){(8.3) are satis�ed.

It remains to verify (8.9). We shall consider the right-hand side derivative only;
the left-hand side derivative can be treated similarly and the proof shows also that the
derivative exists. Since u is �xed, through the argument below we write �(t) = �(t; u).
Clearly

�(t+ h)� �(t) = Efexp(iuXt)(e
iu(Xt+h�Xt) � 1)jFsg

= �1

2
u2h�(t) + Efexp(iuXt)R(Xt+h �Xt)jFsg;

where jR(x)j � jxj3 is the remainder in Taylor's expansion for ex. The proof will be
concluded, once we show that EfjXt+h �Xtj3jFsg=h ! 0 as h ! 0. Moreover, since we
require convergence in probability, we need only to verify that EjXt+h �Xtj3=h ! 0. It
remains therefore to establish the following lemma, taken (together with the proof) from
[7, page 25, Lemma 3.2]. 2

Lemma 8.2.2 Under the assumptions of Theorem 8.2.1 we have

EjXt+h �Xtj4 <1:
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Moreover, there is C > 0 such that

EjXt+h �Xtj4 � Ch2

for all t; h � 0.

Proof. We discretize the interval (t; t+ h) and write Yk = Xt+kh=N �Xt+(k�1)h=N , where
1 � k � N . Then

jXt+h �Xtj4 =
X
k

Y 4
k (8.11)

+ 4
X
m6=n

Y 3
mYn + 3

X
m6=n

Y 2
mY

2
n

+ 6
X

k 6=m6=n
Y 2
mYnYk +

X
k 6=l 6=m6=n

YkYlYmYn:

Using elementary inequality 2ab � a2=� + b2�, where � > 0 is arbitrary, we getX
k

Y 4
k + 4

X
m6=n

Y 3
mYn (8.12)

= 4
X
n

Y 3
n

X
m

Ym � 3
X
n

Y 4
n � 2��1(

X
n

Y 3
n )2 + 2�(

X
m

Ym)2:

Notice, that
jX

n

Y 3
n j ! 0 (8.13)

in probability as N ! 1. Indeed, jPn Y
3
n j �

P
n Y

2
n jYnj � maxn jYnjPn Y

2
n . Therefore

for every � > 0

P (jX
n

Y 3
n j > �) � P (

X
n

Y 2
n > M) + P (max

n
jYnj > �=M):

By (8.8) and Chebyshev's inequality P (
P

n Y
2
n > M) � h=M is arbitrarily small for all

M large enough. The continuity of trajectories of fXtg implies that for each M we have
P (maxn jYnj > �=M) ! 0 as N !1, which proves (8.13).

Passing to a subsequence, we may therefore assume jPn Y
3
n j ! 0 as N ! 1 with

probability one. Using Fatou's lemma (see eg. [9, Ch. 3 Theorem 16.3]), by continuity of
trajectories and (8.11), (8.12) we have now

E
n
jXt+h �Xtj4

o
� lim sup

N!1
E

(
2�(

X
m

Ym)2 + 3
X
m6=n

Y 2
mY

2
n (8.14)

+6
X

k 6=m6=n
Y 2
mYnYk +

X
k 6=l 6=m6=n

YkYlYmYn

9=; ;
provided the right hand side of (8.14) is integrable.

We now show that each term on the right hand side of (8.14) is integrable and give
the bounds needed to conclude the argument. The �rst two terms are handled as follows.

E(
P

m Ym)2 � h; (8.15)

EY 2
mY

2
n = limM!1EY 2

mIjYmj�MY
2
n (8.16)

= limM!1EY 2
mIjYmj�MEfY 2

n jFt+hm=Ng � h2=N2 for all m < n;
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Considering separately each of the following cases: m < n < k, m < k < n, n < m < k,
n < k < m, k < m < n, k < n < m, we get EjY 2

mYnYkj � h2=N2 <1. For instance, the
case m < n < k is handled as follows

EjY 2
mYnYkj = lim

M!1
E
n
Y 2
mjYnjIjYmj�ME fjYkjj Ft+hm=N

oo
� lim

M!1
E
n
Y 2
mjYnjIjYmj�M(EfY 2

k Ft+hm=Ng)1=2
o

= (h=N)1=2 lim
M!1

E
n
Y 2
m IjYmj�ME fjYnjj Ft+hk=N

oo
� (h=N)1=2 lim

M!1
E
n
Y 2
mIjYmj�M(EfY 2

n jFt+hk=Ng)1=2
o

= h2=N2:

Once EjY 2
mYnYkj < 1 is established, it is trivial to see from (8.7) in each of the cases

m < n < k;m < k < n; n < m < k; k < m < n, (and using in addition (8.8) in the cases
n < k < m; k < n < m) that

EY 2
mYnYk = 0 (8.17)

for every choice of di�erent numbers m;n; k. Analogous considerations give
EjYmYnYkYlj � h2=N2 <1. Indeed, suppose for instance that m < k < l < n. Then

EjYmYnYkYlj

= lim
M!1

EfjYmjIjYmj�M jYnjIjYnj�M jYkjIjYkj�ME
n
jYlj

���Ft+hk=N

o
g

� lim
M!1

E
n
jYmjIjYmj�M jYnjIjYnj�M jYkjIjYkj�M(EfY 2

l jFt+hk=Ng)1=2
o

= (h=N)1=2EjYmYnYkj;
and the procedure continues replacing one variable at a time by the factor (h=N)1=2. Once
EjYmYnYkYlj <1 is established, (8.7) gives trivially

EYmYnYkYl = 0 (8.18)

for every choice of di�erent m;n; k; l. Then (8.15){(8.18) applied to the right hand side
of (8.14) give EjXt+h �Xtj4 � 2�h + 3h2. Since � is arbitrarily close to 0, this ends the
proof of the lemma. 2

The next result is a special case of the theorem due to J. Jakubowski & S. Kwapie�n
[67]. It has interesting applications to convergence of random series questions, see [91]
and it also implies Azuma's inequality for martingale di�erences.

Theorem 8.2.3 Suppose fXkg satis�es the following conditions
(i) jXkj � 1; k = 1; 2; : : :;
(ii) EfXn+1jX1; : : : ; Xng = 0; n = 1; 2; : : :.
Then there is an i. i. d. symmetric random sequence �k = �1 and a �-�eld N such

that the sequence
Yk = Ef�kjNg

has the same joint distribution as fXkg.
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Proof. We shall �rst prove the theorem for a �nite sequence fXkgk=1;:::n. Let
F (dy1; : : : ; dyn) be the joint distribution of X1; : : : ; Xn and let G(du) = 1

2
(��1 + �1) be

the distribution of �1. Let P (dy; du) be a probability measure on IR2n, de�ned by

P (dy; du) =
nY
j=1

(1 + ujyj)F (dy1; : : : ; dyn)G(du1) : : :G(dun) (8.19)

and let N be the �-�eld generated by the y-coordinate in IR2n. In other words, take the
joint distribution Q of independent copies of (Xk) and �k and de�ne P on IR2n as being
absolutely continuous with respect to Q with the density

Qn
j=1(1 + ujyj). Using Fubini's

theorem (the integrand is non-negative) it is easy to check now, that P (dy; IRn) = F (dy)
and P (IRn; du) = G(du1) : : :G(dun). Furthermore

R
uj
Qn
j=1(1+ujyj)G(du1) : : : G(dun) =

yj for all j, so the representation Ef�jjNg = Yj holds. This proves the theorem in the
case of the �nite sequence fXkg.

To construct a probability measure on IR1 � IR1, pass to the limit as n ! 1 with
the measures Pn constructed in the �rst part of the proof; here Pn is treated as a measure
on IR1� IR1 which depends on the �rst 2n coordinates only and is given by (8.19). Such
a limit exists along a subsequence, because Pn is concentrated on a compact set [�1; 1]IN

and hence it is tight. 2

8.3 Characterizations of processes without continu-

ous trajectories

Recall that a stochastic process fXtg is L2, or mean-square continuous, if Xt 2 L2 for all t
and Xt ! Xt0 in L2 as t! t0, cf. Section 1.2. Similarly, Xt is mean-square di�erentiable,
if t 7! Xt 2 L2 is di�erentiable as a Hilbert-space-valued mapping IR ! L2. For mean
zero processes, both are the properties2 of the covariance function K(t; s) = EXtXs.

Let us �rst consider a simple result from [18]3, which uses L2-smoothness of the process,
rather than continuity of the trajectories, and uses only conditioning by one variable at a
time. The result does not apply to processes with non-smooth covariance, such as (8.3).

Theorem 8.3.1 Let fXtg be a square integrable, L2-di�erentiable process such that for
every t � 0 the correlation coe�cient between random variables Xt and d

dt
Xt is strictly

between -1 and 1. Suppose furthermore that

EfXtjXsg is a linear function of Xs for all s < t; (8.20)

V ar(XtjXs) is non-random for all s < t: (8.21)

Then the one dimensional distributions of fXtg are normal.

2For instance, E(Xt�Xs)
2 = K(t; t)+K(s; s)� 2K(t; s), so mean square continuity follows from the

continuity of the covariance function K(t; s).
3See also [139].
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Lemma 8.3.2 Let X; Y be square integrable standardized random variables such that
� = EXY 6= �1. Assume EfXjY g = �Y and V ar(XjY ) = 1 � �2 and suppose there is
an L2-di�erentiable process fZtg such that

Z0 = Y ; (8.22)

d

dt
Zt jt=0 = X: (8.23)

Furthermore, suppose that

EfXjZtg � atZt ! 0 in L2 as t! 0; (8.24)

where at = corr(X;Zt)=V ar(Zt) is the linear regression coe�cient. Then Y is normal.

Proof. It is straightforward to check that a0 = � and d
dt
at jt=0 = 1 � 2�2. Put �(t) =

Eexp(itY ) and let  (t; s) = EZs exp(itZs). Clearly  (t; 0) = �i d
dt
�(t). These identities

will be used below without further mention. Put Vs = EfXjZsg � asZs. Trivially, we
have

EfX exp(itZs)g = as (t; s) + EfVs exp(itZs)g: (8.25)

Notice that by the L2-di�erentiability assumption, both sides of (8.25) are di�erentiable
with respect to s at s = 0. Since by assumption V0 = 0 and V 0

0 = 0, di�erentiating (8.25)
we get

itEfX2 exp(itY )g
= (1� 2�2) (t; 0) + �EfX exp(itY )g + it�EfXY exp(itY )g: (8.26)

Conditional moment formulas imply that

EfX exp(itY )g = �EfY exp(itY )g = �i��0(t)

EfXY exp(itY )g = �EfY 2 exp(itY )g = ��2�00(t)
EfX2 exp(itY )g = (1� �2)�(t) + �2�00(t);

see Theorem 1.5.3. Plugging those relations into (8.26) we get

(1� �2)it�(t) = �(1� �2)i�0(t);

which, since �2 6= 1, implies �(t) = e�t
2=2. 2

Proof of Theorem 8.3.1. For each �xed t0 > 0 apply Lemma 8.3.2 to random variable
X = d

dt
Xt0 ; Y = Xt with Zt = Xt0�t. The only assumption of Lemma 8.3.2 that needs

veri�cation is that V ar(XjY ) is non-random. This holds true, because in L1-convergence

V ar(XjY ) = lim
e!0

��1Ef(Xt0+� � Y � �(�)Y )2jY g

= lim
�!0

��1V ar(Xt0+�jXt0) = �0(0);
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where �(h) = EfXt0+hXt0g=EX2
t0

. Therefore by Lemma 8.3.2, Xt is normal for all t > 0.
Since X0 is the L2-limit of Xt as t! 0, hence X0 is normal, too. 2

As we pointed out earlier, Theorem 8.2.1 is not true for processes without continuous
trajectories. In the next theorem we use �-�elds that allow some insight into the future
rather than past �-�elds Fs = �fXt : t � sg. Namely, put

Gs;u = �fXt : t � s or t = ug
The result, originally under minor additional technical assumptions, comes from [121].
The proof given below follows [19].

Theorem 8.3.3 Suppose fXtg0�t�1 is an L2-continuous process such that corr(Xt; Xs) 6=
�1 for all t 6= s. If there are functions a(s; t; u), b(s; t; u), c(s; t; u), �2(s; t; u) such that
for every choice of s � t and every u we have

EfXtjGs;ug = a(s; t; u) + b(s; t; u)Xs + c(s; t; u)Xu; (8.27)

V ar(XtjGs;u) = �2(s; t; u); (8.28)

then fXtg is Gaussian.

The proof is based on the following version of Lemma 7.5.2.

Lemma 8.3.4 Let N � 1 be �xed and suppose that fXng is a sequence of square integrable
random variables such that the following conditions, compare (7.18){(7.21), hold for all
n � 1:

EfXn+1jX1; : : : ; Xng = c1Xn + c2;

EfXn+1jX1; : : : ; Xn; Xn+2g = c3Xn + c4Xn+2 + c5;

V ar(Xn+1jX1; : : : ; Xn) = c6;

V ar(Xn+1jX1; : : : ; Xn; Xn+2) = c7:

Moreover, suppose that the correlation coe�cient �n = corr(Xn; Xn+1) satis�es �2n 6= 0; 1
for all n � N . If (X1; : : : ; XN�1) is jointly normal, then fXkg is Gaussian.

If N = 1, Lemma 8.3.4 is the same as Lemma 7.5.4; the general case N � 1 is proved sim-
ilarly, except that since (X1; : : : ; XN�1) is normal, one needs to calculate conditional mo-
ments x = Ef(Xn+1� �2Xn�1)kjX1; : : : ; Xn�1g and y = Ef(Xn� �Xn�1)kjX1; : : : ; Xn�1g
for n � N only. Also, not assuming Markov property here, one needs to consider the
above expressions which are based on conditioning with respect to past �-�eld, rather
than (7.22) and (7.23). The detailed proof can be found in [19].

Proof of Theorem 8.3.3. Let ftng be the sequence running through the set of all
rational numbers. We shall show by induction that for each N � 1 random sequence
(Xt1 ; Xt2 ; : : : ; XtN ) has the multivariate normal distribution. Since ftng is dense and Xt

is L2-continuous, this will prove that fXtg is a Gaussian process.
To proceed with the induction, suppose (Xt1 ; Xt2; : : : ; XtN�1

) is normal for some
N � 1 (with the convention that the empty set of random variables is normal). Let
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s1 < s2 < : : : be an in�nite sequence such that fs1; : : : ; sNg = ft1; : : : ; tNg and further-
more corr(Xsk; Xsk+1

) 6= 0 for all k � N . Such a sequence exists by L2-continuity; given
s1; : : : ; sk, we have EXskXs ! EX2

sk
as s # sk; so that an appropriate rational sk+1 6= sk

can be found. Put Xn = Xsn; n � 1. Then the assumptions of Lemma 8.3.4 are satis�ed:
correlation coe�cients are not equal �1 because sk are di�erent numbers; conditional
moment assumption holds by picking the appropriate values of t; u in (6.3.8) and (6.3.9).
Therefore Lemma 6.3.5 implies that (Xt1 ; : : : ; XtN ) is normal and by induction the proof
is concluded.2

Remark: A variant of Theorem 8.3.3 for the Wiener process obtained by specifying suitable functions
a(s; t; u),b(s; t; u), c(s; t; u), �2(s; t; u) can be deduced directly from Theorem 8.2.1 and Theorem 6.2.2.
Indeed, a more careful examination of the proof of Theorem 6.2.2 shows that one gets estimates for
EjXt �Xsj

4 in terms of EjXt �Xsj
2. Therefore, by the well known Kolmogorov's criterion ([42, Exercise

1.3 on page 337]) the process has a version with continuous trajectories and Theorem 8.2.1 applies.

The proof given in the text characterizes more general Gaussian processes. It can also be used with

minor modi�cations to characterize other stochastic processes, for instance for the Poisson process, see

[21, 147].

8.4 Second order conditional structure

The results presented in Sections 4.1, 7.5, 8.2, and 8.3 suggest the general problem of
analyzing what one might call random �elds with linear conditional structure. The setup
is as follows. Let (T;BT ) be a measurable space. Consider random �eld X : T � 
 ! IR,
where 
 is a probability space. We shall think ofX as de�ned on probability space 
 = T IR

by X(t; !) = !(t). Di�erent random �elds then correspond to di�erent assignments of
the probability measure P on 
. For each t 2 T let St be a given collection of measurable
subsets F 2 �fXs : s 6= tg. For technical reasons, it is convenient to have St consisting
of sets F that depend on a �nite number of coordinates only. Even if T = IR, the choice
of St might di�er from the usual choice of the theory of stochastic processes, where St
usually consists of those F 3 s with s < t.

One can say that X has linear conditional structure if

Condition 8.4.1 For each t 2 T and every F 2 St there is a measure �(:) = �t;F (:) and
a number b = b(t; F ) such that EfX(t)jX(s) : s 2 Fg = b +

R
T X(s)�(ds).

Clearly, this de�nition encompasses many of the examples that were considered in previous
sections. When T is a measurable space with a measure �, one may also be interested in
variations of the condition 8.4.1. For instance, if X has �-square-integrable trajectories,
one can consider the following variant.

Condition 8.4.2 For each t 2 T and F 2 St there is a number b and a bounded linear
operator A = At;F : L2(T; d�) ! L2(F; d�) such that EfX(t)jX(s) : s 2 Fg = b + A(X).

In this notation, Condition 8.4.1 corresponds to the integral operator Af =
R
F f(x) d�.

The assumption that second moments are �nite permits sometimes to express opera-
tors A in terms of the covariance K(t; s) of the random �eld X. Namely, the \equation"
is

K(t; s) = At;F (K(�; s))
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for all s 2 F .
The main interest of the conditional moments approach is in additional properties of

a random �eld with linear conditional structure - properties determined by a higher order
conditional structure which gives additional information about the form of

Ef(X(t))2jX(s) : s 2 Fg: (8.29)

Perhaps the most natural question here is how to tackle �nite sequences of arbitrary
length. For instance, one would want to say that if a large collection of N random variables
has linear conditional moments and conditional variances that are quadratic polynomials,
then for large N the distribution should be close to say, a normal, or Poisson, or, say,
Gamma distribution. A review of state of the art is in [142], but much work still needs
to be done. Below we present two examples illustrating the fact that the form of the �rst
two conditional moments can (perhaps) be grasped on intuitive level from the physical
description of the phenomenon.

Example 8.4.1 (snapshot of a random vibration) Suppose a long chain of molecules is
observed in the �xed moment of time (a snapshot). Let X(k) be the (vertical) displacement
of the k-th molecule, see Figure 8.1.
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Figure 8.1: Random Molecules

If all positions of the molecules except the k-th one are known, then it is natural to
assume that the average position of X(k) is centered between its neighbors, ie.

EfX(k) j given all other positions are knowng (8.30)

= (X(k � 1) +X(k + 1))=2:

If furthermore we assume that the molecules are connected by elastic springs, then the
potential energy of the k-th molecule is proportional to

const + (X(k)�X(k � 1))2 + (X(k)�X(k + 1))2 � 1=2(X(k + 1)�X(k � 1))2:
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Therefore, assuming the only source of vibrations is the external heat bath, the average
energy is constant and it is natural to suppose that

Ef(X(k)�X(k � 1))2 + (X(k)�X(k + 1))2

�1=2(X(k + 1)�X(k � 1))2jall except k-th knowng = const:

Using (8.30) this leads after simple calculation to

V ar(X(k)j : : : ; X(1); : : : ; X(k � 1); X(k + 1); : : :) = const; (8.31)

and shows to what extend (8.29) might be considered to be \intuitive". To see what might
follow from similar conditions, consult [149, Theorem 1] and [147, Theorem 3.1], where
various possibilities under quadratic expression (8.29) are listed; to avoid �niteness of
all moments, see the proof of [148, Theorem 1.1]. Weso lowski's method for treatment of
moments resembles the proof of Lemma 8.2.2; in general it seems to work under broader
set of assumptions than the method used in the proof of Theorem 6.2.2.

Example 8.4.2 (a snapshot of epidemic)
Suppose that we observe the development of a disease in a two-dimensional region

which was partitioned into many small sub-regions, indexed by a parameter a. Let Xa be
the number of infected individuals in the a-th sub-region at the �xed moment of time (a
snapshot). If the disease has already spread throughout the whole region, and if in all but
the a-th sub-region the situation is known, then we should expect in the a-th sub-region to
have

EfXajall other knowng = 1=8
X

b2neighb(a)
Xb:

Furthermore there are some obvious choices for the second order conditional structure,
depending on the source of infection: If we have uniform external virus rain, then

V ar(Xajall other known) = const: (8.32)

On the other hand, if the infection comes from the nearest neighbors only, then, in-
tuitively, the number of infected individuals in the a-th region should be a binomial r. v.
with the number of viruses in the neighboring regions as the number of trials. Therefore
it is quite natural to assume that

V ar(Xajall other known) = const
X

b2neighb(a)
Xb: (8.33)

Clearly, there are many other interesting variants of this model. The simplest would
take into account some boundary conditions, and also perhaps would mix both the virus
rain and the infection from the (not necessarily nearest) neighbors. More complicated
models could in addition describe the time development of epidemic; for �nite periods of
time, this amounts to adding another coordinate to the index set of the random �eld.
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Appendix A

Solutions of selected problems

A.1 Solutions for Chapter 1

Problem 1.1 ([64]) Hint: decompose the integral into four terms corresponding to all possible
combinations of signs of X;Y . For X > 0 and Y > 0 use the bivariate analogue of (1.2):
EXY =

R1
0

R1
0 P (X > t; Y > s) dt ds. Also use elementary identities

P (X � t; Y � s)� P (X � t)P (Y � s) = P (X � t; Y � s)� P (X � t)P (Y � s)

= �(P (X � t; Y � s)� P (X � t)P (Y � s))

= �(P (X � t; Y � s)� P (X � t)P (Y � s)):

Problem 1.2 We prove a slightly more general tail condition for integrability, see Corollary
1.3.3.

Claim A.1.1 Let X � 0 be a random variable and suppose that there is C < 1 such that for

every 0 < � < 1 there is T = T (�) such that

P (X > Ct) � �P (X > t) for all t > T: (A.1)

Then all the moments of X are �nite.

Proof. Clearly, for unbounded random variables (A.1) cannot hold, unless C > 1 (and there
is nothing to prove if X is bounded). We shall show that inequality (A.1) implies that for
� = � logC(�), there are constants K;T <1 such that

N(x) � Kx�� for all x � T: (A.2)

Since � is arbitrarily close to 0, this will conclude the proof , eg. by using formula (1.2).
To prove that (A.1) implies (A.2), put an = CnT; n = 0; 2; : : :. Inequality (A.1) implies

N(an+1) � �N(an); n = 0; 1; 2; : : : : (A.3)

From (A.3) it follows that N(an) � N(T )�n, ie.

N(Cn+1T ) � N(T )�n for all n � 1: (A.4)

123
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To end the proof, it remains to observe that for every x > 0, choosing n such that CnT � x <
Cn+1T , we obtain N(x) � N(CnT ) � C1�

n. This proves (A.2) with K = N(T )��1T� logC �. 2

Problem 1.3 This is an easier version of Theorem 1.3.1 and it has a slightly shorter proof.
Pick t0 6= 0 and q such that P (X � t0) < q < 1. Then P (jXj � 2nt0) � q2

n
holds for

n = 1. Hence by induction P (jXj � 2nt0) � q2
n
for all n � 1. If 2nt0 � t < 2n+1t0,

then P (jXj � t) � P (jXj � 2nt0) � q2
n
� qt=(2t0) = e��t for some � > 0. This implies

Eexp(�jXj) <1 for all � < �, see (1.2).

Problem 1.4 See the proof of Lemma 2.5.1.

Problem 1.9 Fix t > 0 and let A 2 F be arbitrary. By the de�nition of conditional expectationR
A P (jXj > tjF) dP = EIAIjXj>t � Et�1jXjIAIjXj>t � t�1EjXjIA. Now use Lemma 1.4.2.

Problem 1.11
R
A U dP =

R
A V dP for all A = X�1(B), where B is a Borel subset of IR. Lemma

1.4.2 ends the argument.

Problem 1.12 Since the conditional expectation Ef�jFg is a contraction on L1 (or, to put
it simply, Jensen's inequality holds for the convex function x 7! jxj), therefore jEfXjY gj =
jajEjY j � EjXj and similarly jbjEjXj � EjY j. Hence jabjEjXjEjY j � EjXjEjY j.

Problem 1.13 EfY jXg = 0 implies EXY = 0. Integrating Y EfXjY g = Y 2 we get EY 2 =
EXY = 0.

Problem 1.14 We follow [38, page 314]: Since
R
X�a(Y �X) dP = 0 and

R
Y >b(Y �X) dP = 0,

we have

0 �

Z
X�a;Y�a

(Y �X) dP =

Z
X�a

(Y �X) dP �

Z
X�a;Y >a

(Y �X) dP

= �

Z
X�a;Y >a

(Y �X) dP = �

Z
Y >a

(Y �X) dP +

Z
X<a;Y >a

(Y �X) dP

=

Z
X<a;Y >a

(Y �X) dP � 0

therefore
R
X<a;Y >a(Y � X) dP = 0. The integrand is strictly larger than 0, showing that

P (X < a < Y ) = 0 for all rational a. Therefore X � Y a. s. and the reverse inequality follows
by symmetry.

Problem 1.15 See the proof of Theorem 1.8.1.

Problem 1.16

a) If X has discrete distribution P (X = xj) = pj , with ordered values xj < xj+1, then
for all � � 0 small enough we have �(xk + �) = (xk + �)

P
j�k pj +

P
j>k xjpj. Therefore

lim�!0
�(xk+�)��(xk)

� = P (X � xk).

b) If X has a continuous probability density function f(x), then �(t) = t
R t
�1 f(x) dx +R1

t xf(x) dx. Di�erentiating twice we get f(x) = �00(x).

For the general case one can use Problem 1.17 (and the references given below).

Problem 1.17 Note: Function U�(t) =
R
jx� tj�(dx) is called a (one dimensional) potential of

a measure � and a lot about it is known, see eg. [26]; several relevant references follow Theorem
4.2.2; but none of the proofs we know is simple enough to be written here.
Formula jx� tj = 2maxfx; tg � x� t relates this problem to Problem 1.16.

Problem 1.18 Hint: Calculate the variance of the corresponding distribution.
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Note: Theorem 2.5.3 gives another related result.

Problem 1.19 Write �(t; s) = expQ(t; s). Equality claimed in (i) follows immediately from
(1.17) with m = 1; (ii) follows by calculation with m = 2.

Problem 1.20 See for instance [76].

Problem 1.21 Let g be a bounded continuous function. By uniform integrability (cf. (1.18))
E(Xg(Y )) = limn!1E(Xng(Yn)) and similarly E(Y g(Y )) = limn!1E(Yng(Yn)). Therefore
EXg(Y ) = �E(Y g(Y )) for all bounded continuous g. Approximating indicator functions by
continuous g, we get

R
AX dP =

R
A �Y dP for all A = f! : Y (!) 2 [a; b]g. Since these A generate

�(Y ), this ends the proof.

A.2 Solutions for Chapter 2

Problem 2.1 Clearly �(t) = e�t2=2 1p
2�

R1
�1 e�(x�it)2=2 dx. Since e�z2=2 is analytic in complex

plane CC, the integral does not depend on the path of integration, ie.
R1
�1 e�(x�it)2=2 dx =R1

�1 e�x2=2 dx.

Problem 2.2 Suppose for simplicity that the random vectors X;Y are centered. The joint
characteristic function �(t; s) = E exp(it�X+is�Y) equals �(t; s) = exp(�1

2E(t�X)2 exp(�1
2E(s�

Y)2) exp(�E(t �X)(s �Y)). Independence follows, since E(t �X)(s �Y)) =
P

i;j tisjEXiYj = 0.

Problem 2.3 Here is a heavy-handed approach: Integrating (2.9) in polar coordinates we

express the probability in question as
R �=2
0

cos 2�
1�sin 2� sin 2� d�. Denoting z = e2i�; � = e2i�, this

becomes

4i

Z
j�j=1

z + 1=z

4� (z � 1=z)(� � 1=�)

d�

�
;

which can be handled by simple fractions.
Alternatively, use the representation below formula (2.9) to reduce the question to the

integral which can be evaluated in polar coordinates. Namely, write � = sin 2�, where
��=2 � � < �=2. Then

P (X > 0; Y > 0) =

Z 1

0

Z
I

1

2�
r exp(�r2=2) dr d�;

where I = f� 2 [��; �] : cos(� � �) > 0 and sin(� + �) > 0g. In particular, for � > 0 we have
I = (��; �=2 + �) which gives P (X > 0; Y > 0) = 1=4 + �=�.

Problem 2.7 By Corollary 2.3.6 we have f(t) = �(�it) = Eexp(tX) > 0 for each t 2 IR, ie.
log f(t) is well de�ned. By the Cauchy-Schwarz inequality f( t+s2 ) = Eexp(tX=2) exp(sX=2) �

(f(t)f(s))1=2, which shows that log f(t) is convex.
Note: The same is true, but less direct to verify, for the so called analytic ridge functions, see
[99].

Problem 2.8 The assumption means that we have independent random variables X1;X2 such
that X1 +X2 = 1. Put Y = X1 +1=2; Z = �X2 � 1=2. Then Y;Z are independent and Y = Z.
Hence for any t 2 IR we have P (Y � t) = P (Y � t; Z � t) = P (Y � t)P (Z � t) = P (Z � t)2,
which is possible only if either P (Z � t) = 0, or P (Z � t) = 1. Since t was arbitrary, the
cumulative distribution function of Z has a jump of size 1, i. e. Z is non-random.

For analytic proof, see the solution of Problem 3.6 below.
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A.3 Solutions for Chapter 3

Problem 3.1 Hint: Show that there is C > 0 such that Eexp(�tX) = Ct for all t � 0.
Condition X � 0 guarantees that EezX is analytic for <z < 0.

Problem 3.4 Write X =m+Y. Notice that the characteristic function ofm�Y andm+Y is
the same. Therefore P (m�Y 2 IL) = P (m+Y 2 IL). By Theorem 3.2.1 the probability is either
zero (in which case there is nothing to prove) or 1. In the later case, for almost all ! we have
m+Y 2 IL and m�Y 2 IL. But then, the linear combinationm = 1

2(m+Y)+ 1
2 (m�Y) 2 IL,

a contradiction.

Problem 3.5 Hint: Show that V ar(X) = 0.

Problem 3.6 The characteristic functions satisfy �X(t) = �X(t)�Y (t). This shows that �Y (t) =
1 in some neighborhood of 0. In particular, EY 2 = 0.

For probabilistic proof, see the solution of Problem 2.8.

A.4 Solutions for Chapter 4

Problem 4.1 See, eg. [98].

Problem 4.2 Denote � = corr(X;Y ) = sin �, where ��=2 � � � �=2 By Theorem 4.1.2 we
have

Efj
1j j
1 cos � + 
2 sin �jg

=
1

2�

Z 2�

0
j cos�j j cos� sin � + sin� cos �j d�

Z 1

0
r3e�r2=2 dr:

Therefore EjXj jY j = 1
�

R 2�
0 j cos�jj sin(� + �)j d� = 1

2�

R 2�
0 j sin(2� + �) � sin �j d�. Changing

the variable of integration to � = 2� we have

EjXj jY j =
1

4�

Z 4�

0
j sin(� + �)� sin �j d�

=
1

2�

Z 2�

0
j sin(� + �)� sin � d�:

Splitting this into positive and negative parts we get

EjXj jY j =
1

2�

Z ��2�

0
(sin(� + �)� sin �) d�

�
1

2�

Z 2�

��2�
(sin(� + �)� sin �) d� =

2

�
(cos � + � sin �):

Problem 4.3 Hint: Calculate EjaX + bY j in polar coordinates.

Problem 4.5 EjaX + bY j = 0 implies aX + bY = 0 with probability one. Hence Problem 2.8
implies that both aX and bY are deterministic.
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A.5 Solutions for Chapter 5

Problem 5.1 See [111].

Problem 5.2 Note: Theorem 6.3.1 gives a stronger result.

Problem 5.3 The joint characteristic function of X+U;X+V is �(t; s) =  X(t+s)�U (t)�V (s).
On the other hand, by independence of linear forms,

�(t; s) =  X(t)�X (s)�U (t)�V (s):

Therefore for all t; s small enough, we have �X(t + s) = �X(t)�X(s). This shows that there is
� > 0 such that �X(�2

�n) = C2�n . Corollary 2.3.4 ends the proof.
Note: This situation is not covered by Theorem 5.3.1 since some of the coe�cients in the

linear forms are zero.

Problem 5.4 Consider independent random variables �1 = X��Y; �2 = Y . Then X = �1+��2
and Y � �X = ���1+(1� �2)�2 are independent linear forms, therefore by Theorem 5.3.1 both
�1 and �2 are independent normal random variables. Hence X;Y are jointly normal.

A.6 Solutions for Chapter 6

Problem 6.1 Hint: Decompose X;Y into the real and imaginary parts.

Problem 6.2 For standardized one dimensional X;Y with correlation coe�cient � 6= 0 one has
P (X > �M jY > t) � P (X � �t > �M) which tends to 0 as t ! 1. Therefore �1;0 � P (X >
�M)� P (X > �M jY > t) has to be 1.

Notice that to prove the result in the general IRd � IRd-valued case it is enough to establish
stochastic independence of one dimensional variables u �X;v �Y for all u;v 2 IRd.

Problem 6.4 Without loss of generality we may assume Ef(X) = Eg(Y ) = 0: Also, by a linear
change of variable if necessary, we may assume EX = EY = 0, EX2 = EY 2 = 1. Expanding
f; g into Hermite polynomials we have

f(x) =
1X
k=0

fk=k!Hk(x)

g(x) =
1X
k=0

gk=k!Hk(x)

and
P
f2k=k! = Ef(X)2,

P
g2k=k! = Eg(Y )2. Moreover, f0 = g0 = 0 since Ef(X) = Eg(y) = 0.

Denote by q(x; y) the joint density of X;Y and let q(�) be the marginal density. Mehler's formula
(2.12) says that

q(x; y) =
1X
k=0

�k=k!Hk(x)Hk(y)q(x)q(y):

Therefore by Cauchy-Schwarz inequality

Cov(f; g) =
1X
k=1

�k=k!fkgk � j�j(
X

f2k=k!)
1=2(

X
g2k=k!)

1=2:

Problem 6.5 From Problem 6.4 we have corr(f(X); g(Y )) � j�j. Problem 2.3 implies j�j
2� �

1
2� arcsin j�j � P (X > 0;�Y > 0)� P (X > 0)P (�Y > 0) � �0;0:
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For the general case see, eg. [128, page 74 Lemma 2].

Problem 6.6 Hint: Follow the proof of Theorem 6.2.2. A slightly more general proof can be
found in [19, Theorem A].

Problem 6.7 Hint: Use the tail integration formula (1.2) and estimate (6.8), see Problem 1.5.

A.7 Solutions for Chapter 7

Problem 7.1 Since (X1;X1+X2) �= (X2;X1+X2), we have EfX1jX1+X2g = EfX2jX1+X2g,
cf. Problem 1.11.

Problem 7.2 By symmetry of distributions, (X1 + X2;X1 � X2) �= (X1 � X2;X1 + X2).
Therefore EfX1+X2jX1�X2g = 0, see Problem 7.1 and the result follows from Theorem 7.1.2.

Problem 7.5 (i) If Y is degenerated, then a = 0, see Problem 7.3. For non-degenerated Y the
conclusion follows from Problem 1.12, since by independence EfX + Y jY g = X.
(ii) Clearly, EfXjX + Y g = (1 � a)(X + Y ). Therefore Y = 1

1�aEfXjX + Y g � X and

kY kp �
2

1�akXkp.

Problem 7.6 Problem 7.5 implies that Y has all moments and a can be expressed explicitly by
the variances of X;Y . Let Z be independent of X normal such that EfZjZ +Xg = a(X + Z)
with the same a (ie. V ar(Z) = V ar(Y )). Since the normal distribution is uniquely determined
by moments, it is enough to show that all moments of Y are uniquely determined (as then they
have to equal to the corresponding moments of Z).

To this end write EY (X + Y )n = aE(X + Y )n+1, which gives (1 � a)EY n+1 =Pn
k=0 a

�
n+1
k

�
EY kEXn+1�k �

Pn�1
k=0 (

n
k)EY

k+1EXn�k.

Problem 7.7 It is obvious that EfXjY g = �Y , because Y has two values only, and two points
are always on some straight line; alternatively write the joint characteristic function.

Formula V ar(XjY ) = 1 � �2 follows from the fact that the conditional distribution of X
given Y = 1 is the same as the conditional distribution of �X given Y = �1; alternatively,
write the joint characteristic function and use Theorem 1.5.3. The other two relations follow
from (X;Y ) �= (Y;X).

Problem 7.3 Without loss of generality we may assume EX = 0. Put U = Y , V = X +Y . By
independence, EfV jUg = U . On the other hand EfU jV g = EfX+Y �XjX+Y g = X+Y = V .
Therefore by Problem 1.14, X + Y �= Y and X = 0 by Problem 3.6.

Problem 7.4 Without loss of generality we may assume EX = 0. Then EU = 0. By Jensen's
inequality EX2 +EY 2 = E(X + Y )2 � EX2, so EY 2 = 0.

Problem 7.8 This follows the proof of Theorem 7.1.2 and Lemma 7.3.2. Explicit computation
is in [21, Lemma 2.1].

Problem 7.9 This follows the proof of Theorem 7.1.2 and Lemma 7.3.2. Explicit computation
is in [148, Lemma 2.3].
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