Normal Distribution
characterizations with applications

Wiodzimierz Bryc
Department of Mathematics
University of Cincinnati
P O Box 210025
Cincinnati, OH 45221-0025
e-mail: bryc@uc.edu

December 22, 1994



Contents

Preface

Introduction

1 Probability tools
1.1 Moments . . . . . . . L e e
1.2 Lp-spaces . . . . . ..
1.3 Tailestimates . . . . . . . . . . . ..
1.4 Conditional expectations . . . . . . . . .. ... Lo
1.5 Characteristic functions . . . . . . . . .. ... L
1.6 Symmetrization . . . . . . .. Lo
1.7 Uniform integrability . . . . . . . ... ...
1.8 The Mellin transform . . . . . . . ... ... ... ... ... ...
1.9 Problems. . . . . . . e

2 Normal distributions
2.1 Univariate normal distributions . . . . . . . . .. . ... ... .. .....
2.2 Multivariate normal distributions . . . . . . ... .. ... L.
2.3 Analytic characteristic functions . . . . . . . .. ... L.
2.4 Hermite expansions . . . . . . . . . . . ... e
2.5 Cramer and Marcinkiewicz theorems . . . . . . ... .. ... ... ....
2.6 Largedeviations. . . . . . . . . ...

2.6.1 A numerical example . . . . .. ..o

2.7 Problems. . . . . . ...

3 Equidistributed linear forms
3.1 Two-stability . . . . . . . . . .
3.2 Measures on linear spaces . . . . . . . . . ...
3.3 Linearforms . . . . . . . . .. .
3.4 Exponential analogy . . . . . .. ... oL
3.5 Exponential distributions on lattices . . . . . .. .. ... ... ... ...
3.6 Problems. . . .. ... ...

4 Rotation invariant distributions
4.1 Spherically symmetric vectors . . . .. .. ..o
4.2 Rotation invariant absolute moments . . . . . . . ... ... ... ... ..

4.2.1 Proof of Theorem 4.22forp=1 . . ... .. ... .. .. .....

vii

23
23
24
31
33
34
36
38
38

39
39
40
43
46
47
49



V1 CUUINLLUIN 1O

4.2.2  Proof of Theorem 4.2.2 in the general case . . . . ... .. ... .. 61

4.2.3 Pairs of random variables . . . . . ... ... ... ... ... ... 63

4.3 Infinite spherically symmetric sequences . . . . . . . ... .. ... ... 65
4.4 Problems. . . . . . ... 69

5 Independent linear forms 71
5.1 Bernstein’s theorem . . . . . . . . . ... L 71
5.2 Gaussian distributions on groups . . . . . ... ... Lo 72
5.3 Independence of linear forms . . . . . . . ... . ... ... ... ... 75
5.4 Strongly Gaussian vectors . . . . . . . .. ..o 78
5.5 Joint distributions . . . . . . . . ... e 79
5.6 Problems . . . . . ... 80

6 Stability and weak stability 81
6.1 Coefficients of dependence . . . . . . . .. .. ... ... ... ... .. 81
6.1.1 Normalcase . . . . . . . . . . . . e 83

6.2 Weak stability . . . . . . ... 84
6.3 Stability . . . .. .. 86
6.4 Problems. . . . . . . ... 91

7 Conditional moments 93
7.1 Finite sequences . . . . . . . ... 93
7.2 Extension of Theorem 7.1.2 . . . . . . . . . . . . ... 95
7.3 Central Limit Theorem . . . . . . . . . . . . . . . 96
7.3.1 CLT fori.i.d.sums . .. .. . . . .. . 97

7.4 Empirical mean and variance . . . .. ... ... ... ... .. 98
7.5 Infinite sequences and conditional moments. . . . . . ... ... ... ... 99
7.6 Problems. . . . . . . .. 106

8 Gaussian processes 109
8.1 Construction of the Wiener process . . . . . .. ... .. ... ....... 109
8.2 Levy’s characterization theorem . . . . . . . . . ... ... ... ... ... 112
8.3 Arbitrary trajectories . . . . . .. ... 116
8.4 Second order conditional structure. . . . . . . ... ... L 119

A Solutions of selected problems 123
A.1 Solutions for Chapter 1 . . . . . . . . . . . .. ... ... ... .. 123
A.2 Solutions for Chapter 2 . . . . . . . . . . . .. ... ... 125
A.3 Solutions for Chapter 3 . . . . . . . . . . . .. ... ... 126
A.4 Solutions for Chapter 4 . . . . . . . . . . . ... ... 126
A.5 Solutions for Chapter 5 . . . . . . . . . . . .. ... ... 127
A.6 Solutions for Chapter 6 . . . . . . . . . . . .. ... ... ... 127
A.7 Solutions for Chapter 7. . . . . . . . . . . .. .. ... 128

Bibliography 129



Preface

This book is a concise presentation of the normal distribution on the real line and its
counterparts on more abstract spaces, which we shall call the Gaussian distributions.
The material is selected towards presenting characteristic properties, or characterizations,
of the normal distribution. There are many such properties and there are numerous rel-
evant works in the literature. In this book special attention is given to characterizations
generated by the so called Maxwell’s Theorem of statistical mechanics, which is stated
in the introduction as Theorem 0.0.1. These characterizations are of interest both intrin-
sically, and as techniques that are worth being aware of. The book may also serve as a
good introduction to diverse analytic methods of probability theory. We use characteristic
functions, tail estimates, and occasionally dive into complex analysis.

In the book we also show how the characteristic properties can be used to prove
important results about the Gaussian processes and the abstract Gaussian vectors. For
instance, in Section 5.4 we present Fernique’s beautiful proofs of the zero-one law and of
the integrability of abstract Gaussian vectors. The central limit theorem is obtained via
characterizations in Section 7.3.

The excellent book by Kagan, Linnik & Rao [73] overlaps with ours in the coverage of
the classical characterization results. Our presentation of these is sometimes less general,
but in return we often give simpler proofs. On the other hand, we are more selective in the
choice of characterizations we want to present, and we also point out some applications.
Characterization results that are not included in [73] can be found in numerous places of
the book, see Section 4.2, Chapter 7 and Chapter 8.

We have tried to make this book accessible to readers with various backgrounds. If
possible, we give elementary proofs of important theorems, even if they are special cases
of more advanced results. Proofs of several difficult classic results have been simplified.
We have managed to avoid functional equations for non-differentiable functions; in many
proofs in the literature lack of differentiability is a major technical difficulty.

The book is primarily aimed at graduate students in mathematical statistics and prob-
ability theory who would like to expand their bag of tools, to understand the inner work-
ings of the normal distribution, and to explore the connections with other fields. Charac-
terization aspects sometimes show up in unexpected places, cf. Diaconis & Ylvisaker [36].
More generally, when fitting any statistical model to the data, it is inevitable to refer
to relevant properties of the population in question; otherwise several different models
may fit the same set of empirical data, cf. W. Feller [53]. Monograph [125] by Prakasa
Rao is written from such perspective and for a statistician our book may only serve as a
complementary source. On the other hand results presented in Sections 7.5 and 8.3 are
quite recent and virtually unknown among statisticians. Their modeling aspects remain
to be explored, see Section 8.4. We hope that this book will popularize the interesting

vii
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and difficult area of conditional moment descriptions of random fields. Of course it is
possible that such characterizations will finally end up far from real life like many other
branches of applied mathematics. It is up to the readers of this book to see if the following
sentence applies to characterizations as well as to trigonometric series.

“Thinking of the extent and refinement reached by the theory of trigonometric
series in its long development one sometimes wonders why only relatively few
of these advanced achievements find an application.”

(A. Zygmund, Trigonometric Series, Vol. 1, Cambridge Univ. Press, Second Edition, 1959,
page xii)

There is more than one way to use this book. Parts of it have been used in a graduate
one-quarter course Topics in statistics. The reader may also skim through it to find results
that he needs; or look up the techniques that might be useful in his own research. The
author of this book would be most happy if the reader treats this book as an adventure into
the unknown — picks a piece of his liking and follows through and beyond the references.
With this is mind, the book has a number of references and digressions. We have tried to
point out the historical perspective, but also to get close to current research.

An appropriate background for reading the book is a one year course in real analysis
including measure theory and abstract normed spaces, and a one-year course in complex
analysis. Familiarity with conditional expectations would also help. Topics from prob-
ability theory are reviewed in Chapter 1, frequently with proofs and exercises. Exercise
problems are at the end of the chapters; solutions or hints are in Appendix A.

The book benefited from the comments of Chris Burdzy, Abram Kagan, Samuel Kotz,
Wiodek Smoleniski, Pawel Szablowski, and Jacek Wesolowski. They read portions of
the first draft, generously shared their criticism, and pointed out relevant references and
errors. My colleagues at the University of Cincinnati also provided comments, criticism
and encouragement. The final version of the book was prepared at the Institute for
Applied Mathematics of the University of Minnesota in fall quarter of 1993 and at the
Center for Stochastic Processes in Chapel Hill in Spring 1994. Support by C. P. Taft
Memorial Fund in the summer of 1987 and in the spring of 1994 helped to begin and to
conclude this endeavor.



Introduction

The following narrative comes from J. F. W. Herschel [63].

“Suppose a ball is dropped from a given height, with the intention that it shall
fall on a given mark. Fall as it may, its deviation from the mark is error, and
the probability of that error is the unknown function of its square, ie. of the
sum of the squares of its deviations in any two rectangular directions. Now,
the probability of any deviation depending solely on its magnitude, and not on
its direction, it follows that the probability of each of these rectangular devia-
tions must be the same function of its square. And since the observed oblique
deviation is equivalent to the two rectangular ones, supposed concurrent, and
which are essentially independent of one another, and is, therefore, a com-
pound event of which they are the simple independent constituents, therefore
its probability will be the product of their separate probabilities. Thus the
form of our unknown function comes to be determined from this condition...”

Ten years after Herschel, the reasoning was repeated by J. C. Maxwell [108]. In his
theory of gases he assumed that gas consists of small elastic spheres bumping each other;
this led to intricate mechanical considerations to analyze the velocities before and after the
encounters. However, Maxwell answered the question of his Proposition IV: What s the
distribution of velocities of the gas particles? without using the details of the interaction
between the particles; it lead to the emergence of the trivariate normal distribution. The
result that velocities are normally distributed is sometimes called Maxwell’s theorem. At
the time of discovery, probability theory was in its beginnings and the proof was considered
“controversial” by leading mathematicians.

The beauty of the reasoning lies in the fact that the interplay of two very natural
assumptions: of independence and of rotation invariance, gives rise to the normal law of
errors — the most important distribution in statistics. This interplay of independence
and invariance shows up in many of the theorems presented below.

Here we state the Herschel-Maxwell theorem in modern notation but without proof;
for one of the early proofs, see [6]. The reader will see several proofs that use various,
usually weaker, assumptions in Theorems 3.1.1, 4.2.1, 5.1.1, 6.3.1, and 6.3.3.

Theorem 0.0.1 Suppose random wvariables X,Y have joint probability distribution
p(dx, dy) such that

(i) u(+) is invariant under the rotations of R?;

(i) X,Y are independent.

Then X,Y are normally distributed.



This theorem has generated a vast literature. Here is a quick preview of pertinent
results in this book.

Polya’s theorem [122] presented in Section 3.1 says that if just two rotations by angles
7/2 and 7/4, preserve the distribution of X, then the distribution is normal. Generaliza-
tions to characterizations by the equality of distributions of more general linear forms are
given in Chapter 3. One of the most interesting results here is Marcinkiewicz’s theorem
[106], see Theorem 3.3.3.

An interesting modification of Theorem 0.0.1, discovered by M. Sh. Braverman [14]
and presented in Section 4.2 below, considers three i. i. d. random variables X,Y, Z
with the rotation-invariance assumption (i) replaced by the requirement that only some
absolute moments are rotation invariant.

Another insight is obtained, if one notices that assumption (i) of Maxwell’s theorem
implies that rotations preserve the independence of the original random variables X, Y.
In this approach we consider a pair X, Y of independent random variables such that the
rotation by an angle a produces two independent random variables X cosa + Y sin«
and Xsina — Y cosa. Assuming this for all angles o, M. Kac [71] showed that the
distribution in question has to be normal. Moreover, careful inspection of Kac’s proof
reveals that the only essential property he had used was that X,Y are independent and
that just one 7/4-rotation: (X +Y)/v/2, (X —Y)/+/2 produces the independent pair. The
result explicitly assuming the latter was found independently by Bernstein [8]. Bernstein’s
theorem and its extensions are considered in Chapter 5; Bernstein’s theorem also motivates
the assumptions in Chapter 7.

The following is a more technical description the contents of the book. Chapter 1
collects probabilistic prerequisites. The emphasis is on analytic aspects; in particular
elementary but useful tail estimates collected in Section 1.3. In Chapter 2 we approach
multivariate normal distributions through characteristic functions. This is a less intuitive
but powerful method. It leads rapidly to several fundamental facts, and to associated Re-
producing Kernel Hilbert Spaces (RKHS). As an illustration, we prove the large deviation
estimates on IR? which use the conjugate RKHS norm. In Chapter 3 the reader is intro-
duced to stability and equidistribution of linear forms in independent random variables.
Stability is directly related to the CLT. We show that in the abstract setup stability is
also responsible for the zero-one law. Chapter 4 presents the analysis of rotation invari-
ant distributions on IR? and on IR®. We study when a rotation invariant distribution
has to be normal. In the process we analyze structural properties of rotation invariant
laws and introduce the relevant techniques. In this chapter we also present surprising
results on rotation invariance of the absolute moments. We conclude with a short proof
of de Finetti’s theorem and point out its implications for infinite spherically symmetric
sequences. Chapter 5 parallels Chapter 3 in analyzing the role of independence of linear
forms. We show that independence of certain linear forms, a characteristic property of
the normal distribution, leads to the zero-one law, and it is also responsible for exponen-
tial moments. Chapter 6 is a short introduction to measures of dependence and stability
issues. Theorem 6.2.2 establishes integrability under conditions of interest, eg. in poly-
nomial biorthogonality as studied by Lancaster [94]. In Chapter 7 we extend results in
Chapter 5 to conditional moments. Three interesting aspects emerge here. First, normal-
ity can frequently be recognized from the conditional moments of linear combinations of
independent random variables; we illustrate this by a simple proof of the well known fact
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that the independence of the sample mean and the sample variance characterizes normal
populations, and by the proof of the central limit theorem. Secondly, we show that for
infinite sequences, conditional moments determine normality without any reference to in-
dependence. This part has its natural continuation in Chapter 8. Thirdly, in the exercises
we point out the versatility of conditional moments in handling other infinitely divisible
distributions. Chapter 8 is a short introduction to continuous parameter random fields,
analyzed through their conditional moments. We also present a self-contained analytic
construction of the Wiener process.






Chapter 1

Probability tools

Most of the contents of this section is fairly standard probability theory. The reader
shouldn’t be under the impression that this chapter is a substitute for a systematic course
in probability theory. We will skip important topics such as limit theorems. The emphasis
here is on analytic methods; in particular characteristic functions will be extensively used
throughout.

Let (€2, M, P) be the probability space, ie. € is a set, M is a o-field of its subsets
and P is the probability measure on (€2, M). We follow the usual conventions: X,Y, 7
stand for real random variables; boldface X,Y, Z denote vector-valued random variables.
Throughout the book EX = [, X (w) dP (Lebesgue integral) denotes the expected value
of a random variable X. We write X = Y to denote the equality of distributions, ie.
P(X € A) = P(Y € A) for all measurable sets A. Equalities and inequalities between
random variables are to be interpreted almost surely (a. s.). For instance X <Y +1
means P(X <Y + 1) = 1; the latter is a shortcut that we use for the expression P({w €
Q: X(w)<Y(w)+1})=1.

Boldface A, B, C will denote matrices. For a complex z = z + iy € C by z = Rz
and y = Sz we denote the real and the imaginary part of z. Unless otherwise stated,
log a = log, a denotes the natural logarithm of number a.

1.1 Moments

Given a real number r > 0, the absolute moment of order r is defined by E|X|"; the
ordinary moment of order r = 0, 1,... is defined as FX". Clearly, not every sequence of
numbers is the sequence of moments of a random variable X; it may also happen that
two random variables with different distributions have the same moments. However, in
Corollary 2.3.3 below we will show that the latter cannot happen for normal distributions.

The following inequality is known as Chebyshev’s inequality. Despite its simplicity it
has numerous non-trivial applications, see eg. Theorem 6.2.2 or [29].

Proposition 1.1.1 If f : Ry — R, is a non-decreasing function and Ef(|X]) = C <
00, then for all t > 0 such that f(t) # 0 we have

P(IX]> 1) < C/f(). (1.1)
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Indeed, Ef(|X]) = Jo f(|X])dP = f\X|2tf(|X|) apP = f\X|2tf(t) dP = f(t)P(|X]|>1).

It follows immediately from Chebyshev’s inequality that if E|X [P = C' < oo, then
P(|X| > t) < C/t’,t > 0. An implication in converse direction is also well known: if
P(|X| >t) < C/tP*e for some € > 0 and for all ¢ > 0, then EF|X|? < oo, see (1.4) below.

The following formula will often be useful®.

Proposition 1.1.2 If f : R, — R is a function such that f(x) = f(0) + [5 g(t)dt,
E{|f(X)|} < o0 and X >0, then

Ef(X) =)+ | g@)P(X > t)d. (12)
Moreover, if g > 0 and if the right hand side of (1.2) is finite, then Ef(X) < co.

Proof. The formula follows from Fubini’s theorem?, since for X > 0

/Qf(X) dP = /Q <f(0) + /000 Li<xg(t) dt) dP

0)+/ /1t<XdP +/ P(X > t)dt.
0

Corollary 1.1.3 If F|X|" < oo for an integer r > 0, then
EXT:rAwﬂ‘ﬁmxztﬁﬁ—rAWﬂIPcaYdet (1.3)
If E|X|" < oo for real r > 0 then
E|X|" = r/0°° 1 P(|X| > 1) dt. (1.4)
Moreover, the left hand side of (1.4) is finite if and only if the right hand side is finite.

Proof. Formula (1.4) follows directly from Proposition 1.1.2 (with f(z) = 2" and ¢(¢) =
Lft)=rt"1).
Since EX = EXt — EX~, where Xt = max{X,0} and X~ = min{X, 0}, therefore

applying Proposition 1.1.2 separately to each of this expectations we get (1.3). O

!The typical application deals with E f(X) when f(.) has continuous derivative, or when f(.) is convex.
Then the integral representation from the assumption holds true.
2See, eg. [9, Section 18] .
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1.2 L, -spaces

By L,(2, M, P), or L, if no misunderstanding may result, we denote the Banach space
of a. s. classes of equivalence of p-integrable M-measurable random variables X with the

norm
JEIX]P ifp> 1

Xl = VPR =
ess sup|X| if p = oc.

If X € L,, we shall say that X is p-integrable; in particular, X is square integrable if
EX? < oo. We say that X,, converges to X in L,, if ||X,, — X||, = 0 as n — oo. If
X, converges to X in Lo, we shall also use the phrase sequence X, converges to X in
mean-square.

Several useful inequalities are collected in the following.

Theorem 1.2.1 (i) for 1 < p < q < oo we have Minkowski’s inequality

Xy < 1l (1.5)

(ii) for 1/p+1/qg=1, p> 1 we have Hélder’s inequality

EXY < [[X[l[1Ylq- (1.6)

(i1i) for 1 < p < oo we have triangle inequality
X+ Yl < 1X]lp + 1Yl (1.7)

Special case p = ¢ = 2 of Hdlder’s inequality (1.6) reads EXY < VEX?2EY?2. It is
frequently used and is known as the Cauchy-Schwarz inequality.

For 1 < p < oo the conjugate space to L, (ie. the space of all bounded linear
functionals on L,) is usually identified with L,, where 1/p + 1/¢ = 1. The identification

is by the duality (f, g) = | f(w)g(w) dP.
For the proof of Theorem 1.2.1 we need the following elementary inequality.

Lemma 1.2.2 Fora,b> 0,1 <p<oo and1/p+1/q=1 we have
ab < af/p+bl/q. (1.8)

Proof. Function ¢ — #/p + ¢t 9/q has the derivative *~! — ¢t 971, The derivative is
positive for ¢ > 1 and negative for 0 < ¢ < 1. Hence the maximum value of the function
for t > 0 is attained at ¢t = 1, giving

/p+t /g > 1.

Substituting ¢ = a'/7b~/? we get (1.8). O

Proof of Theorem 1.2.1 (ii). If either | X]||, = 0 or ||Y||; = 0, then XY = 0 a. s.
Therefore we consider only the case || X||,||Y]|; > 0 and after rescaling we assume || X||, =
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IIY|l, = 1. Furthermore, the case p = 1,q¢ = oo is trivial as |[XY| < |X|||Y]|e- For
1 < p < oo by (1.8) we have

XY < [X]P/p+[Y]"/q.
Integrating this inequality we get |[EXY| < E|XY| <1=|X|,IIY|l, O
Proof of Theorem 1.2.1 (i). For p = 1 this is just Jensen’s inequality; for a more

general version see Theorem 1.4.1. For 1 < p < oo by Holder’s inequality applied to the
product of 1 and |X P we have

IXIlp = E{IX- 1} < (BIX|9)P(B1)Y = || X7,

where r is computed from the equation 1/r + p/q = 1. (This proof works also for p =1
with obvious changes in the write-up.) O

Proof of Theorem 1.2.1 (iii). The inequality is trivial if p=1 or if [ X + Y|, = 0. In
the remaining cases

X + V) < B{(X[+ [YIX + Y[~} = B{IX||X + Y]"~'} + B{|Y[|X + Y~}
By Holder’s inequality
IX + VI < [ XlIX + Y5+ [V ]| X+ V5.

Since p/q = p — 1, dividing both sides by ||X + Y|[2/% we get the conclusion. O

By Var(X) we shall denote the variance of a square integrable r. v. X
Var(X) = EX? — (EX)* = E(X — EX)*

The correlation coefficient corr(X,Y) is defined for square-integrable non-degenerate r. v.
X,Y by the formula

EXY — EXEY
corr(X,Y) = .
)= X X - BV
The Cauchy-Schwarz inequality implies that —1 < corr(X,Y) < 1.

1.3 Tail estimates

The function N(xz) = P(|X| > z) describes tail behavior of r. v. a X. Inequalities
involving N(-) similar to Problems 1.2 and 1.3 are sometimes easy to prove. Integrability
that follows is of considerable interest. Below we give two rather technical tail estimates
and we state several corollaries for future reference. The proofs use only the fact that
N :[0,00) — [0,1] is a non-increasing function such that lim, ., N(z) = 0.
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Theorem 1.3.1 If there are C' > 1,0 < q < 1,29 > 0 such that for all x > x
N(Czx) < gN(x — zy), (1.9)

then there is M < oo such that N(z) < 2% where f = —loge q.

Proof. Let a, be such that when a, = x, — xy then a,,; = Cz,. Solving the resulting
recurrence we get a, = C™ — b, where b = Czy(C — 1)~'. Equation (1.9) says N(a,1) <
CN (ay). Therefore

N(a,) < N(ap)q".

This implies the tail estimate for arbitrary x > 0. Namely, given x > 0 choose n such

that a, <x < apyq1. Then

K
N(z) < N(ay) < Kq" = —q" 5% = M (2 4 b)F.
q

The next results follow from Theorem 1.3.1 and (1.4) and are stated for future reference.

Corollary 1.3.2 If there is 0 < ¢ < 1 and xg > 0 such that N(2z) < qN(x — xg) for all
T > 19, then E|X|° < oo for all 3 < log,1/q.

Corollary 1.3.3 Suppose there is C > 1 such that for every 0 < q¢ < 1 one can find
zo > 0 such that
N(Cx) < ¢N(x) (1.10)

for all x > xy. Then E|X|P < oo for all p.

As a special case of Corollary 1.3.3 we have the following.

Corollary 1.3.4 Suppose there are C' > 1, K < 0o such that

N(Cz) < KN;;’“") (1.11)

for all x large enough. Then E|X|P < oo for all p.
The next result deals with exponentially small tails.

Theorem 1.3.5 If there are C' > 1,1 < K < 00, x9 > 0 such that

N(Cz) < KN?*(x — x4) (1.12)
for all x > xy, then there are M < oo, 3 > 0 such that

N(z) < M exp(—fz*),

where o = log 2.



viaribm L. rhubAbiutl r LUYUULS
Proof. As in the proof of Theorem 1.3.1, let a, = C™ — b,b = Cz/(C — 1). Put
¢n = logy N(ay). Then (1.12) gives
N(anss) < KN?(a),

which implies
Iny1 < 2q, + 1. (1.13)

Therefore by induction we get
Gmin < 2"(1 4 gm) — 1. (1.14)

Indeed, (1.14) becomes equality for n = 0. If it holds for n = k, then ¢ 1511 < 2¢mir+1 <
2(25(1 + ¢pn) — 1) + 1 = 28¥1(1 + ¢,,,) — 1. This proves (1.14) by induction.

Since a, — oo, we have N(a,) — 0 and ¢, — —oo. Choose m large enough to have
1+ ¢n < 0. Then (1.14) implies

N(an-i-m) < K2n(1+qm) = exp _5271.

The proof is now concluded by the standard argument. Selecting large enough M we
have N(z) < 1 < Mexp —pz® for all z < a,,. Given z > a,, choose n > 0 such that
pim < T < Qpime1- Then

N(z) < N(tnim) < exp—f2" < M exp(—f2/° @mtt) < M exp —fa.

Corollary 1.3.6 If there are C' < oo, xy > 0 such that
N(V2z) < CN*(z — xo),

then there is 3 > 0 such that Eexp(f|X|?) < co.

Corollary 1.3.7 If there are C' < 0o, x9 > 0 such that
N(27) < ON?*(x — x4),

then there is 3 > 0 such that E exp(3|X]) < co.

1.4 Conditional expectations

Below we recall the definition of the conditional expectation of a r. v. with respect to a
o-field and we state several results that we need for future reference. The definition is as
old as axiomatic probability theory itself, see [82, Chapter V page 53 formula (2)]. The
reader not familiar with conditional expectations should consult textbooks, eg. Billingsley
[9, Section 34], Durrett [42, Chapter 4], or Neveu [117].

Definition 1.4.1 Let (2, M, P) be a probability space. If F C M is a o-field and X
s an integrable random wvariable, then the conditional expectation of X given F is an
integrable F-measurable random variable Z such that [, X dP = [, Z dP for all A € F.
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Conditional expectation of an integrable random variable X with respect to a o-field
F C M will be denoted interchangeably by F{X|F} and EZX. We shall also write
E{X|Y} or EY X for the conditional expectation E{X|F} when F = o(Y) is the o-field
generated by a random variable Y.

Existence and almost sure uniqueness of the conditional expectation E{X|F} follows
from the Radon-Nikodym theorem, applied to the finite signed measures u(A) = [, X dP
and Pz, both defined on the measurable space (€2, F). In some simple situations more
explicit expressions can also be found.

Example. Suppose F is a o-field generated by the events Ay, Ao, ..., A, which form
a non-degenerate disjoint partition of the probability space 2. Then it is easy to check
that

E{X|F}(w) = kimkuk (),

where my = [4, X dP/P(A). In other words, on Ay, we have E{X|F} = [, X dP/P(Ay).
In particular, if X is discrete and X = 3 x;Ip,, then we get intuitive expression

E{X|F} = ijP(Bj|Ak) for w € Ay.

Example. Suppose that f(x,y) is the joint density with respect to the Lebesque mea-
sure on IR? of the bivariate random variable (X,Y) and let fy(y) # 0 be the (marginal)
density of Y. Put f(zly) = f(z,y)/fy(y). Then E{X|Y} = h(Y), where h(y) =

J2 e f(zly) de.
The next theorem lists properties of conditional expectations that will be used without
further mention.

Theorem 1.4.1 (i) If Y is F-measurable random variable such that X and XY are
integrable, then E{XY|F} = YE{X|F};

(ii) If G C F, then ESET = E9;

(111) If o(X,F) and N are independent o-fields, then E{X|N\V F} = E{X|F}; here
NV F denotes the o-field generated by the union N'U F;

(iv) If g(z) is a convex function and E|g(X)| < oo, then g(E{X|F}) < E{g9(X)|F};

(v) If F is the trivial o-field consisting of the events of probability 0 or 1 only, then
E{X|F}=EX;

(vi) If X, Y are integrable and a,b € R then E{aX + bY|F} = aE{X|F} + bE{Y |F};
(vii) If X and F are independent, then E{X|F} = EX.

Remark: Inequality (iv) is known as Jensen’s inequality and this is how we shall refer to it.
The proof uses the following.

Lemma 1.4.2 If Y] and Y, are F-measurable and [,Y,dP < [,Y5dP for all A € F,
then Y1 <Y almost surely. If [, Y1dP = [, Y2dP for all A € F, then Y, = Y5.
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Proof. Let A, = {Y} > Y, + ¢} € F. Since [, Y1dP > [, YodP + e¢P(A,), thus
P(A.) > 0 is impossible. Event {Y; > Y5} is the countable union of the events A, (with
e rational); thus it has probability 0 and Y; < Y5 with probability one.

The second part follows from the first by symmetry. O

Proof of Theorem 1.4.1.

(i) This is verified first for Y = I (the indicator function of an event B € F).
Let Y7 = E{XY|F}, Y, = YE{X|F}. From the definition one can easily see that both
J4Y1dP and [, Y>dP are equal to [4,5 X dP. Therefore Y; = Y5 by the Lemma 1.4.2.

For the general case, approximate Y by simple random variables and use (vi).

(ii) This follows from Lemma 1.4.2: random variables Y, = E{X|F}, Y = E{X|G}
are G-measurable and for A in G both [, Y; dP and [, Y2 dP are equal to [, X dP.

(iii) Let Y7 = F{X|N'V F},Y; = E{X|F}. We check first that

/YldP:/YZdP
A A

for all A = BN C, where B € N and C € F. This holds true, as both sides of the
equation are equal to P(B) [ X dP. Once equality [, Y, dP = [, Y, dP is established for
the generators of the o-field, it holds true for the whole o-field N'\/ F; this is standard
measure theory, see 7 — A Theorem [9, Theorem 3.3].

(iv) Here we need the first part of Lemma 1.4.2. We also need to know that each
convex function g(z) can be written as the supremum of a family of affine functions

fap(x) = ax +0b. Let Y1 = E{g(X)|F},Ys = fapo(E{X|F}),A € F. By (vi) we have

[ vidP = [ (X)aP = fuo( [ X)dP = fus( [ B{X|F}) aP = [ VoaP.

Hence f,,(E{X|F}) < E{g(X)|F}; taking the supremum (over suitable a,b) ends the
proof.
(v), (vi), (vii) These proofs are left as exercises. O

Theorem 1.4.1 gives geometric interpretation of the conditional expectation E{-|F}
as the projection of the Banach space L,(§2, M, P) onto its closed subspace L,($2, F, P),
consisting of all p-integrable F-measurable random variables, p > 1. This projection is
“self adjoint” in the sense that the adjoint operator is given by the same “conditional
expectation” formula, although the adjoint operator acts on L, rather than on L,; for
square integrable functions E{.|F} is just the orthogonal projection onto Ly(f2, F, P).
Monograph [117] considers conditional expectation from this angle.

We will use the following (weak) version of the martingale® convergence theorem.

Theorem 1.4.3 Suppose F, is a decreasing family of o-fields, ie. F,y1 C F, for all
n > 1. If X is integrable, then E{X|F,} — E{X|F} in Li-norm, where F is the
intersection of all JF,.

3 A martingale with respect to a family of increasing o-fields JF,, is and integrable sequence X,, such
that E(X,1|Fn) = Xn. The sequence X,, = E(X|F,) is a martingale. The sequence in the theorem is
of the same form, except that the o-fields are decreasing rather than increasing.
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Proof. Suppose first that X is square integrable. Subtracting m = FEX if necessary,
we can reduce the convergence question to the centered case EX = (0. Denote X, =
E{X|F,}. Since F, 1 C F,, by Jensen’s inequality EX? > 0 is a decreasing non-negative
sequence. In particular, EX? converges.

Let m < n be fixed. Then F(X, — X,,)? = EX?+ EX?% —2EX,X,,. Since F,, C F,,,
by Theorem 1.4.1 we have

EXp X = EE{X, Xpn|Fo} = EXyE{X,|F}
= EX,E{E{X|F,}|F.} = EX,E{X|F,} = EXZ.

Therefore E(X, — X;n)? = EX2 — EX?2. Since EX? converges, X, satisfies the Cauchy
condition for convergence in Ly norm. This shows that for square integrable X, sequence
{X,} converges in L.

If X is not square integrable, then for every e > 0 there is a square integrable Y such
that F|X — Y| < e. By Jensen’s inequality E{X|F,} and E{Y|F,} differ by at most €
in L;-norm; this holds uniformly in n. Since by the first part of the proof E{Y|F,} is
convergent, it satisfies the Cauchy condition in Ly and hence in L;. Therefore for each
e > 0 we can find N such that for all n,m > N we have E{|E{X|F,} — E{X|F.}|} < 3e.
This shows that F{X|F,} satisfies the Cauchy condition and hence converges in L.

The fact that the limit is X = E{X|F} can be seen as follows. Clearly X, is
Fn-measurable for all n, ie. it is F-measurable. For A € F (hence also in F,), we
have EXIy = EX,14. Since |[EX, 14y — EX 4| < E|X,, — Xoo|la < F|X,, — Xo| — 0,
therefore £ X, I4, — EX, Is. This shows that FXIy = EX, I4 and by definition,
X = E{X|F}. O

1.5 Characteristic functions

The characteristic function of a real-valued random variable X is defined by ¢x(t) =
FEexp(itX), where 7 is the imaginary unit (:> = —1). Tt is easily seen that

Pax+o(t) = €™y (at). (1.15)
If X has the density f(x), the characteristic function is just its Fourier transform: ¢(t) =
[, e f(x) dx. If $(t) is integrable, then the inverse Fourier transform gives
1=,
= — i (1) dt.
fla)=5= [ e o)

This is occasionally useful in verifying whether the specific ¢(t) is a characteristic function
as in the following example.

Example 1.5.1 The following gives an example of characteristic function that has finite
support. Let ¢(t) =1 —|t| for |t < | <1 and 0 otherwise. Then

Lot 1/t 11—cosx

Since f(x) = L1252 s non-negative and integrable, ¢(t) is indeed a characteristic func-
tion.
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The following properties of characteristic functions are proved in any standard probability
course, see eg. [9, 54].

Theorem 1.5.1 (i) The distribution of X is determined uniquely by its characteristic
function ¢(t).
(i) If E|X|" < oo for some r = 0,1,..., then ¢(t) is r-times differentiable, the
deriwative is uniformly continuous and
k g d*
EX* = (i)t
()t o)
for all0 <k <r.
(iii) If ¢(t) is 2r-times differentiable for some natural v, then EX?" < oo.
(iv) If X,Y are independent random variables, then ¢xiy(t) = ox(t)py(t) for all
teR.

For a d-dimensional random variable X = (X7, ..., X) the characteristic function ¢x :
R? — C is defined by ¢x(t) = Eexp(it - X), where the dot denotes the dot (scalar)
product, ie. x-y = > xxyx. For a pair of real valued random variables X,Y, we also
write ¢(t,s) = ¢(x,v)((,5)) and we call ¢(t, s) the joint characteristic function of X and
Y.

The following is the multi-dimensional version of Theorem 1.5.1.

Theorem 1.5.2 (i) The distribution of X is determined uniquely by its characteristic

function ¢(t).
(i7) If E||X||" < oo, then ¢(t) is r-times differentiable and

for all0 <k <r.
(iii) If X, Y are independent R¢-valued random variables, then

¢x+v(t) = ox(t)Py(t)
for all t in R

The next result seems to be less known although it is both easy to prove and to
apply. We shall use it on several occasions in Chapter 7. The converse is also true if we
assume that the integer parameter r in the proof below is even or that joint characteristic
function ¢(t, s) is differentiable; to prove the converse, one can follow the usual proof of
the inversion formula for characteristic functions, see, eg. [9, Section 26]. Kagan, Linnik
& Rao [73, Section 1.1.5] state explicitly several most frequently used variants of (1.17).

Theorem 1.5.3 Suppose real valued random variables X,Y have the joint characteristic
function ¢(t,s). Assume that E|X|™ < oo for some m € IN. Let g(y) be such that

E{X™Y} = g(Y).
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Then for all real s

(—i)mat—r; (t,5)| = Bg(v)explisy). (1.16)

t=0

In particular, if g(y) = X cpy® is a polynomial, then

k

— Z(—i)kck%qﬁ(o, s). (1.17)

t=0 k

i 2t s)

otm

Proof. Since by assumption E|X|™ < oo, the joint characteristic function ¢(t,s) =
FEexp(itX +isY’) can be differentiated m times with respect to ¢ and

aat—m¢(t’ s) =i"EX™exp(itX +isY).
Putting t=0 establishes (1.16), see Theorem 1.4.1(i).

In order to prove (1.17), we need to show first that E|Y|” < oo, where r is the
degree of the polynomial g(y). By Jensen’s inequality F|g(Y)| < E|X|™ < oo, and since
lg(y)/y"| — const # 0 as |y| — oo, therefore there is C' > 0 such that |y|” < Clg(y)| for
all y. Hence EY|" < oo follows.

Formula (1.17) is now a simple consequence of (1.16); indeed, for 0 < k < r we
have EY*exp(isY) = (—i)Fk¢(0, s); this formula is obtained by differentiating k-times
Fexp(isY') under the integral sign. O

1.6 Symmetrization

Definition 1.6.1 A random variable X (also: a vector valued random variable X) is
symmetric if X and —X have the same distribution.

Symmetrization techniques deal with comparison of properties of an arbitrary variable
X with some symmetric variable Xj,,,,. Symmetric variables are usually easier to deal
with, and proofs of many theorems (not only characterization theorems, see eg. [76])
become simpler when reduced to the symmetric case.

There are two natural ways to obtain a symmetric random variable X, from an ar-
bitrary random variable X. The first one is to multiply X by an independent random sign
+1; in terms of the characteristic functions this amounts to replacing the characteristic
function ¢ of X by its symmetrization 1(¢(¢) + ¢(—t)). This approach has the advantage
that if X is symmetric, then its symmetrization Xy, has the same distribution as X.
Integrability properties are also easy to compare, because | X| = | Xy |.

The other symmetrization, which has perhaps less obvious properties but is frequently
found more useful, is defined as follows. Let X' be an independent copy of X. The
symmetrization X of X is defined by X = X — X’. In terms of the characteristic functions
this corresponds to replacing the characteristic function ¢(¢) of X by the characteristic
function |¢(#)|?. This procedure is easily seen to change the distribution of X, except
when X = 0.
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Theorem 1.6.1 (i) If the symmetrization X of a random variable X has a finite moment
of order p > 1, then E|X [P < oc.

(ii) If the symmetrization X of a random wvariable X has finite exponential moment
Eexp(\|X]|), then Eexp A X]| < 00,A > 0. -

(iii) If the symmetrization X of a random variable X satisfies Eexp A|X|? < oo, then
FEexp A|X|? < 0o, A > 0.

The usual approach to Theorem 1.6.1 uses the symmetrization inequality, which is of
independent interest (see Problem 1.20) and formula (1.2). Our proof requires extra
assumptions, but instead is short, does not require X and X’ to have the same distribution,
and it also gives a more accurate bound (within its domain of applicability).

Proof in the case, when F|X| < oo and FX = 0: Let g(z) > 0 be a con-
vex function, such that Eg(X) < oo and let X, X' be the independent copies of X, so
that conditional expectation EXX' = FX = 0. Then Eg(X) = Eg(X — E*X') =
Eg(EX{X — X'}). Since by Jensen’s inequality, see Theorem 1.4.1 (iv) we have
Eg(EX{X — X'}) < Eg(X — X'), therefore Eg(X) < Eg(X —X') = Eg(X) < oo.
To end the proof, consider three convex functions g(z) = |zP,g(x) = exp(Az) and

g(x) = exp(A\z?).

1.7 Uniform integrability

Recall that a sequence {X,,},>; is uniformly integrable?, if

lim sup/ | X, | dP = 0.
{1Xn >t}

t—00 n>1

Uniform integrability is often used in conjunction with weak convergence to verify
the convergence of moments. Namely, if X,, is uniformly integrable and converges in
distribution to Y, then Y is integrable and

EY = lim EX,,. (1.18)

n—o0

The following result will be used in the proof of the Central Limit Theorem in Section
7.3.

Proposition 1.7.1 If X, X,, ... are centered i. i. d. random variables with finite second
moments and S, = ¥ X; then {£S2},>1 is uniformly integrable.

The following lemma is a special case of the celebrated Khinchin inequality.

Lemma 1.7.2 Ife€; are £1 valued symmetric independent r. v., then for all real numbers
aj

E (znj ajej) <3 (i a§> (1.19)

“The contents of this section will be used only in an application part of Section 7.3.
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Proof. By independence and symmetry we have

4
n n

E (Z aj&j) =2 4 +6) diq
j=1 j=1

i#]

which is less than 3 ( fag 423, a?a?). O

The next lemma gives the Marcinkiewicz-Zygmund inequality in the special case needed
below.

Lemma 1.7.3 If X are i. ©. d. centered with fourth moments, then there is a constant
C < oo such that
ES) < Cn’EX} (1.20)

Proof. Asin the proof of Theorem 1.6.1 we can estimate the fourth moments of a centered

r. v. by the fourth moment of its symmetrization, ES: < ES?. N
Let €; be independent of X};’s as in Lemma 1.7.2. Then in distribution S, = > 65X

Therefore, integrating with respect to the distribution of ¢; first, from (1.19) we get

2
ES! < 3E (Z )75) =3E Y X?X? < 3n’EX],

Since || X — X’||; < 2||X||4 by triangle inequality (1.7), this ends the proof with C' = 3-2%.
a

We shall also need the following inequality.

Lemma 1.7.4 If U,V > 0 then

/ (U+V)2dP§4< U dpP + V2dP>.
U4V >2t U>t

V>t

Proof. By (1.2) applied to f(z) = *I,~9; we have

2t

/ U+ V)2dP = [ 22P(U +V > ) da.
U+V>2t
Since P(U+V >z) < P(U > x/2) + P(V > z/2), we get

/ (U+V)*dP < 4/00(2?!P(U > y)+2yP(V > y)) dy = 4/ U?dP+4 [ V2dP.
U+V>2t t Ust

V>t

O

Proof of Proposition 1.7.1. We follow Billingsley [10, page 176].
Let € > 0 and choose M > 0 such that [;x.an [X[dP < e Split X; = X, + X,

where X, = Xilqx,<my — E{XiI{x,<my} and let S, S” denote the corresponding sums.
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Notice that for any U > 0 we have Ul{jy|smy < U?/m. Therefore - [ <, m(S),)? dP <
t2n"2E(S!)*, which by Lemma 1.7.3 gives

1

Si)?dP < CM*/t. 1.21
o I C AR Ye v (121)

Now we use orthogonality to estimate the second term:

1 1
- f(s;;)Q dP < —E(S!)? < E|X]|* < ¢ (1.22)
n J|S!|>ty/n n

To end the proof notice that by Lemma 1.7.4 and inequalities (1.21), (1.22) we have

1 1 CM*
- SpdP < — (ISl +1Sp)* dP < —3
n J{isul>26vm) n J{isy +sy]>2t/m)

+ €.

Therefore lim sup,_, ., sup,, % Jiisn1>2tym) S2dP < e. Since € > 0 is arbitrary, this ends the
proof. O

1.8 The Mellin transform

Definition 1.8.1 ® The Mellin transform of a random variable X > 0 is defined for all
complex s such that EX* 1 < 0o by the formula M(s) = EX*L.

The definition is consistent with the usual definition of the Mellin transform of an inte-
grable function: if X has a probability density function f(z), then the Mellin transform
of X is given by M(s) = [ 25! f(z) dx.

Theorem 1.8.1 % If X > 0 is a random variable such that EX*! < oo for some a > 1,
then the Mellin transform M(s) = EX*™', considered for s € C such that Rs = a,
determines the distribution of X uniquely.

Proof. The easiest case is when ¢ =1 and X > 0. Then M(s) is just the characteristic
function of log(X); thus the distribution of log(X), and hence the distribution of X, is
determined uniquely.

In general consider finite non-negative measure p defined on (R, B) by

A :/ Xl gp.
(A) -

Then M(s)/M(a) is the characteristic function of a random variable £ : = — log(x)
defined on the probability space (IR, B, P') with the probability distribution P'(.) =
p(.)/p(IRy). Thus the distribution of € is determined uniquely by M(s). Since e has
distribution P'(.), p is determined uniquely by M(.). It remains to notice that if F' is the
distribution of our original random variable X, then dF = ' %u(dz) + u(IR, )do(dz), so
F(.) is determined uniquely, too. O

5The contents of this section has more special character and will only be used in Sections 4.2 and 4.1.
See eg. [152].
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Theorem 1.8.2 If X > 0 and EX® < oo for some a > 0, then the Mellin transform of
X is analytic in the strip 1 < Rs < 1 + a.

Proof. Since for every s with 0 < Rs < a the modulus of the function w — X?*log(X) is
bounded by an integrable function Cy + C2|X|%, therefore EX*® can be differentiated with
respect to s under the expectation sign at each point 5,0 < Rs < a. O

1.9 Problems

Problem 1.1 ([64]) Use Fubini’s theorem to show that if XY, X,Y are integrable, then
EXY — EXEY = / / (P(X >1,Y > ) — P(X > )P(Y > s)) dt ds.

Problem 1.2 Let X > 0 be a random variable and suppose that for every 0 < q < 1
there is T =T(q) such that

P(X > 2t) < qP(X >t) forallt >T.
Show that all the moments of X are finite.
Problem 1.3 Show that if X > 0 is a random variable such that
P(X > 2t) < (P(X > t))* forallt >0,
then Eexp(A|X|) < oo for some A > 0.

Problem 1.4 Show that if Eexp(AX?) = C' < oo for some a > 0, then

2
Fexp(tX) < Cexp(t—)

2\
for all real t.

Problem 1.5 Show that (1.11) implies E {|X|‘X|} < 0.
Problem 1.6 Prove part (v) of Theorem 1.4.1.
Problem 1.7 Prove part (vi) of Theorem 1.4.1.
Problem 1.8 Prove part (vii) of Theorem 1.4.1.

Problem 1.9 Prove the following conditional version of Chebyshev’s inequality: iof F is
a o-field, and E|X| < oo, then

P(|X]>t|F) < E{|X] [F}/t

almost surely.
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Problem 1.10 Show that if (X,Y") is uniformly distributed on a circle centered at (0,0),
then for every a,b there is a non-random constant C' = C(a,b) such that E{X|aX+b0Y} =
C(a,b)(aX +bY).

Problem 1.11 Show that if (U,V, X) are such that in distribution (U, X) = (V, X) then
E{U|X} = E{V|X} almost surely.

Problem 1.12 Show that if X,Y are integrable non-degenerate random variables, such
that
E{X|Y} =aY, E{Y|X} = bX,

then |ab| < 1.

Problem 1.13 Suppose that X,Y are square-integrable random variables such that
E{X|Y} =Y, E{Y|X} =0.

Show that Y = 0 almost surely’ .

Problem 1.14 Show that if X,Y are integrable such that E{X|Y'} =Y and E{Y|X} =
X, then X =Y a. s.

Problem 1.15 Prove that if X > 0, then function ¢(t) :== EX®", where t € R, deter-
manes the distribution of X uniquely.

Problem 1.16 Prove that function ¢(t) := Emax{X,t} determines uniquely the distri-
bution of an integrable random variable X in each of the following cases:

(a) If X is discrete.

(b) If X has continuous density.

Problem 1.17 Prove that, if E|X| < oo, then function ¢(t) := E|X —t| determines
uniquely the distribution of X.

Problem 1.18 Let p > 2 be fized. Show that exp(—|t|P) is not a characteristic function.

Problem 1.19 Let Q(t,s) = log ¢(t, s), where ¢(t, s) is the joint characteristic function
of square-integrable r. v. X,Y .

(i) Show that E{X|Y} = pY implies
0 d
EQ(ta S) - p£Q(0,S)

t=0

"There are, however, non-zero random variables X,Y with this properties, when square-integrability
assumption is dropped, see [77].
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(ii) Show that E{X?|Y'} = a + bY + cY? implies

ot +(Saws)

ot?

t=0

2

2
=—a+ ib%Q(O, s) + C%Q(O, s) + ¢ (d%Q(O, s)) :

Problem 1.20 (see eg. [76]) Suppose a € IR is the median of X.
(i) Show that the following symmetrization inequality
P(|X| > t) <2P(1X| > t — |a])
holds for all t > |a|.

(i1) Use this inequality to prove Theorem 1.6.1 in the general case.

Problem 1.21 Suppose (X,,,Y,) converge to (X,Y) in distribution and {X,}, {Y,} are
uniformly integrable. If E(X,|Y,) = pY, for all n, show that E(X|Y) = pY.

Problem 1.22 Prove (1.18).
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Chapter 2

Normal distributions

In this chapter we use linear algebra and characteristic functions to analyze the multivari-
ate normal random variables. More information and other approaches can be found, eg.
in [113, 120, 145]. In Section 2.5 we give criteria for normality which will be used often
in proofs in subsequent chapters.

2.1 Univariate normal distributions

The usual definition of the standard normal variable Z specifies its density f(z) =

IZ
\/Lz—ﬁe_T. In general, the so called N(m, o) density is given by

1 _@=—m)?
e 202

fx) =

2o

By completing the square one can check that the characteristic function ¢(t) = Ee'? =

[, e f(z) dx of the standard normal r. v. Z is given by

see Problem 2.1.

In multivariate case it is more convenient to use characteristic functions directly. Be-
sides, characteristic functions are our main technical tool and it doesn’t hurt to start using
them as soon as possible. We shall therefore begin with the following definition.

Definition 2.1.1 A real valued random variable X has the normal N(m, o) distribution
if its characteristic function has the form

1
o(t) = exp(itm — 502t2),
where m, o are real numbers.

From Theorem 1.5.1 it is easily to check by direct differentiation that m = EX and
0? = Var(X). Using (1.15) it is easy to see that every univariate normal X can be

written as
X=0Z+m, (2.1)

23
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2
where Z is the standard N(0,1) random variable with the characteristic function e~ .
The following properties of standard normal distribution N (0, 1) are self-evident:

2 z2
1. The characteristic function e== has analytic extension e~ = to all complex z € C.

.2
Moreover, e~z # 0.

2. Standard normal random variable Z has finite exponential moments F exp(A|Z]) <
oo for all A; moreover, E exp(AZ?) < oo for all A < § (compare Problem 1.3).

Relation (2.1) translates the above properties to the general N(m,o) distributions.
Namely, if X is normal, then its characteristic function has non-vanishing analytic ex-
tension to € and

Eexp(AX?) < 00

for some A > 0.
For future reference we state the following simple but useful observation. Computing
EXF* for k =0, 1,2 from Theorem 1.5.1 we immediately get.

Proposition 2.1.1 A characteristic function which can be expressed in the form ¢(t) =
exp(at? + bt + ¢) for some complex constants a,b,c, corresponds to the normal random
variable, te. a € IR and a < 0,0 € 1R is imaginary and ¢ = 0.

2.2 Multivariate normal distributions

We follow the usual linear algebra notation. Vectors are denoted by small bold letters
x, v, t, matrices by capital bold initial letters A, B, C and vector-valued random variables
by capital boldface X,Y,Z; by the dot we denote the usual dot product in IRY, ie.

x -y = Y9 z;y;; ||x[] = (x - x)'/? denotes the usual Euclidean norm. For typographical
a

convenience we sometimes write (a, ..., a) for the vector | : |. By AT we denote the
aj

transpose of a matrix A.
Below we shall also consider another scalar product (-, ) associated with the normal
distribution; the corresponding semi-norm will be denoted by the triple bar || - ||.

Definition 2.2.1 An R%valued random variable Z is multivariate normal, or Gaussian
(we shall use both terms interchangeably; the second term will be preferred in abstract
situations) if for every t € R® the real valued random variable t - Z is normal.

Clearly the distribution of univariate t-Z is determined uniquely by its mean m = m¢ and
its standard deviation o = 0. It is easy to see that my = t - m, where m = FZ. Indeed,
by linearity of the expected value my = Ft-Z = t - EZ. Evaluating the characteristic
function ¢(s) of the real-valued random variable t-Z at s = 1 we see that the characteristic
function of Z can be written as

2

é(t) = exp(it - m — %).
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In order to rewrite this formula in a more useful form, consider the function B(x,y) of
two arguments x,y € IR? defined by

B(x,y) = E{(x-2)(y - 2)} — (x - m,)(y - m,).

That is, B(x,y) is the covariance of two real-valued (and jointly Gaussian) random vari-
ables x - Z and y - Z.
The following observations are easy to check.

e B(-,-) is symmetric, ie. B(x,y) = B(y, x) for all x,y;

e B(-,-) is a bilinear function, ie. B(:,y) is linear for every fixed y and B(x,-) is
linear for very fixed x;

e B(-,-) is positive definite, ie. B(x,x) > 0 for all x.

We shall need the following well known linear algebra fact (the proofs are explained below;
explicit reference is, eg. [130, Section 6]).

Lemma 2.2.1 Fach bilinear form B has the dot product representation
B(x,y) = Cx -y,

where C is a linear mapping, represented by a d x d matrizc C = [¢; ;|. Furthermore, if
B(-,") is symmetric then C is symmetric, ie. we have C = CT.

Indeed, expand x and y with respect to the standard orthogonal basis e,...,e;. By
bilinearity we have B(x,y) = X, ; x;y;B(e;, e;), which gives the dot product represen-
tation with ¢; ; = B(e;, e;). Clearly, for symmetric B(-,-) we get ¢;; = ¢;;; hence C is
symmetric.

Lemma 2.2.2 If in addition B(-,-) is positive definite then
C=AxA" (2.2)
for a d x d matriz A. Moreover, A can be chosen to be symmetric.

The easiest way to see the last fact is to diagonalize C (this is always possible, as C is
symmetric). The eigenvalues of C are real and, since B(-,-) is positive definite, they are
non-negative. If A denotes a (diagonal) matrix (consisting of eigenvalues of C) in the
diagonal representation C = UAUT and A is the diagonal matrix formed by the square
roots of the eigenvalues, then A = UAUY. Moreover, this construction gives symmetric
A = AT, In general, there is no unique choice of A and we shall sometimes find it more
convenient to use non-symmetric A, see Example 2.2.2 below.

The linear algebra results imply that the characteristic function corresponding to a
normal distribution on IR? can be written in the form

6(t) = exp(it - m — %Ct 1), (2.3)

Theorem 1.5.2 identifies m € IR? as the mean of the normal random variable Z =
(Z1,...,Zy); similarly, double differentiation ¢(t) at t = 0 shows that C = [¢; ;] is given
by ¢;j = Cov(Z;, Z;). This establishes the following.
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Theorem 2.2.3 The characteristic function corresponding to a normal random variable
Z = (Z,...,2Zq) is given by (2.3), where m = EZ and C = [¢;],ci; = Cov(Z;, Z;), is
the covariance matriz.

From (2.2) and (2.3) we get also
6(t) = exp(it - m — %(At) . (At)). (2.4)

In the centered case it is perhaps more intuitive to write B(x,y) = (x,y); this bilinear
product might (in degenerate cases) turn out to be 0 on some non-zero vectors. In this
notation (2.4) can be written as

1
Eexp(it - Z) = exp —§(t, t). (2.5)
From the above discussion, we have the following multivariate generalization of (2.1).

Theorem 2.2.4 Fach d-dimensional normal random variable Z has the same distribution
as m + A¥, where m € R? is deterministic, A is a (symmetric) d x d matriz and
¥ = (",---,7) s a random vector such that the components 1, ...,vq are independent
N(0,1) random variables.

Proof. Clearly, Fexp(it - (m + A¥)) = exp(it - m)FEexp(it - (A¥)). Since the character-
istic function of 7 is Fexp(ix - §) = exp —1||x[|* and t - (A7) = (A”t) - 7, therefore we
get Fexp(it - (m + A7)) = expit - mexp —3||ATt||?, which is another form of (2.4). O

Theorem 2.2.4 can be actually interpreted as the almost sure representation. However,
if A is not of full rank, the number of independent N(0,1) r. v. can be reduced. In addi-
tion, the representation Z = m + A« from Theorem 2.2.4 is not unique if the symmetry
condition is dropped. Theorem 2.2.5 gives the same representation with non-symmetric
A =leq,...,er]. The argument given below has more geometric flavor. Infinite dimen-
sional generalizations are also known, see (8.4) and the comment preceding Lemma 8.1.1.

Theorem 2.2.5 FEach d-dimensional normal random variable Z can be written as

k
Z :m+27jejv (26)
7=1
where k < d,m € R% ey, e,, ..., e, are deterministic linearly independent vectors in R?
and ¥, ...,V are independent identically distributed normal N(0,1) random variables.

Proof. Without loss of generality we may assume EZ = 0 and establish the representation
with m = 0.

Let H denote the linear span of the columns of A in IR?, where A is the matrix from
(2.4). From Theorem 2.2.4 it follows that with probability one Z € H. Consider now H
as a Hilbert space with a scalar product (x,y), given by (x,y) = (Ax) - (Ay). Since the
null space of A and the column space of A have only zero vector in common, this scalar
product is non-degenerate, ie. (x,x) # 0 for H > x # 0.
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Let e, ey, ...,e; be the orthonormal (with respect to (-,-)) basis of H, where k =
dimH. By Theorem 2.2.4 Z is H-valued. Therefore with probability one we can write
Z = Yi_,vje;, where v; = (e;, Z) are random coefficients in the orthogonal expansion.
It remains to verify that 7, ...,7; are i. i. d. normal N(0,1) r. v. With this in mind, we
use (2.4) to compute their joint characteristic function:

k k
Eexp(i Y _tjv;) = Eexp(i Y _ t;{e;, Z)) = Fexp(i Z tie;, Z
7=1 7=1

By (2.5)

k
Eexp(i Zt ej,Z)) = exp(— Zt eJ,Zt e;)) —exp(—%Zti).
7j=1

The last equality is a consequence of orthonormality of vectors e, es, ..., e, with respect
to the scalar product (-,-). O

The next theorem lists two important properties of the normal distribution that can
be easily verified by writing the joint characteristic function. The second property is a
consequence of the polarization identity

it +slI* + lIt — sI* = lItll* + ls ],
where
Ix)* = (x,x) = || Ax]]*; (2.7)
the proof is left as an exercise.

Theorem 2.2.6 If X,Y are independent with the same centered normal distribution,

then

a) X+Y has the same distribution as X;

b) X —l— Y and X —Y are independent.

Now we consider the multivariate normal density. The density of 4 in Theorem 2.2.4 is
the product of the one-dimensional standard normal densities, ie.

(%) = (2m) " exp( 5 x|,

Suppose that det C # 0, which ensures that A is nonsingular. By the change of variable
formula, from Theorem 2.2.4 we get the following expression for the multivariate normal
density.

Theorem 2.2.7 If Z is centered normal with the nonsingular covariance matriz C, then
the density of Z is given by

falx) = (27) 7 (det A)~ exp(—5 | A",

or

1
falx) = (27) (et O exp(~ 50~"x ),
where matrices A and C are related by (2.2).
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In the nonsingular case this immediately implies strong integrability.
Theorem 2.2.8 If Z is normal, then there is € > 0 such that
Eexp(e||Z|*) < oo.

Remark: Theorem 2.2.8 holds true also in the singular case and for Gaussian random variables with
values in infinite dimensional spaces; for the proof based on Theorem 2.2.6, see Theorem 5.4.2 below.

The Hilbert space H introduced in the proof of Theorem 2.2.5 is called the Reproducing
Kernel Hilbert Space (RKHS) of a normal distribution, cf. [5, 90]. It can be defined
also in more general settings. Suppose we want to consider jointly two independent
normal r. v. X and Y, taking values in R and IR® respectively, with corresponding
reproducing kernel Hilbert spaces IH;, IHy and the corresponding dot products (-,-); and
(-,-)5. Then the R"*®_valued random variable (X, Y) has the orthogonal sum H, @ IH,
as the Reproducing Kernel Hilbert Space.

This method shows further geometric aspects of jointly normal random variables.
Suppose an IR“™®_valued random variable (X,Y) is (jointly) normal and has IH as
the reproducing kernel Hilbert space (with the scalar product (-,-)). Recall that

H = {A [ ; ] : l ; ] € IRd1+d2}. Let IHy be the subspace of IH spanned by the vec-

tors {l 2 ] ty € IRd2}; similarly let Hyx be the subspace of IH spanned by the vectors

X

0
(-, -)-orthogonal projection H — Hy by narrowing its domain to Hy. Denote Q = P7;
Q represents the orthogonal projection in the dual norm defined in Section 2.6 below.

. Let P be (the matrix of) the linear transformation Hyx — IHy obtained from the

Theorem 2.2.9 If (X,Y) has jointly normal distribution on RT % then random vec-
tors Y — QY and X are stochastically independent.

Proof. The joint characteristic function of X — QY and Y factors as follows:
P(t,s) = Eexp(it - (X — QY) +is-Y)

— Bexp(it-X —Pt-Y +is-Y)
— o3|, py [P =51 | by | Prew(-g1| 5]

The last identity holds because by our choice of P, vectors l (s) ] and l —;’t ]

thogonal with respect to scalar product (-,-). O
In particular, since E{X|Y} = E{X — QY|Y} + QY, we get
Corollary 2.2.10 If both X and Y have mean zero, then

E{X|Y} = QY.
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For general multivariate normal random variables X and Y applying the above to
centered normal random variables X — mx and Y — my respectively, we get

E{X|Y} =a+QY; (2.8)

vector a = mx —Qmy and matrix Q are determined by the expected values mx, my and
by the (joint) covariance matrix C (uniquely if the covariance Cy of Y is non-singular).
To find Q, multiply (2.8) (as a column vector) from the right by (Y — EY)” and take
the expected value. By Theorem 1.4.1(i) we get Q = R x Cy', where we have written C
Cx R
R” Cy
Corollary 2.2.10) is to use the converse to Theorem 1.5.3.

Equality (2.8) is usually referred to as linearity of regression. For the bivariate normal
distribution it takes the form E{X|Y} = a + BY and it can be established by direct
integration; for more than two variables computations become more difficult and the
characteristic functions are quite handy.

as the (suitable) block matrix C = l ] An alternative proof of (2.8) (and of

Corollary 2.2.11 Suppose (X,Y) has a (joint) normal distribution on R**% and
Hy,Hy are (,-,-)-orthogonal, ie. every component of X is uncorrelated with all com-
ponents of Y. Then X,Y are independent.

Indeed, in this case Q is the zero matrix; the conclusion follows from Theorem 2.2.9.

Example 2.2.1 In this example we consider a pair of (jointly) normal random variables

X1, Xy. For simplicity of notation we suppose EX,; = 0,EXy = 0. Let Var(X;) =
2
o}, Var(Xy) = 02 and denote corr(Xy,Xs) = p. Then C = l o1 0'02 ] and the joint
2
characteristic function is

1 1
P(t1, 1) = exp(—=ti0? — ~t305 — titap).

2 2
If 0109 # 0 we can normalize the variables and consider the pair Y1 = X;/o1 and Yy =
. . . 1 .
Xy/0y. The covariance matriz of the last pair is Cy = l '; ]; the corresponding scalar

product is given by

T
<[ ' ] ) [ i ]> = T1Y1 + T2y + pT1Y2 + PT2Y
T2 Y2

and the corresponding RKHS norm is || l il ] | = (22 +22+2px125)"/2. Notice that when
2

p = =£1 the RKHS norm is degenerate and equals |x; £ xo|.
cosf sinf

Denoting p = sin 20, it is easy to check that Ay = l sind  cosf

] and its inverse

1 cos) —sinf L . 9 o
Ay = 5| sinfd  cosd ] exists if 0 # +mw /4, ie. when p* # 1. This implies that
the joint density of Y1 and Y5 is given by
F@0) = 5 (o (0 4y — 2y sin29)) (29)
r,y) = ———exp(————(x — 2xysin : :
D 50520 TPV 2 cos? 20 Y Y
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We can easily verify that in this case Theorem 2.2.5 gives
Y] = 1 cos + vy, sin 6,

Yy = 1 8inf + 5 cos

for some i.i.d normal N(0,1) 7. v. 71,72. One way to see this, is to compare the variances
and the covariances of both sides. Another representation Y1 = v1, Yo = py1 + /1 — p?72
illustrates non-uniqueness and makes Theorem 2.2.9 obvious in bivariate case.

Returning back to our original random variables Xy, X5, we have X; = v,01 cosf +
Yoo 8in 6 and Xy = y1098in0 + Y90, cos 0; this representation holds true also in the de-
generate case.

To illustrate previous theorems, notice that Corollary 2.2.11 in the bivariate case follows
immediately from (2.9). Theorem 2.2.9 says in this case that Y7 — pY; and Y5 are inde-
pendent; this can also be easily checked either by using density (2.9) directly, or (easier)
by verifying that Y; — pY5 and Y5 are uncorrelated.

Example 2.2.2 In this example we analyze a discrete time Gaussian random walk
{Xito<k<r. Let &,&,... be i. i. d. N(0,1). We are interested in explicit formulas
for the characteristic function and for the density of the R' -valued random variable
X = (X1, Xy,..., X7), where

K
Xp=> & (2.10)
=

are partial sums.
Clearly, m = 0. Comparing (2.10) with (2.6) we observe that

10 ... 0
11 ...0
11 1

Therefore from (2.4) we get

1
o(t) = exp—§(t§ +(t )+ (bt ).

To find the formula for joint density, notice that A is the matriz representation of the

linear operator, which to a given sequence of numbers (x1,xs, ..., xT) assigns the sequence
of its partial sums (z1,x1 + T, ..., 21+ X9 +...+x7). Therefore, its inverse is the finite
difference operator A : (x1,z9,...,x7) = (X1, T3 — x1,..., 27 — x7_1). This implies
1 0 0 . 0]
-1 1 0 .0
Al 0 -1 1 .0
- 0o 0 -1 .0
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Since det A = 1, we get

Fx) = @0 exp—g (a4 (o — 0 (= wr)). (211)

Interpreting X as the discrete time process X1, Xo, ..., the probability density function
for its trajectory x is given by f(x) = Cexp(—3||Ax||?). Ezpression ;||Ax||* can be
interpreted as proportional to the kinetic energy of the motion described by the path X;
assigning probabilities by Ce Ereray/kT) s o well known practice in statistical physics.
In continuous time, the derivative plays analogous role, compare Schilder’s theorem [3/,
Theorem 1.3.27].

2.3 Analytic characteristic functions

The characteristic function ¢(¢) of the univariate normal distribution is a well defined
differentiable function of complex argument ¢. That is, ¢ has analytic extension to complex
plane €. The theory of functions of complex variable provides a powerful tool; we shall use
it to recognize the normal characteristic functions. Deeper theory of analytic characteristic
functions and stronger versions of theorems below can be found in monographs [99, 103].

Definition 2.3.1 We shall say that a characteristic function ¢(t) is analytic if it can be
extended from the real line IR to the function analytic in a domain in complex plane C.

Because of uniqueness we shall use the same symbol ¢ to denote both.

Clearly, normal distribution has analytic characteristic function. Example 1.5.1
presents a non-analytic characteristic function.

We begin with the probabilistic (moment) condition for the existence of the analytic
extension.

Theorem 2.3.1 If a random variable X has finite exponential moment Eexp(a|X|) < oo,
where a > 0, then its characteristic function ¢(s) is analytic in the strip —a < s < a.

Proof. The analytic extension is given explicitly: ¢(s) = Eexp(isX). It remains only
to check that ¢(s) is differentiable in the strip —a < s < a. This follows either by
differentiation with respect to s under the expectation sign (the latter is allowed, since
E{|X|exp(|sX]|)} < oo, provided —a < s < a), or by writing directly the series ex-
pansion: ¢(s) = Y00, i"EX"s"/n! (the last equality follows by switching the order of
integration and summation, ie. by Fubini’s theorem). The series is easily seen to be
absolutely convergent for all —a < Js < a. O

Corollary 2.3.2 If X is such that Eexp(a|X|) < oo for every real a > 0, then its
characteristic function ¢(s) is analytic in C.

The next result says that normal distribution is determined uniquely by its moments. For
more information on the moment problem, the reader is referred to the beautiful book by
N. I. Akhiezer [2].
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Corollary 2.3.3 If X is a random variable with finite moments of all orders and such
that EX* = EZ* k =1,2,..., where Z is normal, then X is normal.

Proof. By the Taylor expansion
Eexp(alX|) =Y a"E|X|¥/k! = Eexp(a]Z]) <

for all real a > 0. Therefore by Corollary 2.3.2 the characteristic function of X is analytic
in € and it is determined uniquely by its Taylor expansion coefficients at 0. However, by
Theorem 1.5.1(ii) the coefficients are determined uniquely by the moments of X. Since
those are the same as the corresponding moments of the normal r. v. Z, both character-
istic functions are equal. O

We shall also need the following refinement of Corollary 2.3.3.

Corollary 2.3.4 Let ¢(t) be a characteristic function, and suppose there is o> > 0 and
a sequence {ty} convergent to 0 such that ¢(t;) = exp(—0?t2) and ty # 0 for all k. Then
B(t) = exp(—c?t?) for every t € IR.

Proof. The idea of the proof is simply to calculate all the derivatives at 0 of ¢(¢) along
the sequence {t;}. Since the derivatives determine moments uniquely, by Corollary 2.3.3
we shall conclude that ¢(t) = exp(—oc?#?). The only nuisance is to establish that all the
moments of the distribution are finite. This fact is established by modifying the usual
proof of Theorem 1.5.1(iii). Let A? be a symmetric second order difference operator, ie.

gly+1t)+gy —t) —2g9(y)

AZ(9)(y) = 2

The assumption that ¢(t) is differentiable 2n times along the sequence {t;} implies that
sup A () (0)] = sup | AT Alls - - Al (0)(0)] < o0

Indeed, the assumption says that limy . Af}) (#)(0) exists for all n. Therefore to end the
proof we need the following result.

Claim 2.3.1 If ¢(t) is the characteristic function of a random variable X,t(k) — 0 is a
given sequence such that t(k) # 0 for all k and

sup |Afhy () (0)] < 00
for an integer n, then EX?" < oo.

The proof of the claim rests on the formula which can be verified by elementary calcula-
tions:
{A? exp(iay)}(y)‘ = 4t ? exp(iax) sin®(at/2).
y=a

This permits to express recurrently the higher order differences, giving

{AT expliay)} ()| _ = 4"t sin™ (at/2) exp(iaz).
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Therefore
Al (8)(0)] = 47t(k) *" Esin™ (¢ (k) X/2)
> 4"t (k) ™" B x)<a/uny) sin™ (8(k) X/2).
The graph of sin(z) shows that inequality |sin(z)| > 2|z| holds for all |z| < . Therefore

AR OO 2 (2) Bl X”
By the monotone convergence theorem

EX?" < lim supE1|X‘§2/|t(k)|X2” < 00,

k— o0

which ends the proof. O

The next result is converse to Theorem 2.3.1.

Theorem 2.3.5 If the characteristic function ¢(t) of a random variable X has the an-
alytic extension in a neighborhood of 0 in ©, and the extension is such that the Taylor

expansion series at 0 has convergence radius R < oo, then Fexp(a|X|) < oo for all
0<a<R.

Proof. By assumption, ¢(s) has derivatives of all orders. Thus the moments of all orders
are finite and

g 0

sk (s)

s=0

my, = EX* = (i)

Taylor’s expansion of ¢(s) at s = 0 is given by ¢(s) = 22, i*mis*/k!. The series has
convergence radius R if and only if limsup,_,. (my/k!)'/¥ = 1/R. This implies that
for any 0 < a < A < R, there is kg, such that m; < AFk! for all k& > k;. Hence
Fexp(a|X|) = 32, a*my /k! < 0o, which ends the proof of the theorem. O

Theorems 2.3.1 and 2.3.5 combined together imply the following.

Corollary 2.3.6 If a characteristic function ¢(t) can be extended analytically to the circle
|s| < a, then it has analytic extension ¢(s) = Eexp(isX) to the strip —a < s < a.

2.4 Hermite expansions

A normal N(0,1) r. v. Z defines a dot product (f, g) = Ef(Z)g(Z), provided that f(Z)
and ¢g(Z) are square integrable functions on Q. In particular, the dot product is well
defined for polynomials. One can apply the usual Gram-Schmidt orthogonalization algo-
rithm to functions 1, Z, Z2, .. .. This produces orthogonal polynomials in variable Z known
as Hermite polynomials. Those play important role and can be equivalently defined by

n

dn exp(—2?/2).

Hy(w) = (~1)" expla?/2)
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Hermite polynomials actually form an orthogonal basis of Ly(Z). In particular, every
function f such that f(Z) is square integrable can be expanded as f(x) = Yo%, fuHy(x),
where fr € IR are Fourier coefficients of f(-); the convergence is in Ly(Z), ie. in weighted
Ly norm on the real line, Ly (IR, e *"/2dx).

The following is the classical Mehler’s formula.

Theorem 2.4.1 For a bivariate normal r. v. X,Y with EX = EY =0, EX?=FEY? =
1, EXY = p, the joint density q(x,y) of X,Y is given by
q(z,y) = > P /K Hy.(v) H (y)q(2)q(y), (2.12)
k=0

where q(x) = (21) "'/ exp(—2?/2) is the marginal density.

Proof. By Fourier’s inversion formula we have
| o 1, 1,
q(z,y) = 2—//exp(ztx + ity) exp(—it — 55 ) exp(—pts) dt ds.
m

Since (—1)Ft*sk exp(ite + isy) = % exp(itx + isy), expanding e** into the Taylor
series we get
00 pk a?k ( ) ( )
q(z,y) =D 7 q(z)q(y)-
= k! Oxkoyk

2.5 Cramer and Marcinkiewicz theorems

The next lemma is a direct application of analytic functions theory.

Lemma 2.5.1 If X is a random variable such that Fexp(AX?) < oo for some A > 0,
and the analytic extension ¢(z) of the characteristic function of X satisfies ¢p(z) # 0 for
all z € C, then X is normal.

Proof. By the assumption, f(z) = log¢(z) is well defined and analytic for all z € C.
Furthermore if z = x + iy is the decomposition of z € C into its real and imaginary
. 2
parts, then Rf(z) = log|¢(z)| < log(Fexp|yX]). Notice that Fexp(tX) < Cexp(s5)
for all real ¢, see Problem 1.4. Indeed, since AX? + /) > 2tX, therefore Fexp(tX) <
Bexp(AX? +2/a)/2 = Cexp(L). Those two facts together imply Rf(z) < const + g—z
Therefore a variant of the Liouville theorem [144, page 87] implies that f(z) is a quadratic
polynomial in variable z, ie. f(z) = A + Bz + C2%. It is easy to see that the coefficients
are A=0, B=1iF{X}, C =—Var(X)/2, compare Proposition 2.1.1. O

From Lemma 2.5.1 we obtain quickly the following important theorem, due to H. Cramer
[29].

Theorem 2.5.2 If X| and X5 are independent random variables such that X1 + X5 has
a normal distribution, then each of the variables X, X5 is normal.
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Theorem 2.5.2 is celebrated Cramer’s decomposition theorem; for extensions, see [99].
Cramer’s theorem complements nicely the Central Limit Theorem in the following sense.
While the Central Limit Theorem asserts that the distribution of the sum of i. i. d. random
variables with finite variances is close to normal, Cramer’s theorem says that it cannot be
exactly normal, except when we start with a normal sequence. This resembles propagation
of chaos phenomenon, where one proves a dynamical system approaches chaotic behavior,
but it never reaches it except from initially chaotic configurations. We shall use Theorem
2.5.2 as a technical tool.

Proof of Theorem 2.5.2. Without loss of generality we may assume EX; = EX,; = 0.
The proof of Theorem 1.6.1 (iii) implies that Eexp(aX]?) < 00,j = 1,2. Therefore, by
Theorem 2.3.1, the corresponding characteristic functions ¢;(-), ¢o(-) are analytic. By
the uniqueness of the analytic extension, ¢;(s)g2(s) = exp(—s®/2) for all s € C. Thus
¢j(2) #0 for all z € C,j = 1,2, and by Lemma 2.5.1 both characteristic functions cor-
respond to normal distributions. O

The next theorem is useful in recognizing the normal distribution from what at first
sight seems to be incomplete information about a characteristic function. The result and
the proof come from Marcinkiewicz [106], cf. [105].

Theorem 2.5.3 Let Q(t) be a polynomial, and suppose that a characteristic function ¢
has the representation ¢(t) = exp Q(t) for all t close enough to 0. Then Q is of degree at
most 2 and ¢ corresponds to a normal distribution.

Proof. First note that formula ¢(s) = expQ(s), s € C, defines the analytic extension
of ¢. Thus, by Corollary 2.3.6, ¢(s) = Fexp(isX), s € C. By Theorem 2.5.2, it suffices
to show that ¢(s)p(—s) corresponds to the normal distribution. Clearly ¢(s)¢(—s) also
has the form exp(P(t)), where P(s) is a polynomial that has only even terms, ie. P(s) =
Si_o ars?. Since ¢(s)d(—s) = |¢(s)[? is a real number for all s, the coefficients ay, . . ., a,
of polynomial P(-) are real. Moreover, the n-th coefficient satisfies a, = —v* < 0,
as the inequality |4(t)] < 1 holds for arbitrarily large real ¢. Therefore, taking z =
N exp(ir/(2n)), we obtain

[6(2)| > exp(N (7" — €(N))) (2.13)

for large enough real N, where ¢(N) — 0 as N — oo. On the other hand, using the
explicit representation by expected value, we get

|p(2)| = |Eexp(izX)| < Eexp(N sin(r/(2n))X)
= ¢(N'sin(m/(2n))) = exp(P(N sin(r/(2n))))

< exp(Nsin(r/(2n)) (v + e(N))).

As N — oo the last inequality contradicts (2.13), unless sin(7/(2n)) = 1, ie. unless n = 1.
This means that P is of degree 2 and, since P(0) = 0, we have P(t) = —y?t for all t. O
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2.6 Large deviations

Formula (2.3) shows that a multivariate normal distribution is uniquely determined by
the vector m of expected values and the covariance matrix C. However, to compute
probabilities of the events of interest might be quite difficult. As Theorem 2.2.7 shows,
even writing explicitly the density is cumbersome in higher dimensions as it requires
inverting large matrices. Additional difficulties arise in degenerate cases.

Here we shall present the logarithmic term in the asymptotic expansion for P(X € nA)
as n — oo. This is the so called large deviation estimate; it becomes more accurate for
less likely events. The main feature is that it has relatively simple form and applies to
all events. Higher order expansions are more accurate but work for fairly regular sets
A c R only.

Let us first define the conjugate “norm” to the RKHS seminorm || - || defined by (2.7).

Iylle="suwp x-y.
x€R?, [|x[I=1

The conjugate norm has all the properties of the norm except that it can attain value
0o. To see this, and also to have a more explicit expression, decompose IR? into the
orthogonal sum of the null space of A and the range of A: R = N'(A)®R(A); here A is
the symmetric matrix from (2.4). Since A : RY — R(A) is onto, there is a right-inverse
A~ R(A) = R(A) C R%

For y € R(A) we have

sup x-y= sup x-AA 'y= sup ATx-Aly (2.14)
Il Ax||=1 |Ax||=1 |Ax||=1

Since A is symmetric and A~ 'y € R(A), for y € R(A) we have by (2.14)

Iyll.= sup  x-Aly =[A7ly].
xER(A), Ix]}=1

For y ¢ R(A) we write y = yyx + yr, where 0 # yn € N(A). Then we have
SUD||ax|=1 X " Y = SUDyxepr(a) X - Ya = 00. Since C = A X A, we get

Wl ={ YO YRSy (.15

where C~! is the right inverse of the covariance matrix C.
In this notation, the multivariate normal density is

f(x) = Ce~zl—mllZ, (2.16)

where C'is the normalizing constant and the integration has to be taken over the Lebesgue
measure A on the support supp(X) = {x : |x]|x < co}.

To state the Large Deviation Principle, by A° we denote the interior of a Borel subset
AcC R
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Theorem 2.6.1 If X is Gaussian R%-valued with the mean m and the covariance matriz
C, then for all measurable A C R®

1
limsup — logP(X € nA4) < — 1nf —|||x — m||? (2.17)
n—oo N2
and
hTrbgggf— logP(X € nA) > — 1nf —|||x —m|?. (2.18)

The usual interpretation is that the dominant term in the asymptotic expansion for
P(fX € A) as n — oo is given by
2
ne . 9
exp(~5- inf [x — ml?).

Proof. Clearly, passing to X — m we can easily reduce the question to the centered
random vector X. Therefore we assume

m = 0.

Inequality (2.17) follows immediately from

n2
P(X € nA) = /S — T

n2 2
< Cn " A(supp(X) N A) sup e~ = IxIZ,
xEA

where C' = C(k) is the normalizing constant and k£ < d is the dimension of supp(X), cf.
(2.16). Indeed,

i _log P(X € nA) < Q . kl‘)g” log A(supp(X) N 4) % inf [x2

n2

To prove inequality (2.18) without loss of generality we restrict our attention to open
sets A. Let xg € A. Then for all € > 0 small enough, the balls B(xg, €) = {x: ||x — x| <
¢} are in A. Therefore

P(X enA) > P(X enD,) / Ok X2 dx, (2.19)

where D, = B(xg, €) Nsupp(X). On the support supp(X) the function x — ||x||, is finite
and convex; thus it is continuous. For every n > 0 one can find € such that ||x[|? > ||xo|>—
for all x € D,. Therefore (2.19) gives

P(X enA) > Cn~ ke (-1 H\XIII2

which after passing to the logarithms ends the proof. O

Large deviation bounds for Gaussian vectors valued in infinite dimensional spaces
and for Gaussian stochastic processes have similar form and involve the conjugate RKHS
norm; needless to say, the proof that uses the density cannot go through; for the general
theory of large deviations the reader is referred to [32].
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2.6.1 A numerical example

. o . . . 1
Consider a bivariate normal (X,Y’) with the covariance matrix 1 9

M

222 —2zy +y? = 1. Figure 2.1 illustrates the fact that one can actually see the conjugated
RKHS norm. Asymptotic shapes in more complicated systems are more mysterious, see
[127].

! ] The conjugate

RKHS norm is then = 222 —2zy+y? and the corresponding unit ball is the ellipse

Figure 2.1: A sample of N = 1500 points from bivariate normal distribution.

2.7 Problems

Problem 2.1 If 7 is the standard normal N(0,1) random variable, show by direct inte-
gration that its characteristic function is ¢(z) = exp(—%zz) for all complex z € C.

Problem 2.2 Suppose (X,Y) € R4+ gre jointly normal and have pairwise uncorre-
lated components, corr(X;,Y;) = 0. Show that X,Y are independent.

Problem 2.3 For standardized bivariate normal X,Y with correlation coefficient p, show
that P(X >0,Y > 0) = 1 + 5= arcsin p.

Problem 2.4 Prove Theorem 2.2.6.

Problem 2.5 Prove that “moments” my = E{X*exp(—X?)} are finite and determine
the distribution of X uniquely.

Problem 2.6 Show that the exponential distribution is determined uniquely by its mo-
ments.

Problem 2.7 If ¢(s) is an analytic characteristic function, show that log ¢(ix) is a well
defined convex function of the real argument x.

Problem 2.8 (deterministic analogue of Theorem 2.5.2) Suppose ¢1, po are char-
acteristic functions such that ¢1(t)pa(t) = exp(it) for each t € R. Show that ¢p(t) =
exp(itax), k = 1,2, where ay,as € R.

Problem 2.9 (exponential analogue of Theorem 2.5.2) If X,Y are i. i. d. random
variables such that min{X,Y} has an exponential distribution, then X is exponential.



Chapter 3

Equidistributed linear forms

In Section 1.1 we present the classical characterization of the normal distribution by
stability. Then we use this to define Gaussian measures on abstract spaces and we prove
the zero-one law. In Section 3.3 we return to the characterizations of normal distributions.
We consider a more difficult problem of characterizations by the equality of distributions
of two general linear forms.

3.1 Two-stability

The main result of this section is the theorem due to G. Polya [122]. Polya’s result was
obtained before the axiomatization of probability theory. It was stated in terms of positive
integrable functions and part of the conclusion was that the integrals of those functions
are one, so that indeed the probabilistic interpretation is valid.

Theorem 3.1.1 If X, X5 are two i. i. d. random variables such that X; and (X +
X5)/V/2 have the same distribution, then X, is normal.

It is easy to see that if X; and X5 are i. i. d. random variables with the distribution
corresponding to the characteristic function exp(—|¢|P), then the distributions of X; and
(X, 4+ X,)/¥/2 are equal. In particular, if X}, X, are normal N(0,1), then so is (X; +
X5)/+/2. Theorem 3.1.1 says that the above trivial implication can be inverted for p = 2.
Corresponding results are also known for p < 2, but in general there is no uniqueness, see
[133, 134, 135]. For p # 2 it is not obvious whether exp(—|¢|?) is indeed a characteristic
function; in fact this is true only if 0 < p < 2; the easier part of this statement was given
as Problem 1.18. The distributions with this characteristic function are the so called
(symmetric) stable distributions.

The following corollary shows that p-stable distributions with p < 2 cannot have finite
second moments.

Corollary 3.1.2 Suppose X1, X5 are i. i. d. random variables with finite second moments
and such that for some scale factor k and some location parameter o the distribution of
X + Xy is the same as the distribution of k(X + «). Then X is normal.

Indeed, subtracting the expected value if necessary, we may assume EX; = 0 and hence
a = 0. Then Var(X; + X,) = Var(X;) + Var(X,) gives k = 271/2 (except if X; = 0; but

39
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this by definition is normal, so there is nothing to prove). By Theorem 3.1.1, X; (and
also X3) is normal.

Proof of Theorem 3.1.1. Clearly the assumption of Theorem 3.1.1 is not changed, if
we pass to the symmetrizations X, Y of X,Y. By Theorem 2.5.2 to prove the theorem, it
remains to show that X is normal. Let ¢(t) be the characteristic function of X, Y. Then

o(V21) = (1) (3.1)
for all real ¢. Therefore recurrently we get

6(12"°) = ()" (3:2)

for all real t. Take ¢, such that ¢(¢y) # 0; such ¢, can be found as ¢ is continuous and
$(0) = 1. Let 02 > 0 such that ¢(ty) = exp(—c?). Then (3.2) implies ¢(t,27%/?) =
exp(—0?27F) for all k = 0,1,.... By Corollary 2.3.4 we have ¢(t) = exp(—c?t?) for all ¢,
and the theorem is proved. O

3.2 Measures on linear spaces

Let V be a linear space over the field IR of real numbers (we shall also call V a (real)
vector space). Suppose V is equipped with a o-field F such that the algebraic operations
of scalar multiplication (x,t) — tx and of vector addition x,y + x + y are measurable
transformations V x R — V and V x V — V with respect to the corresponding o-fields
F Q® Br, and F @ F respectively. Let (2, M, P) be a probability space. A measurable
function X : €2 — V is called a V-valued random variable.

Example 3.2.1 Let V = IR? be the vector space of all real d-tuples with the usual Borel
o-field B. A V-valued random variable is called a d-dimensional random vector. Clearly

X = (Xy,...,Xy) and if one prefers, one can consider the family X, ..., Xy rather than
X.

Example 3.2.2 Let V = C0,1] be the vector space of all continuous functions [0,1] —
IR with the topology defined by the norm || f|| := supgc;<q |f(t)| and with the o-field F
generated by all open sets. Then a V-valued random variable X is called a stochastic
process with continuous trajectories with time T = [0,1]. The usual form is to write X (t)
for the random continuous function X evaluated at a point t € [0, 1].

Warning. Although it is known that every abstract random vector can be interpreted as
a random process with the appropriate choice of time set 7', the natural choice of T' (such
asT =1,2,...,din Example 3.2.1 and T' = [0, 1] in Example 3.2.2) might sometimes fail.
For instance, let V = L,[0, 1] be the vector space of all (classes of equivalence) of square
integrable functions [0, 1] — IR with the usual Ly norm ||f|| = (f f2(¢) dt)*/2. In general,
a V-valued random variable X cannot be represented as a stochastic process with time
T = [0, 1], because evaluation at a point ¢t € T is not a well defined mapping. Although
L»[0,1] is commonly thought as the square integrable functions, we are actually dealing
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with the classes of equivalence rather than with the genuine functions. For V = L,[0, 1}-
valued Gaussian processes, one can show that X; exists almost surely as the limit in
probability of continuous linear functionals; abstract variants of this result can be found
in [146] and in the references therein.

The following definition of an abstract Gaussian random variable is motivated by
Theorem 3.1.1.

Definition 3.2.1 AV -valued random variable X is €E-Gaussian (€ stays for the equality
of distributions) if the distribution of v/2X is equal to the distribution of X + X', where
X' is an independent copy of X.

In Sections 5.2 and 5.4 we shall see that there are other equally natural candidates for the
definitions of a Gaussian vector. To distinguish between them, we shall keep the longer
name &-Gaussian instead of just calling it Gaussian. Fortunately, at least in familiar
situations, it does not matter which definition we use. This occurs whenever we have
plenty of measurable linear functionals. By Theorem 3.1.1 if £ : V — R is a measurable
linear functional, then the IR-valued random variable X = £(X) is normal. When this
specifies the probability measure on V uniquely, then all three definitions are equivalent,
Let us see, how this works in two simple but important cases.

Example 3.2.1 (continued) Suppose X = (X (1), X(2),...,X(n)) is an R"-valued
E-Gaussian random variable. Consider linear functionals £ : IR" — IR given by Lx +—>
> a;x;, where ay,as,...,a, € R. Then the one-dimensional random variable a;X(1) +
asX(2) + ...+ a,X(n) has the normal distribution. This means that X is a Gaussian
vector in the usual sense (ie. it has multivariate normal distribution), as presented in
Section 2.2.

Example 3.2.2 (continued) Suppose X is a C|0,1]-valued Gaussian random vari-
able. Consider the set of all linear functionals £ : C[0,1] — IR that can be written in the
form

L= algt(l) + aggt(g) + ...+ anc‘,’t(n),

where ay, ..., a, are real numbers and & : C[0,1] — R denotes the evaluation at point t
defined by E(f) = f(t). Then L(X) = Y a; X (t;) is normal. However, since the coeffi-
cients ay, . .., a, are arbitrary, this means that for each choice of ty,ts,...,t, € [0,1] the
n-dimensional random variable X (t1), X (t2), ..., X (t,) has a multivariate normal distri-
bution, ie. X(t) is a Gaussian stochastic process in the usual sense'.

The question that we want to address now is motivated by the following (false) intu-
ition. Suppose a measurable linear subspace I. C V is given. Think for instance about
IL = [0, 1] — the space of all continuously differentiable functions, considered as a sub-
space of C[0,1] = V. In general, it seems plausible that some of the realizations of a
V-valued random variable X may happen to fall in IL, while other realizations fail to
be in IL. In other words, it seems plausible that with positive probability some of the
trajectories of a stochastic process with continuous trajectories are smooth, while other

In general, a family of T-indexed random variables X (t);c7 is called a Gaussian process on T, if for
every n > 1, ty,...,t, € T the n-dimensional random vector (X (¢1), ..., X (¢,)) has multivariate normal
distribution.
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trajectories are not. Strangely, this cannot happen for Gaussian vectors (and, more gen-
erally, for a-stable vectors). The result is due to Dudley and Kanter and provides an
example of the so called zero-one law. The most famous zero-one law is of course the one
due to Kolmogorov, see eg. [9, Theorem 22.3]; see also the appendix to [82, page 69]. The
proof given below follows [55]. Smolenski [138] gives an elementary proof, which applies
also to other classes of measures. Krakowiak [89] proves the zero-one law when IL is a
measurable sub-group rather than a measurable linear subspace. Tortrat [143] considers
(among other issues) zero-one laws for Gaussian distributions on groups. Theorem 5.2.1
and Theorem 5.4.1 in the next chapter give the same conclusion under different definitions
of the Gaussian random vector.

Theorem 3.2.1 If X is a V-valued £€-Gaussian random variable and 1L s a linear mea-
surable subspace of V, then P(X € 1L) is either 0, or 1.

Proof. Let X;,X,,... be independent copies of X. Also, let us choose them to be
independent of X. By 2-stability and the linearity of IL we have

P(X,+X,€ll)=P(V2X € L) = P(X € IL). (3.3)
By induction, this gives
PXi+Xy+...+Xpmell)=P(Xel) (3.4)

foralln=0,1,....
Let Z = X + X5,. Clearly, Z is independent of X and 2-stability implies that X; +
Xy + ...+ Xon1 has the same distribution as Z + 27/2X. Therefore (3.4) gives

P(Z+2"*X €L) = P(X € IL). (3.5)

Consider now events A, = {Z ¢ IL} N {Z + 2"/2X € IL}. Since event {Z € L.} N {Z +
272X € 1L} is the same as {Z € I} N {X € IL}, therefore by (3.5)

P(A,)=P(Z+2"*X cL) - P(ZcL)P(XcI)

= P(XelL)- P(ZeL)P(X € LL).

By (3.3) this says that P(A4,) = P(X € IL)P(X ¢ IL) does not depend on n.

Now let us observe that if m # n, then the events A,, and A, are disjoint. We shall
prove this by contradiction. Suppose both vectors Z + 27/?X € IL and Z + 2"/?X € L.
Then their difference (2"/2 — 2™/2)X is in L, too. For m # n this implies X € IL. and
therefore Z € IL.. The latter contradicts the definition of A,,, proving that A,, and A, are
indeed disjoint.

The preceding two observations show that {A,} is an infinite sequence of disjoint
events with the same probability fixed P(A4,) = P(A;). This can happen only if
P(A,) =0, ie. when P(X € IL)P(X ¢ IL) = 0, which ends the proof. O

To make Theorem 3.2.1 more concrete, consider the following application.
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Example 3.2.3 This example presents a simple-minded model of transmission of infor-
mation. Suppose that we have a choice of one of the two signals f(t), or g(t) be transmitted
by a noisy channel within unit time interval 0 < t < 1. To simplify the situation even
further, we assume g(t) = 0, ie. g represents “no message send”. The noise (which is
always present) is a random and continuous function; we shall assume that it is repre-
sented by a C[0,1]-valued Gaussian random variable W = {W (t) }o<i<1. We also assume
it is an “additive” noise.

Under these circumstances the signal received is given by a curve; it is either {f(t) +
W (t) Yo<i<1, or {W(t)}o<i<1, depending on which of the two signals, f or g, was sent.
The objective is to use the received signal to decide, which of the two possible messages:
f(-) or 0 (ie. message, or no message) was sent.

Notice that, at least from the mathematical point of view, the task is trivial if f(-)
15 known to be discontinuous; then we only need to observe the trajectory of the received
signal and check for discontinuities. There are of course numerous practical obstacles to
collecting continuous data, which we are not going to discuss here.

If f(-) is continuous, then the above procedure does not apply. Problem requires more
detailed analysis in this case. One may adopt the usual approach of testing the null
hypothesis that no signal was sent. This amounts to choosing a suitable critical region
IL C C[0,1]. As usual in statistics, the decision is to be made according to whether the
observed trajectory falls into Il (in which case we decide f(-) was sent) or not (in which
case we decide that 0 was sent and that what we have received was just the noise). Clearly,
to get a sensible test we need P(f(-) +W(-) € L) >0 and P(W(-) e L) < 1.

Theorem 3.2.1 implies that perfect discrimination is achieved if we manage to pick the
critical region in the form of a (measurable) linear subspace. Indeed, then by Theorem
3.2.1 P(W(-) € I) < 1 implies PW(-) € IL) =0 and P(f(-) + W(-) € IL) > 0 implies
P(f()y+W(-)e L) =1.

Unfortunately, it is not true that a linear space can always be chosen for the critical
region. For instance, if W (-) is the Wiener process (see Section 8.1), it is known that
such subspace cannot be found if (and only if!) f(-) is differentiable for almost all t and
f(%)2 dt < oo. The proof of this theorem is beyond the scope of this book (cf. Cameron-
Martin formula in [41]). The result, however, is surprising (at least for those readers,
who know that trajectories of the Wiener process are non-differentiable): it implies that,
at least in principle, each non-differentiable (everywhere) signal f(-) can be recognized
without errors despite having non-differentiable Wiener noise.

(Affine subspaces for centered noise EW, = 0 do not work, see Problem 3./)

For a recent work, see [{4].

3.3 Linear forms

It is easily seen that if aq,...,a, and by, ..., b, are real numbers such that the sets A =
{larl, ..., lan|} and B = {|b1|,..., |b,|} are equal, then for any symmetric i. i. d. random
variables X1, ..., X,, the sums Y}, a; X} and >}, by X} have the same distribution. On
the other hand, when n = 2, A = {1,1} and B = {0,/2} Theorem 3.1.1 says that the
equality of distributions of linear forms >, a; Xy and >} by X) implies normality. In
this section we shall consider two more characterizations of the normal distribution by the
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equality of distributions of linear combinations } ;_; ax Xy and >}, by Xy. The results
are considerably less elementary than Theorem 3.1.1.

We shall begin with the following generalization of Corollary 3.1.2 which we learned
from J. Wesotowski.

Theorem 3.3.1 Let X4,...,X,,,n > 2, be i. i. d. square-integrable random variables and
let A= {ay,...,a,} be the set of real numbers such that A # {1,0,...,0}. If X; and

Y1 Xy have equal distributions, then X, is normal.
The next lemma is a variant of the result due to C. R. Rao, see [73, Lemma 1.5.10].

Lemma 3.3.2 Suppose q(-) is continuous in a neighborhood of 0, q(0) = 0, and in a
neighborhood of 0 it satisfies the equation

n
q(t) = Y apq(axt), (3.6)
k=1
where ay, ..., a, are given numbers such that |ay] < 6 <1 and Yp_, ai = 1.

Then q(t) = const in some neighborhood of t = 0.

Proof. Suppose (3.6) holds for all |{| < e. Then |a;t| < € and from (3.6) we get
q(ajt) = Xp_; ajq(ajaxt) for every 1 < j < n. Hence ¢(t) = Xj_, Xp_, ajajq(ajaxt) and
we get recurrently
qt)y=>Y_ ...> a ...l q(aj ...a;t)
Jji=1 Jr=1
for all » > 1. This implies

n

lq(t) — q(0)] < (3_ a;)" sup |g(at) — q(0)] = Sup. lg(z) — q(0)] = 0

k=1 la]<o7

as r — oo for all |t| <e. O

Proof of Theorem 3.3.1. Without loss of generality we may assume Var(X;) # 0.
Let ¢ be the characteristic function of X and let Q(t) = log ¢(t). Clearly, Q(t) is well
defined for all ¢ close enough to 0. Equality of distributions gives

Q(t) = Qart) + Q(azt) + ... + Q(ant).

The integrability assumption implies that () has two derivatives, and for all ¢ close enough
to 0 the derivative ¢(-) = Q"(-) satisfies equation (3.6).

Since X; and Y°}_; a; X} have equal variances, 3°7_, a? = 1. Condition |a;| # 0,1 im-
plies |a;| < 1 forall 1 <i < n. Lemma 3.3.2 shows that ¢(-) is constant in a neighborhood
of t = 0 and ends the proof. O

Comparing Theorems 3.1.1 and 3.3.1 the pattern seems to be that the less information
about coefficients, the more information about the moments is needed. The next result
([106]) fits into this pattern, too; [73, Section 2.3 and 2.4] present the general theory
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of active exponents which permits to recognize (by examining the coefficients of linear
forms), when the equality of distributions of linear forms implies normality; see also
[74]. Variants of characterizations by equality of distributions are known for group-valued
random variables, see [50]; [49] is also pertinent.

Theorem 3.3.3 Suppose A = {|ai|,...,|a,|} and B = {|b1],...,|bn|} are different sets
of real numbers and X4,..., X, are i. i. d. random variables with finite moments of all
orders. If the linear forms Y p_, ap Xy and > _;_, by Xy are identically distributed, then X
18 normal.

We shall need the following elementary lemma.

Lemma 3.3.4 Suppose A = {|a1]|,...,|an|} and B = {|b1],...,|bn|} are different sets of

real numbers. Then .

(Z ) # () (3.7)

for all r > 1 large enough.

Proof. Without loss of generality we may assume that coefficients are arranged in increas-
ing order |a;| < ... < a,| and || < ... <|b,|. Let M be the largest number m < n such
that |a,,| # |bn|. ( Clearly, at least one such m exists, because sets A, B consist of differ-
ent numbers.) Then |a;| = |by| for & > M and 7_, ai" # >p_, bi" for all r large enough.
Indeed, by the definition of M we have ;- ;07" = > 4o a2” but the remaining portions
of the sum are not equal, > ;< b £ Sk<M a2" for r large enough; the latter holds true
because by our choice of M the limits lim, o (X r<ps ai")/ ) = maxy<ps |ag| = |an| and
limy o0 (X pens 077 ®) = maxy< s [bp| = |bas| are not equal. O

We also need the following lemma? due to Marcinkiewicz [106].

Lemma 3.3.5 Let ¢ be an infinitely differentiable characteristic function and let Q(t) =
log ¢(t). If there is r > 1 such that Q¥ (0) = 0 for all k > r, then ¢ is the characteristic
function of a normal distribution.

Proof. Indeed, ®(z) = exp(}>}_, Z—I:Q(k)(())) is an analytic function and all derivatives
at 0 of the functions log ®(-) and log ¢(-) are equal. Differentiating the (trivial) equality
pQ' = ¢', we get ¢t = 31 (M)p(=RQEFD | wwhich shows that all derivatives at 0 of
®(-) and of ¢(-) are equal. This means that ¢(-) is analytic in some neighborhood of 0
and ¢(t) = ®(t) = exp P(t) for all small enough ¢, where P is a polynomial of the degree
(at most) r. Hence by Theorem 2.5.3, ¢ is normal. O

Proof of Theorem 3.3.3. Without loss of generality, we may assume that X is symmet-
ric. Indeed, if random variables X1,. .., X;, satisfy the assumptions of the theorem, then
so do their symmetrizations X, ..., X,, see Section 1.6. If we could prove the theorem for

symmetric random variables, then X; would be be normal. By Theorem 2.5.2, this would

2For a recent application of this lemma to the Central Limit Problem, see [68].
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imply that X7 is normal. Hence it suffices to prove the theorem under the additional sym-
metry assumption. Let ¢ be the characteristic function of X’s and let Q(t) = log ¢(t); Q
is well defined for all ¢ close enough to 0. The assumption implies that () has derivatives
of all orders and also that Q(a1t) +Q(ast) + ...+ Q(ant) = Q(bit) + Q(bat) + ...+ Q(b,t).
Differentiating the last equality 2r times at ¢ = 0 we obtain

n

Z a?r Q") Z b7 QM (0),r =0,1,... (3.8)

Notice that by (3.7), equality (3.8) implies Q7 (0) = 0 for all r large enough. Thus
by (3.8) (and by the symmetry assumption to handle the derivatives of odd order),
Q™ (0) = 0 for all k > 1 large enough. Lemma 3.3.5 ends the proof. O

3.4 Exponential analogy

Characterizations of the normal distribution frequently lead to analogous characterizations
of the exponential distribution. The idea behind this correspondence is that adding
random variables is replaced by taking their minimum. This is explained by the well known
fact that the minimum of independent exponential random variables is exponentially
distributed; the observation is due to Linnik [100], see [73, p. 87]. Monographs [57, 4],
present such results as well as the characterizations of the exponential distribution by
its intrinsic properties, such as lack of memory. In this book some of the exponential
analogues serve as exercises.

The following result, written in the form analogous to Theorem 0.0.1, illustrates how
the exponential analogy works. The i. i. d. assumption can easily be weakened to in-
dependence of X and Y (the details of this modification are left to the reader as an
exercise).

Theorem 3.4.1 Suppose X,Y non-negative random variables such that

(i) for all a,b > 0 such that a + b = 1, the random variable min{X/a,Y/b} has the
same distribution as X ;

(i) X and Y are independent and identically distributed.

Then X and Y are exponential.

Proof. The following simple observation stays behind the proof.
If X,Y are independent non-negative random variables, then the tail distribution
function, defined for anyZ > 0 by Nz(z) = P(Z > x), satisfies

Numin{x,v}(#) = Nx () Ny (z). (3.9)

Using (3.9) and the assumption we obtain N( t)N(bt) = N(t) for all a,b,t > 0 such that
a+b=1. Writingt =z +y,a=z/(z +y),b=y/(z+y) for arbitrary z,y > 0 we get

N(z+y) = N(z)N(y) (3.10)

Therefore to prove the theorem, we need only to solve functional equation (3.10) for
the unknown function N(-) such that 0 < N(-) < 1; N(:) is also right-continuous non-
increasing and N(z) — 0 as x — 0.
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Formula (3.10) shows recurrently that for all integer n and all x > 0 we have
N(nz) = N(x)". (3.11)

Since N(0) = 1 and N(-) is right continuous, it follows from (3.11) that r = N(1) > 0.
Therefore (3.11) implies N(n) = 7" and N(1/n) = /" (to see this, plug in (3.11) values
r = 1 and x = 1/n respectively). Hence N(n/m) = N(1/m)* = r™/™ (by putting
z =1/min (3.11)), ie. for each rational ¢ > 0 we have

N(q) = . (3.12)

Since N(x) is right-continuous, N(z) = limpa, N(g) = r* for each > 0. It remains
to notice that r < 1, which follows from the fact that N(x) — 0 as x — oo. Therefore
r = exp(—A) for some A > 0, and N(z) = exp(—Az),z > 0. O

3.5 Exponential distributions on lattices

The abstract notation of this section follows [43, page 43]. Let IL be a vector space with
norm ||-||. Suppose that IL is also a lattice with the operations minimum A and mazimum
V which are consistent with the vector operations and with the norm. The related order
is then defined by x <y iff x Vy = y (or, alternatively: iff x A y = x). By consistency
with vector operations we mean that?

(x+y)AN(z+y)=y+ (xAz)foralx,y,zel

(ax) A (ay) =a(xAy) forall x,y e IL,a >0

and
—(xAy) = (%) V (-y).

Consistency with the norm means
[x[] < [lyl[ for all 0 = x <y

Moreover, we assume that there is a o-field F such that all the operations considered
are measurable.
Vector space R? with

x Ay = (min{z;;y;})1<j<a (3.13)

with the norm: [|x|| = max; |z;| satisfies the above requirements. Other examples are
provided by the function spaces with the usual norms; for instance, a familiar example is
the space C[0,1] of all continuous functions with the standard supremum norm and the
pointwise minimum of functions as the lattice operation, is a lattice.

The following abstract definition complements [57, Chapter 5].

3See eg. [43, page 43] or [3].
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Definition 3.5.1 A random variable X : Q — 1L has exponential distribution if the
following two conditions are satisfied: (1) X > 0;

(i1) if X' is an independent copy of X then for any 0 < a < 1 random variables
X/aNX"/(1—a) and X have the same distribution.

Example 3.5.1 Let I. = R* with A defined coordinatewise by (3.13) as in the above
discussion. Then any R*-valued exponential random variable has the multivariate expo-
nential distribution in the sense of Pickands, see [57, Theorem 5.3.7]. This distribution
s also known as Marshall-Olkin distribution.

Using the definition above, it is easy to notice that if (Xi,...,X,) has the exponential
distribution, then min{ Xy, ..., X} has the exponential distribution on the real line. The
next result is attributed to Pickands see [57, Section 5.3].

Proposition 3.5.1 Let X = (Xy,..., Xy) be an R¢-valued exponential random variable.
Then the real random variable min{ X, /ay, ..., Xq/aq} is exponential for all ay, ..., aq >

0.
Proof. Let Z = min{X;/ay,...,Xy4/aqs}. Let Z' be an independent copy of Z. By

Theorem 3.4.1 it remains to show that
min{Z/a; Z'/b} = Z (3.14)
for all a,b > 0 such that a + b = 1. It is easily seen that
min{Z/a; Z'/b} = min{Y1/ay,...,Yy/aq},

where Y; = min{X;/a; X!/b} and X' is an independent copy of X. However by the defi-
nition, X has the same distribution as (Y7,...,Yy), so (3.14) holds. O

Remark: By taking a limit as a; — 0 for all j # i, from Proposition 3.5.1 we obtain in particular that
each component X; is exponential.

Example 3.5.2 Let I = C[0, 1] with {f A g}(x) := min{f(x),g(z)}. Then exponential
random variable X defines the stochastic process X (t) with continuous trajectories and
such that {X (t1), X (t2), ..., X (tn)} has the n-dimensional Marshall-Olkin distribution for
each integer n and for all ty, ..., t, in [0,1].

The following result shows that the supremum sup, | X (¢)| of the exponential process from
Example 3.5.2 has the moment generating function in a neighborhood of 0. Corresponding
result for Gaussian processes will be proved in Sections 5.2 and 5.4. Another result on
infinite dimensional exponential distributions will be given in Theorem 4.3.4.

Proposition 3.5.2 If IL is a lattice with the measurable norm || - || consistent with alge-
braic operation N, then for each exponential IL-valued random variable X there is X\ > 0
such that Eexp(\||X]|) < oc.

Proof. The result follows easily from the trivial inequality
P(||X]| > 22) = P(|X A X'[| > z) < (P(IIX]| > 2))*
and Corollary 1.3.7. O
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3.6 Problems

Problem 3.1 (deterministic analogue of Theorem 3.1.1)) Show that if X,Y > 0
are i. i. d. and 2X has the same distribution as X +Y, then X,Y are non-random *.

Problem 3.2 Suppose random variables X1, X5 satisfy the assumptions of Theorem 3.1.1
and have finite second moments. Use the Central Limit Theorem to prove that Xi is
normal.

Problem 3.3 Let V be a metric space with a measurable metric d. We shall say that a
V-valued sequence of random wvariables S, converges to Y in distribution, if there exist
a sequence S, convergent to Y in probability (ie. P(d(S,,Y) > €) — 0 as n — 00 )
and such that S, = S, (in distribution) for each n. Let X, be a sequence of V-valued
independent random variables and put S,, = Xy + ...+ X,,. Show that if S, converges in
distribution (in the above sense), then the limit is an €-Gaussian random variable®.

Problem 3.4 For a separable Banach-space valued Gaussian vector X define the mean
m = EX as the unique vector that satisfies A\(m) = EX(X) for all continuous linear func-
tionals A € V*. It is also known that random vectors with equal characteristic functions
d(A) = Eexpi\(X) have the same probability distribution.

Suppose X is a Gaussian vector with the non-zero mean m. Show that for a measurable
linear subspace I C V, if m ¢ IL then P(X € IL) = 0.

Problem 3.5 (deterministic analogue of Theorem 3.3.2)) Show that if i. i. d. ran-
dom wvariables X,Y have moments of all orders and X + 2Y = 3X, then X,Y are non-
random.

Problem 3.6 Show that if X,Y are independent and X +Y =2 X, then Y =0 a. s.

4Cauchy distribution shows that assumption X > 0 is essential.
For motivation behind such a definition of weak convergence, see Skorohod [137].
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Chapter 4

Rotation invariant distributions

4.1 Spherically symmetric vectors

Definition 4.1.1 A random vector X = (X1, Xo, ..., X,) is spherically symmetric if the
distribution of every linear form

a1X1+a2X2+...+aan%X1 (41)
is the same for all ai, as, ..., a,, provided a3 + a3+ ...+ a? = 1.

A slightly more general class of the so called elliptically contoured distributions has been
studied from the point of view of applications to statistics in [47]. Elliptically contoured
distributions are images of spherically symmetric random variables under a linear trans-
formation of IR™. Additional information can also be found in [48, Chapter 4], which is
devoted to the characterization problems and overlaps slightly with the contents of this
section.

Let ¢(t) be the characteristic function of X. Then

1
0

o) = [l | . || (4.2
0

ie. the characteristic function at t can be written as a function of ||t|| only. Conversely,
if ¢(t) is a characteristic function of a real random variable, then ¢(||t||) corresponds to
an IR"-valued random vector.

From the definition we also get the following.

Proposition 4.1.1 If X = (Xy,...,X,,) is spherically symmetric, then each of its
marginals Y = (Xy,..., Xx), where k < n, is spherically symmetric.

This fact is very simple; just consider linear forms (4.1) with a4 = ... =a, = 0.

Example 4.1.1 Suppose ¥ = (71,72, --,Va) 1S the sequence of independent identically
distributed normal N(0,1) random variables. Then 7 is spherically symmetric. More-
over, for any m > 1,7 can be extended to a longer spherically invariant sequence

ol
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(Y15Y2s -+ s Ynam)- In Theorem 4.3.1 we will see that up to a random scaling factor, this
s essentially the only example of a spherically symmetric sequence with arbitrarily long

spherically symmetric extensions'.

In general a multivariate normal distribution is not spherically symmetric. But if X
is centered non-degenerated Gaussian r. v., then A~'X is spherically symmetric, see
Theorem 2.2.4. Spherical symmetry together with Theorem 4.1.2 is sometimes useful in
computations as illustrated in Problem 4.2.

Example 4.1.2 Suppose X = (X1,...,X,) has the uniform distribution on the sphere
Ix|| = r. Obviously, X is spherically symmetric. For k < n, vector Y = (X1,...,Xk)
has the density

fy) =C(* = [ly|)™ 07, (4.3)

where C' is the normalizing constant (see for instance, [48, formula (1.2.6)]). In particu-
lar, Y is spherically symmetric and absolutely continuous in IR¥.

The density of real valued random wvariable Z = ||Y|| at point z has an additional
factor coming from the area of the sphere of radius z in IRF, ie.

fz(2) = C2F~1(r? — 2)n=R)/2=1, (4.4)
Here C = C(r, k,n) is again the normalizing constant. By rescaling, it is easy to see that
C =r"2C(k,n), where
1

C’l(k,n) — (/ Zkfl(l . ZZ)(nfk)/Zfl dz)fl

-1

, (k/2), (n=k)/2)  B(k/2,(n—k)/2)

2, (n/2) 2
)

Therefore
fz(2) = Cor" 2251 (r? — zz)(”_k)/z_l. (4.5)

Finally, let us point out that the conditional distribution of ||[(Xky1, ..., Xn)|| given Y is
concentrated at one point (r2 — ||Y|[|?)/2.

From expression (4.3) it is easy to see that for fixed k, if n — oo and the radius is r = /n,
then the density of the corresponding Y converges to the density of the i. i. d. normal
sequence (71,72, .-, 7). (This well known fact is usually attributed to H. Poincaré).

Calculus formulas of Example 4.1.2 are important for the general spherically symmetric
case because of the following representation.

Theorem 4.1.2 Suppose X = (X,...,X,) is spherically symmetric. Then X = RU,
where random variable U is uniformly distributed on the unit sphere in R", R > 0 is real
valued with distribution R =2 ||X]||, and random variables variables R, U are stochastically
independent.

Tt would be interesting to find the conditions that allow to recognize when a given spherically sym-
metric random vector can be embedded as a marginal of a higher dimensional spherically symmetric
one.
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Proof. The first step of the proof is to show that the distribution of X is invariant
under all rotations U : IR" — IR". Indeed, since by definition ¢(t) = FEexp(it-X) =
Eexp(i]|t]|X1), the characteristic function ¢(t) of X is a function of ||t|| only. Therefore
the characteristic function ¢ of UX satisfies

Y(t) = Eexp(it - UX) = Eexp(iU"t - X) = Fexp(i||t]| X|) = ¢(t).

The group O(n) of rotations of R" (ie. the group of orthogonal nxn matrices) is a compact
group; by p we denote the normalized Haar measure (cf. [59, Section 58]). Let G be an
O(n)-valued random variable with the distribution x and independent of X (G can be
cosf) sind
—sinf cosf
uniformly distributed on [0, 27].) Clearly X =2 GX 2 ||X||GX/||X]|| conditionally on the
event || X]|| # 0. To take care of the possibility that X = 0, let ® be uniformly distributed
on the unit sphere and put

actually written down explicitly; for example if n = 2, G = , where 0 is

v_l® it X =0
= GX/|IX| ifX#£0

It is easy to see that U is uniformly distributed on the unit sphere in IR" and that U, X
are independent. This ends the proof, since X =2 GX = || X||U. O

The next result explains the connection between spherical symmetry and linearity of re-
gression. Actually, condition (4.6) under additional assumptions characterizes elliptically
contoured distributions, see [61, 118].

Proposition 4.1.3 If X is a spherically symmetric random vector with finite first mo-
ments, then

E{X1|a1X1+...+aan} :pZaka (46)
k=1

— 1
for all real numbers ay, ..., a,, where p = g

Sketch of the proof.

The simplest approach here is to use the converse to Theorem 1.5.3; if ¢(||t]|*) denotes
the characteristic function of X (see (4.2)), then the characteristic function of Xy, a;X; +
...+ a, X, evaluated at point (¢, s) is ¥(t,s) = ¢((s +a1t)? + (azt)*+. .. + (a,t)?). Hence

0 0
(af +...+ ai)%d)(t, s) _ = ala@z)(t, 0).
Another possible proof is to use Theorem 4.1.2 to reduce (4.7) to the uniform case. This
can be done as follows. Using the well known properties of conditional expectations, we
have
E{X1|01X1 + ...+ aan} = E{RU1|R(01U1 + ...+ anUn)}

= E{E{RU1|R, 01U1 + ...+ anUn}|R(a1U1 + ...+ anUn)}

Clearly,
E{RU1|R, CllUl + ...+ anUn} = RE{U1|R, a1U1 + ...+ anUn}
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E{Xi|a1 X1 + ax Xy = s} = ps

L/

1T, + asTo = S

Figure 4.1: Linear regression for the uniform distribution on a circle.

and
E{U1|R, CllUl + ...+ anUn} = E{U1|a1U1 + ...+ anUn},

see Theorem 1.4.1 (ii) and (iii). Therefore it suffices to establish (4.7) for the uniform
distribution on the unit sphere. The last fact is quite obvious from symmetry consider-
ations; for the 2-dimensional situation this can be illustrated on a picture. Namely, the
hyper-plane a;xy + ... + a,x, = const intersects the unit sphere along a translation of
a suitable (n — 1)-dimensional sphere S; integrating x; over S we get the same fraction
(which depends on ay,...,a,) of const. O

The following theorem shows that spherical symmetry allows us to eliminate the as-
sumption of independence in Theorem 0.0.1, see also Theorem 7.2.1 below. The result
for rational « is due to S. Cambanis, S. Huang & G. Simons [25]; for related exponential
results see [57, Theorem 2.3.3].

Theorem 4.1.4 Let X = (X1,...,X,,) be a spherically symmetric random vector such
that E||X||* < oo for some real o > 0. If

E{l(X1,. .., Xp)|*l(Xms1, - -+, Xn)} = const
for some 1 < m < n, then X is Gaussian.

Our method of proof of Theorem 4.1.4 will also provide easy access to the following
interesting result due to Szablowski [140, Theorem 2], see also [141].

Theorem 4.1.5 Let X = (X1,...,X,,) be a spherically symmetric random vector such
that E||X||? < oo and P(X = 0) = 0. Suppose c(z) is a real function with the property
that there is 0 < U < oo such that 1/c(x) is integrable on each finite sub-interval of the
interval [0, U] and that c(x) =0 for all z > U.

If for some 1 <m <n

E{I(Xy, - X IP[ (X, - Xa) = el (X5 X)),
then the distribution of X is determined uniquely by c(z).
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To prove both theorems we shall need the following.

Lemma 4.1.6 Let X = (Xy,...,X,) be a spherically symmetric random vector such that
P(X =0) =0 and let H denote the distribution of || X||. Then we have the following.
(a) Form <n r. v. ||(Xpmi1,-..,Xn)|| has the density function g(x) given by

g(x) = Ca™ ™1 /Oo P2 (2 — )2 (dr), (4.7)
where C' =2, (3n)(, (3m), (5(n—m)))~" is a normalizing constant of no further impor-
tance below.

(b) The distribution of X is determined uniquely by the distribution of its single com-
ponent X;.

(¢) The conditional distribution of ||(X1, ..., Xn)|| given (Xpi1, ..., Xy) depends only
on the R™ "-norm |[(Xm1,- .., Xn)|| and

E{(Xq, o X)) (Xonrs -5 X)) b = B([(Xongr, -, X)),
where
Q?O Tfn+2(r2 _ x2)(m+o¢)/271H(dr)

h(z) = [ p=nt2(p2 — g2ym/2=1F (df)

(4.8)

Sketch of the proof.

Formulas (4.7) and (4.8) follow from Theorem 4.1.2 by conditioning on R, see Example
4.1.2. Fact (b) seems to be intuitively obvious; it says that from the distribution of the
product U; R of independent random variables (where U; is the 1-dimensional marginal
of the uniform distribution on the unit sphere in IR") we can recover the distribution of
R. Indeed, this follows from Theorem 1.8.1 and (4.7) applied to m = n — 1: multiplying
g(x) = C [XrH2(r2 — 22)(n=D/2=LH (dr) by z%~! and integrating, we get the formula
which shows that from g(z) we can determine the integrals [;°r'"'H(dr), cf. (4.10)
below.O

Lemma 4.1.7 Suppose c,(+) is a function such that

B{I(X0, s X 11 (Xt -+ Xa) = call(Xmgrs -5 Xa) 1)
Then the function f(z) = 2™t1=™/2g(2'/2), where g(.) is defined by (4.7), satisfies

1

ca()f(7) = Blaj2.m)2) /;o(y —2)**7 f(y) dy. (4.9)

Proof. As previously, let H(dr) be the distribution of ||X||. The following formula for
the beta integral is well known, cf. [110].

2
B(a/2,m/2)

(T2 _ x?)(m—l—a)/?—l —

1
/ (12 — )21 (p2 _ 2ym/2=1 gy (4.10)

Substituting (4.10) into (4.8) and changing the order of integration we get

ca(”)g(x)
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2 00 00
— n—m—1 2 2\a/2-1 —n+2/,.2 42 m/271H
o B(Q/Q,m/m/w (2 — 22) /t P2 (2 g2) (dr) dt.

Using (4.7) we have therefore

B(a/22, m/2) /;O(tQ —r?) P g (1) .

Substituting f(-) and changing the variable of integration from ¢ to #* ends the proof of
(4.9). O

Proof of Theorem 4.1.5. By Lemma 4.1.6 we need only to show that for & = 2 equation
(4.9) has the unique solution. Since f(-) > 0, it follows from (4.9) that f(y) = 0 for all
y > U. Therefore it suffices to show that f(z) is determined uniquely for x < U. Since
the right hand side of (4.9) is differentiable, therefore from (4.9) we get 2-&(c(z) f(z)) =
—mf(x). Thus f(z) := ¢(x) f(z) satisfies equation

20'(x) = —mp(x)/c(x)

at each point 0 < z < U. Hence ((x) = C’exp(—%m Jo 1/c(t) dt). This shows that

f(a:):—exp m —td

is determined uniquely (here C' > 0 is a normalizing constant). O

Lemma 4.1.8 If 7(s) is a periodic and analytic function of complex argument s with the
real period, and for real t the function t — log(w(t), (t + C)) is real valued and conver,
then m(s) = const.

Proof. For all positive z we have

d? d?
) log m(x) + @log, (z) > 0. (4.11)

However it is known that - log (x) = En>0(n+x)’2 — 0asz — oo, see [110]. Therefore
(4.11) and the per1od161ty of 7(.) imply that - @ Jogm(x) > 0. This means that the first
derivative % log(.) is a continuous, real valued periodic and non-decreasing function of
the real argument. Hence - logﬂ(x) = B € IR for all real x. Therefore log7(s) = A+ Bs
and, since 7(.) is periodic with real period, this implies B = 0. This ends the proof. O

Proof of Theorem 4.1.4. There is nothing to prove, if X = 0. If P(X = 0) < 1 then
P(X =0) = 0. Indeed, suppose, on the contrary, that P(X = 0) > 0. By Theorem 4.1.2
this means that p = P(R = 0) > 0 and that E{[[(X1,..., Xu)||%(Xmt1,---, Xn)} =0
with positive probability p > 0. Therefore E{|[|(X1,. .., X:u)||%(Xm+1s - - -, Xn)} = 0 with
probability 1. Hence R = 0 and X = 0 a. s., a contradiction.
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Throughout the rest of this proof we assume without loss of generality that P(X =
0) = 0. By Lemmas 4.1.6 and 4.1.7, it remains to show that the integral equation

fa) =K [“y=2"" 1) dy (+12)

has the unique solution in the class of functions satisfying conditions f(.) > 0 and
[ an=m/2=1 £ (7) do = 2.

Let M(s) = z* ' f(z)dz be the Mellin transform of f(.), see Section 1.8. It can be
checked that M(s) is well defined and analytic for s in the half-plane s > 1(n — m),
see Theorem 1.8.2. This holds true because the moments of all orders are finite, a claim
which can be recovered with the help of a variant of Theorem 6.2.2, see Problem 6.6; for
a stronger conclusion see also [22, Theorem 2.2]. The Mellin transform applied to both
sides of (4.12) gives

, (6), ()

M(s) = KX—+—~—=
) =K B+s)
Thus the Mellin transform M, (.) of the function f(Cz), where

C = (K, (B))"Y5, satisfies

M(B + s).

My (s) :Ml(ﬁ+s)%.

This shows that M;(s) = 7(s), (s), where 7(.) is analytic and periodic with real period
B. Indeed, since , (s) # 0 for Rs > 0, function 7 (s) = My(s)/, (s) is well defined and
analytic in the half-plane s > 0. Now notice that 7(.), being periodic, has analytic
extension to the whole complex plane.

Since f(.) > 0, logM;(z) is a well defined convezr function of the real argument
x. This follows from the Cauchy-Schwarz inequality, which says that M;((t + s)/2) <
(M, (t)M,(s))""*. Hence by Lemma 4.1.8, 7(s) = const.0

Remark: Solutions of equation (4.12) have been found in [62]. Integral equations of similar, but more
general form occurred in potential theory, see Deny [33], see also Bochner [11] for an early work; for
another proof and recent literature, see [126].

4.2 Rotation invariant absolute moments

The following beautiful theorem is due to M. S. Braverman [14]%.

Theorem 4.2.1 Let X,Y, Z be independent identically distributed random variables with
finite moments of fixed order p € Ry \ 2IN. Suppose that there is constant C' such that
for all real a, b, c

ElaX 4+ bY + cZ|P = C(a® + b* + 2)P/2. (4.13)

Then X,Y, Z are normal.

2In the same paper Braverman also proves a similar characterization of a-stable distributions.
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Condition (4.13) says that the absolute moments of a fixed order p of any axis, no matter
how rotated, are the same; this fits well into the framework of Theorem 0.0.1.

Theorem 4.2.1 is a strictly 3-dimensional phenomenon, at least if no additional con-
ditions on random variables are imposed. It does not hold for pairs of i. i. d. random
variables, see Problem 4.3 below®. Theorem 4.2.1 cannot be extended to other values of
exponent p; if p is an even integer, then (4.13) is not strong enough to imply the normal
distribution (the easiest case to see this is of course p = 2).

Following Braverman’s argument, we obtain Theorem 4.2.1 as a corollary to Theorem
3.1.1. To this end, we shall use the following result of independent interest.

Theorem 4.2.2 If p € R, \ 2IN and X,Y, Z are independent symmetric p-integrable
random variables such that P(Z =0) < 1 and

E\X +tZ|P = E|Y +tZ|" for all real t, (4.14)
then X 2Y n distribution.

Theorem 4.2.2 resembles Problem 1.17, and it seems to be related to potential theory, see
[123, page 65] and [80, Section 6]. Similar results have functional analytic importance,
see Rudin [129]; also Hall [58] and Hardin [60] might be worth seeing in this context.
Koldobskii [80, 81] gives Banach space versions of the results and relevant references.
Theorem 4.2.1 follows immediately from Theorem 4.2.2 by the following argument.

Proof of Theorem 4.2.1 . Clearly there is nothing to prove, if C' = 0, see also Problem
4.5. Suppose therefore C' # 0. It follows from the assumption that E|X +Y +tZ|P =
E|V2X +tZ|P for all real t. Note also that E|Z|P = C # 0. Therefore Theorem 4.2.2
applied to X +Y, X’ and Z, where X’ is an independent copy of v/2X, implies that
X +Y and v2X have the same distribution. Since X,Y are i. i. d., by Theorem 3.1.1
X,Y, Z are normal. O

A related result

The next result can be thought as a version of Theorem 4.2.1 corresponding to p = 0. For
the proof see [85, 92, 96].

Theorem 4.2.3 If X = (Xy,...,X,) is at least 3-dimensional random vector such that
its components X1, ..., X, are independent, P(X = 0) = 0 and X/||X]|| has the uniform
distribution on the unit sphere in IR", then X is Gaussian.

4.2.1 Proof of Theorem 4.2.2 for p=1

We shall first present a slightly simplified proof for p = 1 which is based on elementary
identity max{z,y} = (z + y + | — y|). This proof leads directly to the exponential
analogue of Theorem 4.2.1; the exponential version is given as Problem 4.4 below.

We shall begin with the lemma which gives an analytic version of condition (4.14).

3For more counter-examples, see also [15]; cf. also Theorems 4.2.8 and 4.2.9 below.
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Lemma 4.2.4 Let X1, X5, Y1,Ys be symmetric independent random variables such that
ElY;| < 00 and E|X;| < 00,i = 1,2. Denote N;(t) = P(|X;| > t), M;(t) = P(|Y}| > t),t >
0,2 =1,2. Then each of the conditions

Ela1 Xy + ax Xo| = E|la1 Y1 + axYs| for all aq, a9 € R; (4.15)
I5° Nu(T)No (1) dr = [5° My (1) My(xT) dT for all x > 0; (4.16)

for all z,y > 0, |z| + Jy| # 0;
implies the other two.

Proof. For all real numbers z,y we have |x — y| = 2max{x,y} — (z + y). Therefore,
taking into account the symmetry of the distributions for all real a,b we have

E|CLX1 - bX2| == 2Emax{aX1, bXQ} (418)

For an integrable random variable Z we have EZ = [;° P(Z > t)dt — [;° P(—Z > t) dt,
see (1.3). This identity applied to Z = max{aXy,bX5}, where a,b > 0 are fixed, gives

Emax{aX,,bX,} = /°° P(Z > t)dt /°° P(Z < —t)dt
0 0

:/OOP(aXlZt)dtJr/ooP(ngZt)dt
0

—/ P(aX, > )P(bX, > t) dt — /°° P(aXy < —t)P(bX, < —t) dt.
0

Therefore, from (4.18) after taking the symmetry of distributions into account, we obtain
ElaX) — bXy| = 20EX; + 20EX; — 4 /0 T P(aX, > )POX, > 1) dt,
where X;" = max{X;,0},i = 1,2. This gives
ElaX) — bXy| = 20EX] + 2EX; — 4 /0 Ny (t/a) No(t/b) dt. (4.19)

Similarly
ElaY; — bYs| = 2aEY,* + 20EY,H — 4 / M, (ta) M (t/b) dt. (4.20)
0

Once formulas (4.19) and (4.20) are established, we are ready to prove the equivalence of
conditions (4.15)-(4.17).

(4.15)=(4.16): If condition (4.15) is satisfied, then F|X;| = E|Y;|,7 = 1,2 and thus by
symmetry EX;" = EY;*,i = 1,2. Therefore (4.19) and (4.20) applied to a = 1,b = 1/x
imply (4.16) for any fixed x > 0.

(4.16) =(4.17): Changing the variable in (4.16) we obtain (4.17) for all > 0,y > 0.
Since EY;| < 0o and F|X;| < oo we can pass in (4.17) to the limit as x — 0, while y is
fixed, or as y — 0, while z is fixed, and hence (4.17) is proved in its full generality.

(4.17)=(4.15): If condition (4.17) is satisfied, then takingx =0,y =lorz =1,y =0
we obtain E|X;| = E|Y;|,i = 1,2 and thus by symmetry EX;" = EYJr i = 1,2. Therefore
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identities (4.19) and (4.20) applied to a = 1/x,b = 1/y imply (4.15) for any a; > 0,ay < 0.
Since F|Y;| < oo and E|X;| < oo, we can pass in (4.15) to the limit as a; — 0, or as
as — 0. This proves that equality (4.15) for all a; > 0,ay < 0. However, since X;,Y;,
i = 1,2, are symmetric, this proves (4.15) in its full generality. O

The next result translates (4.15) into the property of the Mellin transform. A similar
analytical identity is used in the proof of Theorem 4.2.3.

Lemma 4.2.5 Let X1, X5,Y1,Ys be symmetric independent random wvariables such that
ElY;| < 0o and E|X;| < 00,5 =1,2. Let 0 < u < 1 be fized. Then condition (4.15) is
equivalent to

E| X ["Y B X, = BV, "M E| Y| for all t € R. (4.21)

Proof. By Lemma 2.4.3, it suffice to show that conditions (4.21) and (4.16) are equivalent.

Proof of (4.16)=(4.21): Multiplying both sides of (4.16) by 2 “ % where t € R is
fixed, integrating with respect to x in the limits from 0 to oo and changing the order of
integration (which is allowed, since the integrals are absolutely convergent), then substi-
tuting x = y/7, we get

/ 7_z't+u71N1 (7_) dt/ yfufitNZ(y) dy
0 0

:/ Tit+u71M1(7') dT/ y*“*itMQ(y) dy.
0 0

This clearly implies (4.21), since, eg.

|7 N () dr = LG (i), = 1,2
0
(this is just tail integration formula (1.2)).

Proof of (4.21)=(4.16): Notice that

UE|Xj|u+it

is the characteristic function of a random variable with the probability density function
fiu(x) == Cjexp(zu)N,(exp(z)), v € R, j = 1,2, where C; = C;(u) is the normalizing
constant. Indeed,
| e explau)N;(exp(a)) de = [ gy N () dy = BIXG " (it

and the normalizer C;(u) = u/E|X;|" is then chosen to have ¢;(0) =1, j = 1,2. Similarly
uBElY: u+it

() = #u

(u+1it)E|Y;]

is the characteristic function of a random variable with the probability density function
9ju(2) = Kjexp(xu)M;(exp(z)),z € IR, where K; = u/E|Y;|*,j = 1, 2. Therefore (4.21)
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iznplies that the following two convolutions are equal f, * fQ,l,u = 1.4 * §2,1—u, Where
fo(z) = fo(—2), g2(x) = go(—2). Since (4.21) implies C(u)Cy(1 — u) = K;(u)Ky(1 — u),
a simple calculation shows that the equality of convolutions implies

/00 e*Ni(e*)Ny(e¥e®) dx = /OO e My (e®) My (ee") dx

— 00 —00

for all real y. The last equality differs from (4.16) by the change of variable only. O

Now we are ready to prove Theorem 4.2.2. The conclusion of Lemma 4.2.5 suggests
using the Mellin transform E|X[“*® ¢ € R. Recall from Section 1.8 that if for some
fixed u > 0 we have E|X[* < oo, then the function F|X|“*® t € IR, determines the
distribution of |X| uniquely. This and Lemma 4.2.5 are used in the proof of Theorem
4.2.2.

Proof of Theorem 4.2.2. LLemma 4.2.5 implies that for each 0 < u < 1, —00 < t < 00

E|X|u+itE|Z|17u7it _ E|y|u+itE|Z|17u7it. (4.22)

Since E|Z|° is an analytic function in the strip 0 < Rs < 1, see Theorem 1.8.2, and
E|Z| = C # 0 by (4.13), therefore the equation E|Z|*™ = 0 has at most a countable
number of solutions (u, t) in the strip 0 < u < 1 and —oo < t < co. Indeed, the equation
has at most a finite number of solutions in each compact set — otherwise we would have
Z = 0 almost surely by the uniqueness of analytic extension. Therefore one can find
0 < u < 1 such that E|Z[**" # 0 for all t € R. For this value of u from (4.22) we obtain

E|X|1—u—it — E|y|1—u—it (4.23)

for all real ¢, which by Theorem 1.8.1 proves that random variables X and Y have the
same distribution. O

4.2.2 Proof of Theorem 4.2.2 in the general case

The following lemma shows that under assumption (4.14) all even moments of order less
than p match.

Lemma 4.2.6 Let k = [p/2]. Then (4.14) implies
E|X|% = E|Y|¥ (4.24)
for7=0,1,... k.

Proof. For j < k the derivatives 2-|tX + Z|P are integrable. Therefore (4.24) follows by
the consecutive differentiation (under the integral signs) of the equation E|tX + Z|P =
E|tY + Z|P at t = 0. O

The following is a general version of (4.21).
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Lemma 4.2.7 Let 0 < u < p be fized. Then condition (4.14) and
E|X|u+itE|Z|p7u7it _ E|y|u+itE|Z|p7u7it fOT‘ alt € R. (425)
are equivalent.

Proof. We prove only the implication (4.14)=-(4.25); we will not use the other one.
Let k = [p/2]. The following elementary formula follows by the change of variable?

0o k e o d
la|P = Cp/o (COS axr — Z(—1)3a2]x23> xl’—fl (4.26)

j=0

for all a.
Since our variables are symmetric, applying (4.26) to a = X + aZ and a = Y + a7
from (4.14) and Lemma 4.2.6 we get

/°° (¢x(z) — ¢y (2))¢z(az) dr =0 (4.27)

rp+l

and the integral converges absolutely. Multiplying (4.27) by o P*+i~1 integrating with
respect to « in the limits from 0 to oo and switching the order of integrals we get

/oo dx () — Py (x) /00 a PTHilg (ax) dadz = 0. (4.28)
0 0

rp+1

Notice that

/°° a PTetit=le () do = 2P~ /°° prrrertle, (8) ds
0

0
=" " (—p+u+it)E|ZP
Therefore (4.28) implies
, (—p+u+it), (—u—it) (E|X|“+“ — E|Y|“+it) E|Z|P v =0.

This shows that identity (4.25) holds for all values of ¢, except perhaps a for a countable
discrete set arising from the zeros of the Gamma function. Since E|Y|* is analytic in the
strip —1 < Rz < p, this implies (4.25) for all ¢. O

Proof of Theorem 4.2.2 (general case). The proof of the general case follows the
previous argument for p = 1 with (4.25) replacing (4.21). O

“Notice that our choice of k ensures integrability.
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4.2.3 Pairs of random variables

Although in general Theorem 4.2.1 doesn’t hold for a pair of i. i. d. variables, it is possible
to obtain a variant for pairs under additional assumptions. Braverman [16] obtained the
following result.

Theorem 4.2.8 Suppose X,Y are i. i. d. and there are positive p; # po such that
p1,p2 € 2IN and ElaX +bY [Pi = Cj(a® + b*)P for all a,b € R, j = 1,2. Then X is
normal.

Proof of Theorem 4.2.8. Suppose 0 < p; < py. Denote by Z the standard normal
N(0,1) random variable and let

E|X|p/2+s

fols) = Elzprr

Clearly f, is analytic in the strip —1 < p/2 + Rs < p.
For —p;/2 < s < pe/2 by Lemma 4.2.7 we have

fpl (S)fpl(_s) = Cl (4.29)

and
for (8) fpo(=5) = Cs (4.30)
Put 7 = 1(po — p1). Then f,,(s) = fp, (s + ) in the strip —p; /2 < Rs < p; /2. Therefore
(4.30) implies
flr+s)f(r—s) =0Cy,

where to simplify the notation we write f = f,,. Using now (4.29) we get

Cy Cy
r+s)=——=—f(s—r 4.31
Hr9) = 5o = =) (4.31)
Equation (4.31) shows that the function 7 (s) := K*f(s), where K = (Cy/C)?, is periodic
with real period 2r. Furthermore, since p; > 0, 7(s) is analytic in the strip of the width
strictly larger than 2r; thus it extends analytically to €. By Lemma 4.1.8 this determines
uniquely the Mellin transform of | X|. Namely,

E|\X|*=CK°E|Z]|°.
Therefore in distribution we have the representation
X2KZy, (4.32)

where K is a constant, Z is normal N(0,1), and x is a {0, 1}-valued independent of Z
random variable such that P(x =1) = C.

Clearly, the proof is concluded if C' = 0 (X being degenerate normal). If C' # 0 then
by (4.32)

EltX +uY|P (4.33)
= CO(1 = C(t? +u®)PPE|ZIP +C(1 — O)(|t]P + |u|P)E|ZP.
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Therefore C' = 1, which ends the proof. O

The next result comes from [23] and uses stringent moment conditions; Braverman [16]
gives examples which imply that the condition on zeros of the Mellin transform cannot
be dropped.

Theorem 4.2.9 Let XY be symmetric i. i. d. random variables such that
Eexp(A\|X|?) < oo
for some A > 0, and E|X|* # 0 for all s € € such that Rs > 0. Suppose there is a
constant C' such that for all real a,b
ElaX + Y| = C(a* 4 b*)"/2.

Then X, Y are normal.

The rest of this section is devoted to the proof of Theorem 4.2.9.

The function ¢(s) = F|X|* is analytic in the half-plane Rs > 0. Since E|Z|* =
7 V2Ke (551, where K = n'/?E|Z| > 0 and , (.) is the Euler gamma function, there-
fore (4.21) means that ¢(s) = 7 2K*a(s), (£51), where a(s) := 72K *¢(s)/, (£51) is
analytic in the half-plane Rs > 0, a(5) = «(s) and satisfies

a(s)a(l —s) =1 for 0 < Rs < 1. (4.34)

We shall need the following estimate, in which without loss of generality we may assume
0 < AK <1 (choose A > 0 small enough).

Lemma 4.2.10 There is a constant C > 0 such that |a(s)| < Cls|(AK)® for all s in
the half-plane Ns > %

Proof. Since Fexp(\2|X|?) < oo for some A > 0, therefore P(|X| > t) < Ce %, where
C = Eexp(\?|X|?), see Problem 1.4. This implies

1
lp(s)| < Cy|s| A", (§§Rs),§Rs > 0. (4.35)

In particular |a(s)| < Cexp(o(]s]?)), where o(z)/z — 0 as x — oo.

Consider now function u(s) = «a(s)(AK)®/s, which is analytic in s > 0. Clearly
lu(s)| < Cexp(o(|s]?)) as |s] — oo. Moreover |u(3 + it)| < const for all real ¢ by (4.34);
for all real

()| = 72 N (), (L Ly, (2

9 )S Cla (51‘)/? (

) S 7_‘_1/20,

by (4.35). Therefore by the Phragmén-Lindeldf principle, see, eg. [97, page 50 Theorem
22], applied twice to the angles —%W < args <0, and 0 < args < ir, the Lemma is

2
proved. O

By Lemma 4.2.5 Theorem 4.2.9 follows from the next result.
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Lemma 4.2.11 Suppose X is a symmetric random variable satisfying
Eexp(A*|X[?) < oo

for some A > 0, and
E|X|°#0

for all s € C, such that s > 0. Let Z be a centered normal random variable such that
E|X|1/2+itE|X|1/2—it — E|z|1/2+itE|Z|1/2—it (4:36)
for allt € IR. Then X is normal.

Proof.

We shall use Lemma 4.2.10 to show that a(s) = C,C5 for some real Cy,Cy > 0. It is
clear that a(s) # 0 if Rs > 0. Therefore ((s) = log a(s) is a well defined function which
is analytic in the half-plane s > 0. The function v(s) := R(3(—is)) = log|a(—is)| is
harmonic in the half-plane Ss > —3 and limsupy,_,,, v(s)/|s| < oo by Lemma 4.2.10.
Furthermore by (4.34) we have v(t) = 0 for real ¢. By the Nevanlina integral representa-
tion, see [97, page 233, Theorem 4]

v(t)

for some real constant k£ and for all real x,y with y > 0. This in particular implies that
Bly+ %) =R(B(y + 3)) = v(—iy) = cy. Thus by the uniqueness of analytic extension we
get a(s) = C1C5 and hence

1
b(s) = PECC, (F) (4.37)
for some constants C1,Cy such that C2Cy = 1 (the latter is the consequence of (4.34)).
Formula (4.37) shows that the distribution of X is given by (4.32). To exclude the possi-
bility that P(X = 0) # 0 it remains to verify that C; = 1. This again follows from (4.33).

By Theorem 1.8.1, the proof is completed. O

4.3 Infinite spherically symmetric sequences

In this section we present results that hold true for infinite sequences only and which
might fail for finite sequences.

Definition 4.3.1 An infinite sequence X1, Xo, ... is spherically symmetric if the finite
sequence X1, Xo, ..., X, is spherically symmetric for all n.

The following provides considerably more information than Theorem 4.1.2.
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Theorem 4.3.1 ([132]) If an infinite sequence X = (X1, Xy, ...) is spherically sym-
metric, then there is a sequence of independent identically distributed Gaussian random
variables § = (v1,7%2,...) and a non-negative random variable R independent of 7 such
that

X = R7.

This result is based on exchangeability.

Definition 4.3.2 A sequence (Xy) of random variables is exchangeable, if the joint dis-
tribution of Xo(1), Xo(2), ..., Xo@m) s the same as the joint distribution of Xy, Xo, ..., X,
for alln > 1 and for all permutations o of {1,2,...,n}.

Clearly, spherical symmetry implies exchangeability. The following beautiful theorem
due to B. de Finetti [31] points out the role of exchangeability in characterizations as a
substitute for independence; for more information and the references see [79].

Theorem 4.3.2 Suppose that X, Xo, ... is an infinite exchangeable sequence. Then there
exist a o-field N such that X1, Xs, ... are N -conditionally i. i. d., that is

P(X1 <CL1,X2 <a2,...,Xn<an|N)

:P(X1 <01|N)P(X1 <02|N)...P(X1 <an|/\/)
forall ay,...,a, € R and alln > 1.

Proof. Let N be the tail o-field, ie.

N: ﬂ O'(Xk,Xk+1,...)
k=1

and put Ny, = o(Xg, Xk11,...). Fix bounded measurable functions f, g, h and denote
Fn:f(XlaaXn)’

Gn,m = g(Xn—l—la s 7Xm+n);

Hn,m,N = h(Xm+n+N+17 Xm+n+N+27 .- ')7

where n,m, N > 1. Exchangeability implies that
EFnGn,mHn,m,N - EFnGn+r,mHn,m,N

for all r < N. Since H,, ,,, n is an arbitrary bounded N, n41-measurable function, this
implies

E{FnGn,m|Nm+n+N+1} - E{FnGn+r,m|Nm+n+N+1}-

Passing to the limit as N — oo, see Theorem 1.4.3, this gives
E{F,Gm|N} = E{F,Gpirm|N}.

Therefore
E{F,GnmN'} = E{GrirmE{Fo|Nuir i1 }IN}.



4.d. LINDLINL LD O AivlOALL Y OX IVIVIE L IvLCO O GJU LN UL O/

Since E{F,|N, 1,11} converges in L; to E{F,|N'} as r — oo, and since g is bounded,
E{GrirmB{FalNpsrin HN}
is arbitrarily close (in the L; norm) to
E{Grnirm E{FLIN}IN'} = E{FW N} E{ G| N}

as 7 — 00. By exchangeability E{G1rm|N} = E{G,n|N} almost surely, which proves
that

Since f,g are arbitrary, this proves N -conditional independence of the sequence. Us-
ing the exchangeability of the sequence once again, one can see that random variables
X1, X, ... have the same A -conditional distribution and thus the theorem is proved. O

Proof of Theorem 4.3.1. Let A be the tail o-field as defined in the proof of Theorem
4.3.2. By assumption, sequences
(Xla X?a s ')7

(—X1, Xs,...),
(27Y2(X, + X3), X, ..),
(273X, + X5), 27 Y3(X, — X), X3, Xy, .. )

are all identically distributed and all have the same tail o-field A". Therefore, by The-
orem 4.3.2 random variables X, X,, are N -conditionally independent and identically
distributed; moreover, each variable has the symmetric A'-conditional distribution and
N-conditionally X; has the same distribution as 27Y/2(X; + X,). The rest of the ar-
gument repeats the proof of Theorem 3.1.1. Namely, consider conditional characteristic
function ¢(t) = E{exp(itX;)|N'}. With probability one ¢(1) is real by N-conditional
symmetry of distribution and ¢(t) = (¢(27'/2¢))2. This implies

$(27"%) = (p(1))"/*" (4.38)

almost surely, n = 0,1,.... Since ¢(27™?) — ¢(0) = 1 with probability 1, we have
#(1) # 0 almost surely. Therefore on a subset £y C € of probability P(€y) = 1, we have
#(1) = exp(—R?), where R* > 0 is A/-measurable random variable. Applying® Corollary
2.3.4 for each fixed w € Qy we get that ¢(t) = exp(—tR?) for all real .

O

The next corollary shows how much simpler the theory of infinite sequences is, compare
Theorem 4.1.4.

SHere we swept some dirt under the rug: the argument goes through, if one knows that except on a
set of measure 0, ¢(.) is a characteristic function. This requires using regular conditional distributions,
see, eg. [9, Theorem 33.3.].
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Corollary 4.3.3 Let X = (X1, Xy, ...) be an infinite spherically symmetric sequence such
that E|Xg|* < oo for some real « > 0 and all k =1,2,.... Suppose that for some m > 1

B0, X)Xty Xonsos - )} = const. (4.39)

Then X is Gaussian.
Proof. From Theorem 4.3.1 it follows that

B, Xon) 11X, Xz, - 2)}

= E{R*[|(71, -, ym) [[*] (Xm0, Xmy2, - )}

However, R is measurable with respect to the tail o-field, and hence it also is
0(Xma1, Xy, - - .)-measurable for all m. Therefore

B Xon) 11X, Xz )}

= RaE{“(lea s 7f)/m)||a|R(fym+17 Tm+2, - )}

=RE {E{||(71; s 77m)||a|R7 (7m+17 Ym+2, - - )} |R(/ym+17 Ym+2, - - )} :
Since R and 7 are independent, we finally get

B X 11X, Xz )}

= RE{[ (s - 3| sty Yot )} = CaRR®.

Using now (4.39) we have R = const almost surely and hence X is Gaussian. O

The following corollary of Theorem 4.3.2 deals with exponential distributions as defined in
Section 3.5. Diaconis & Freedman [35] have a dozen of de Finetti-style results, including
this one.

Theorem 4.3.4 If X = (X, Xy,...) is an infinite sequence of non-negative random
variables such that random variable min{ Xy /a, ..., X,/an} has the same distribution as
(a1 + ...+ a,) t Xy for all n and all ay,...,a, > 0, then X = A€, where A and € are
independent random variables and € = (€1, €, ...) is a sequence of independent identically
distributed exponential random variables.

Sketch of the proof: Combine Theorem 3.4.1 with Theorem 4.3.2 to get the result for the
pair X, X5. Use the reasoning from the proof of Theorem 3.4.1 to get the representation
for any finite sequence X1,...,X,, see also Proposition 3.5.1.
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4.4 Problems

Problem 4.1 Prove the converse of (4.2). Namely, if ¢(s) is the characteristic function
of a one-dimensional random variable, then there is a spherically symmetric (Xy, ..., X,)
such that ¢(||t||) is its characteristic function.

Problem 4.2 For centered bivariate normal r. v. X,Y with variances 1 and correlation
coefficient p (see Ezample 2.2.1), show that E{|X| |Y|} = 2(\/1 — p® + parcsin p).

Problem 4.3 Let X,Y be i. i. d. random variables with the probability density function
defined by f(xr) = C|z|*exp(—1/2?), where C is a normalizing constant, and r € R.
Show that for any choice of a,b € IR we have

ElaX +bY| = K (a® 4 0*)'/?,
where K = E|X|.

Problem 4.4 Using the methods used in the proof of Theorem 4.2.1 for p =1 prove the
following.

Theorem 4.4.1 Let X,Y,Z > 0 be i. i. d. and integrable random variables.
Suppose that there is a constant C # 0 such that Emin{X/a,Y /¢, Z/c} =
C/(a+b+c) for all a,b,c > 0. Then X,Y,Z are exponential.

Problem 4.5 (deterministic analogue of theorem 4.2.1) Show that if X,Y are in-
dependent with the same distribution, and ElaX + bY'| =0 for some a,b # 0, then X, Y
are non-random.
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Chapter 5

Independent linear forms

In this chapter the property of interest is the independence of linear forms in independent
random variables. In Section 5.1 we give a characterization result that is both simple
to state and to prove; it is nevertheless of considerable interest. Section 5.2 parallels
Section 3.2. We use the characteristic property of the normal distribution to define ab-
stract group-valued Gaussian random variables. In this broader context we again obtain
the zero-one law; we also prove an important result about the existence of exponential
moments. In Section 5.3 we return to characterizations, generalizing Theorem 5.1.1. We
show that the stochastic independence of arbitrary two linear forms characterizes the nor-
mal distribution. We conclude the chapter with abstract Gaussian results when all forces
are joined.

5.1 Bernstein’s theorem

The following result due to Bernstein [8] characterizes normal distribution by the in-
dependence of the sum and the difference of two independent random variables. More
general but also more difficult result is stated in Theorem 5.3.1 below. An early precur-
sor is Narumi [114], who proves a variant of Problem 5.4.The elementary proof below is
adapted from Feller [54, Chapter 3].

Theorem 5.1.1 If Xy, Xy are independent random variables such that X, + Xy and X, —
Xy are independent, then X, and X5 are normal.

The next result is an elementary version of Theorem 2.5.2.

Lemma 5.1.2 If X, 7 are independent random variables such that Z and X + Z are
normal, then X is normal.

Indeed, the characteristic function ¢ of random variable X satisfies
o(t) exp(—(t — m)*/0?) = exp(—(t — M)*/S?)

for some constants m, M, o, S. Therefore ¢(t) = exp(at® + bt + ¢), for some real constants
a, b, c, and by Proposition 2.1.1, ¢ corresponds to the normal distribution.

71
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Lemma 5.1.3 If X, Z are independent random variables and Z is normal, then X + 7
has a non-vanishing probability density function which has derivatives of all orders.

Proof. Assume for simplicity that Z is N(0,27/2). Consider f(z) = Eexp(—(z — X)?).
Then f(z) # 0 for each z, and since each derivative %exp(—(y — X)?) is bounded
uniformly in variables y, X, therefore f(-) has derivatives of all orders. It remains to
observe that m='/2f(-) is the probability density function of X 4 Z. This is easily verified

using the cumulative distribution function:

oo

PX+Z<t)= 7r_1/2/ exp(—zQ)/ Ixy< ,dPdz
o X<

= 7r’1/2/ {/OO exp(—22) 4 x< dz} dP
Q —00 B
= qg1/2 /Q {/_ exp(—(y — X)Q)Iygt dy} dP

t
= '/ /_oo Eexp(—(y — X)*) dy.

Proof of Theorem 5.1.1. Let Z;, Z, be i. i. d. normal random variables, independent
of X'’s. Then random variables Y, = X + Zx, k = 1,2, satisfy the assumptions of the
theorem, c¢f. Theorem 2.2.6. Moreover, by Lemma 5.1.3, each of Y};’s has a smooth non-
zero probability density function fi(z), k = 1,2. The joint density of the pair Y;+Y5, Y] —
Yy is 5 f1(%3) f2(*5%) and by assumption it factors into the product of two functions, the
first being the function of x, and the other being the function of y only. Therefore the
logarithms Q(z) :=log fr(32), k = 1,2, are twice differentiable and satisfy

Qi(7 +y) + Qa(x — y) = alz) +b(y) (5.1)

for some twice differentiable functions a,b (actually ¢ = @ + @Q2). Taking the mixed
second order derivative of (5.1) we obtain

1@ +y) =Qs(z—y). (5-2)

Taking z = y this shows that Q{(z) = const. Similarly taking z = —y in (5.2) we
get that Q)(z) = const. Therefore Qr(2z) = Ay + Brz + Crz?, and hence fi(z) =
exp(Ay + Brz+ Crz?), k = 1,2. As a probability density function, f has to be integrable,
k =1,2. Thus Cy < 0, and then A, = —% log(—27CY%) is determined uniquely from the
condition that [ fx(z)dx = 1. Thus fx(z) is a normal density and Y7, Ys are normal. By
Lemma 5.1.2 the theorem is proved. O

5.2 Gaussian distributions on groups

In this section we shall see that the conclusion of Theorem 5.1.1 is related to integrability
just as the conclusion of Theorem 3.1.1 is related to the fact that the normal distribution
is a limit distribution for sums of i. i. d. random variables, see Problem 3.3.
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Let G be a group with a o-field F such that group operation x,y — x +y, is a
measurable transformation (G x G, F ® F) — (G, F). Let (2, M, P) be a probability
space. A measurable function X : (2, M) — (G, F), is called a G-valued random
variable and its distribution is called a probability measure on G.

Example 5.2.1 Let G = IR? be the vector space of all real d-tuples with vector addition
as the group operation and with the usual Borel o-field B. Then a G-valued random
variable determines a probability distribution on IR

Example 5.2.2 Let G = S' be the group of all complex numbers z such that |z] = 1
with multiplication as the group operation and with the usual Borel o-field F generated by

open sets. A distribution of G-valued random variable is called a probability measure on
St

Definition 5.2.1 A G-valued random variable X is Z-Gaussian (letter T stays here for
independence) if random variables X + X' and X — X', where X' is an independent copy
of X, are independent.

Clearly, any vector space is an Abelian group with vector addition as the group operation.
In particular, we now have two possibly distinct notions of Gaussian vectors: the &-
Gaussian vectors introduced in Section 3.2 and the Z-Gaussian vectors introduced in this
section. In general, it seems to be not known, when the two definitions coincide; [143]
gives related examples that satisfy suitable versions of the 2-stability condition (as in our
definition of £-Gaussian) without being Z-Gaussian.

Let us first check that at least in some simple situations both definitions give the same
result.

Example 5.2.1 (continued) If G = IR? and X is an R%-valued T-Gaussian random
variable, then for all aj,as,...,aq € R the one-dimensional random variable a; X (1) +
a2 X (2) + ...+ agX(d) has the normal distribution. This means that X is a Gaussian
vector in the usual sense, and in this case the definitions of Z-Gaussian and &-Gaussian
random variables coincide. Indeed, by Theorem 5.1.1, if L : G — R is a measurable
homomorphism, then the R-valued random variable X = L(X) is normal.

In many situations of interest the reasoning that we applied to IR? can be repeated
and both the definitions are consistent with the usual interpretation of the Gaussian
distribution. An important example is the vector space C0, 1] of all continuous functions
on the unit interval.

To some extend, the notion of Z-Gaussian variable is more versatile. It has wider
applicability because less algebraic structure is required. Also there is some flexibility in
the choice of the linear forms; the particular linear combination X + X’ and X — X' seems
to be quite arbitrary, although it might be a bit simpler for algebraic manipulations,
compare the proofs of Theorem 5.2.2 and Lemma 5.3.2 below. This is quite different from
Section 3.2; it is known, see [73, Chapter 2| that even in the real case not every pair of
linear forms could be used to define an £-Gaussian random variable. Besides, Z-Gaussian
variables satisfy the following variant of £-condition. In analogy with Section 3.2, for
any G-valued random variable X we may say that X is £'-Gaussian, if 2X has the same
distribution as X; + X5 + X3 + X4, where X, X5, X3, X, are four independent copies of
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X. Any symmetric Z-Gaussian random variable is always £'-Gaussian in the above sense,
compare Problem 5.1. This observation allows to repeat the proof of Theorem 3.2.1 in
the Z-Gaussian case, proving the zero-one law. For simplicity, we chose to consider only
random variables with values in a vector space V; notation 2"x makes sense also for
groups — the reader may want to check what goes wrong with the argument below for
non-Abelian groups.

Theorem 5.2.1 If X is a V-valued Z-Gaussian random variable and IL is a linear mea-
surable subspace of V, then P(X € 1L) is either 0, or 1.

Indeed, let X;,...,X,,... be independent copies of X, taken to be also independent from
X. Recurrently we see that X; + ...+ X4» and 2"X have the same distribution for all
n > 1. Since IL is a linear subspace of V, we have P(X; + ...+ Xy € ) = P(X € IL).
Put Z = X; + X, + X34+ Xy. Since X;+...4+ X n+1 has the same distribution as Z+2"X,
therefore P(Z+2"X € IL) = P(X € IL) does not depend on n. As in the proof of Theorem
3.2.1, define events A, = {Z ¢ IL}N{Z+2"X € IL}. It is again easily verified that events
{A;}n>1 are disjoint; therefore P(A,) = P(X e L)P(X ¢ L) =0. O

The main result of this section, Theorem 5.2.2, needs additional notation. This no-
tation is natural for linear spaces. Let G be a group with a translation invariant metric
d(x,y), ie. suppose d(x +z,y +2z) = d(x,y) for all x,y,z € G. Such a metric d(-,-) is
uniquely defined by the function = — D(x) := d(x,0). Moreover, it is easy to see that
D(x) has the following properties: D(x) = D(—x) and D(x+y) < D(x) + D(y) for all
x,y € G. Indeed, by translation invariance D(—x) = d(—x,0) = d(0,x) = d(x,0) and
Dx+y)=dx+y,0) <dx+y,y) +d(y,0) = D(x)+ D(y).

Theorem 5.2.2 Let G be a group with a measurable translation invariant metric d(.,.).
If X is an Z-Gaussian G-valued random variable, then Eexp Ad(X,0) < oo for some
A>0.

More information can be gained in concrete situations. To mention one such example of
great importance, consider a C'0, 1]-valued Z-Gaussian random variable, ie. a Gaussian
stochastic process with continuous trajectories. Theorem 5.2.2 says that

Eexp A(sup |X(t)|) < o0
0<t<1

for some A > 0. On the other hand, C[0,1] is a normed space and another (equivalent)
definition applies; Theorem 5.4.1 below implies stronger integrability property

Eexp M sup |X(#)]*) < oo
0<t<1

for some A > 0. However, even the weaker conclusion of Theorem 5.2.2 implies that
the real random variable supy.,; |X(¢)| has moment generating function and that all
its moments are finite. Lemma 5.3.2 below is another application of the same line of
reasoning.
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Proof of Theorem 5.2.2. Consider a real function N(z) := P(D(X) > z), where as
before D(x) := d(x,0). We shall show that there is xy such that

N(2x) < 8(N(x — z0))* (5.3)

for each x > xy. By Corollary 1.3.7 this will end the proof.

Let Xy, Xy be the independent copies of X. Inequality (5.3) follows from the fact that
event {D(X;) > 2z} implies that either the event {D(X;) > 2z} N {D(Xz) > 2y}, or
the event {D (X + X2) > 2(x — x9) } N {D(X; — X3) > 2(x — x9)} occurs.

Indeed, let zp be such that P(D(Xy) > 2x0) < 5. If D(X;) > 2z and D(X5) < 2z
then D(X; +Xy) > D(X,) — D(X3) > 2(x — ). Therefore using independence and the
trivial bound P(D(X; + X3) > 2a) < P(D(X,) > a) + P(D(X3) > a), we obtain

P(D(X;) > 2z) < P(D(X;) > 2x)P(D(X3) > 2x)
+P(D(X; + X2) > 2(z — x0))P(D(X; — X3) > 2(z — xp))

< =N(27) + 4N?*(x — z0)

DO | —

for each z > x,. O

More theory of Gaussian distributions on groups can be developed when more struc-
ture is available, although technical difficulties arise; for instance, the Cramer theorem
(Theorem 2.5.2) fails on the torus, see Marcinkiewicz [107]. Series expansion questions
(cf. Theorem 2.2.5 and the remark preceding Theorem 8.1.3) are studied in [24], see also
references therein. One can also study Gaussian distributions on normed vector spaces.
In Section 5.4 below we shall see to what extend this extra structure is helpful, for inte-
grability question; there are deep questions specific to this situation, such as what are the
properties of the distribution of the real r. v. ||X]|; see [55]. Another research subject,
entirely left out from this book, are Gaussian distributions on Lie groups; for more infor-
mation see eg. [153]. Further information about abstract Gaussian random variables, can
be found also in [27, 49, 51, 52].

5.3 Independence of linear forms

The next result generalizes Theorem 5.3.1 to more general linear forms of a given indepen-
dent sequence Xi,...,X,. An even more general result that admits also zero coefficients
in linear forms, was obtained independently by Darmois [30] and Skitovich [136]. Multi-
dimensional variants of Theorem 5.3.1 are also known, see [73]. Banach space version of
Theorem 5.3.1 was proved in [89].

Theorem 5.3.1 If X,..., X, is a sequence of independent random variables such that
the linear forms 37—, ap Xy and Y_p_, by Xy have all non-zero coefficients and are inde-
pendent, then random variables Xy are normal for all 1 < k < n.

Our proof of Theorem 5.3.1 uses additional information about the existence of moments,
which then allows us to use an argument from [104] (see also [75]). Notice that we don’t
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allow for vanishing coefficients; the latter case is covered by [73, Theorem 3.1.1] but the
proof is considerably more involved®.

We need a suitable generalization of Theorem 5.2.2, which for simplicity we state
here for real valued random variables only. The method of proof seems also to work in
more general context under the assumption of independence of certain nonlinear statistics,
compare [101, Section 5.3.], [73, Section 4.3] and Lemma 7.4.2 below.

Lemma 5.3.2 Let ay,...,a,,b1,...,b, be two sequences of non-zero real numbers. If
Xi,..., X, s a sequence of independent random variables such that two linear forms
Yoy Xy and Y3, b Xy are independent, then random variables Xy, k = 1,2,...,n

have finite moments of all orders.

Proof. We shall repeat the idea from the proof of Theorem 5.2.2 with suitable technical
modifications. Suppose that 0 < € < |agl, |bx] < K < oo for k =1,2,...,n. Forz > 0
denote N(z) := max;<, P(|X;| > ) and let C'= 2nK/e. For 1 < j <n we have trivially

P(|X;| > Cx) < P(|X;| > Cxz, | Xi| < xVEk # j)

+3 P(IX5] > 2)P(|X,| > @).
ey
Notice that the event A; = {|X;| > Cz} N {|Xi| < 2 Vk # j} implies that both
| > r_q axXg| > nKz and | Y} b Xi| > nKx. Indeed,

|Zaka| Z |Xj||aj| — Z |aka| Z (GO—HK)l' =nKz
k=1 k, k#j

and the second inclusion follows analogously. By independence of the linear forms this
shows that

P(|X;| > Cz) < P(] Y axXi| > nKz)P(] Y b Xy| > nKz)
k=1 k=1

+Y P(IX5] > 2) P(|X,| > @).
k#j
Therefore N(Cz) < P(| X7 apXg| > nKz)P(| S} bk Xk| > nKz)+nN?(z). Using the
trivial bound .
P(|> axXy| > nKz) < nN(z),
k=1
we get
N(Cz) < 2n*N?*(z).

Corollary 1.3.3 now ends the proof. O

Proof of Theorem 5.3.1. We shall begin with reducing the theorem to the case with
more information about the coefficients of the linear forms. Namely, we shall reduce the
proof to the case when all a;, = 1, and all b, are different.

!The only essential use of non-vanishing coefficients is made in the proof of Lemma 5.3.2.
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Since all a; are non-zero, normality of X} is equivalent to normality of a;X}; hence
passing to X}, = a; X}, we may assume that ay = 1,1 < k < n. Then, as the second step of
the reduction, without loss of generality we may assume that all b;’s are different. Indeed,
if, eg. by = by, then substituting X| = X; + X, we get (n — 1) independent random
variables X1, X3, Xy, ..., X,, which still satisfy the assumptions of Theorem 5.3.1; and
if we manage to prove that X| is normal, then by Theorem 2.5.2 the original random
variables X, Xy are normal, too.

The reduction argument allows without loss of generality to assume that ap = 1,1 <
kE<nandO0# by # by #...# b,. In particular, the coefficients of linear forms satisfy the
assumption of Lemma 5.3.2. Therefore random variables Xy, ..., X, have finite moments
of all orders and linear forms }_}_; X and > }_, by X} are independent.

The joint characteristic function of Y | Xj, >0 bp Xy is

b(t,s) = ln_[ O (t + bis),
k=1

where ¢ is the characteristic function of random variable X;, k = 1,...,n. By indepen-
dence of linear forms ¢(¢, s) factors

o(t,s) = Ui (t)Wa(s).
Hence .
[T &n(t + bis) = T1(t)Ts(s). (5.4)

k=1

Passing to the logarithms @ = log ¢y in a neighborhood of 0, from (5.4) we obtain
> Qu(t + brs) = wi(t) + wa(s). (5.5)
k=1

By Lemma 5.3.2 functions () and w; have derivatives of all orders, see Theorem 1.5.1.
Consecutive differentiation of (5.5) with respect to variable s at s = 0 leads to the following
system of equations

]cibkczsc(t) — wl(0),

SSHQUN = W) (5.

i :
S QM) = wi(0).
k=1

Differentiation with respect to ¢ gives now

S QM) = 0,
k=1

SR = o, (5.7)
k=1
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>R = 0,
k=1

ZbZQ;")(t) = const
k=1

(clearly, the last equation was not differentiated).

Equations (5.7) form a system of linear equations (5.7) for unknown values Q,(cn) (1),1 <
k < n. Since all b; are non-zero and different, therefore the determinant of the system
is non-zero?. The unique solution Q}c”) (t) of the system is Q}c”) (t) = consty, and does not
depend on ¢t. This means that in a neighborhood of 0 each of the characteristic functions
ok (-) can be written as ¢r(t) = exp(Py(t)), where Py is a polynomial of at most n-th
degree. Theorem 2.5.3 now concludes the proof. O

Remark: Additional integrability information was used to solve equation (5.5). In general equation
(5.5) has the same solution but the proof is more difficult, see [73, Section A.4.].

5.4 Strongly Gaussian vectors

Following Fernique, we give yet another definition of a Gaussian random variable.
Let V be a linear space and let X be an V-valued random variable. Denote by X’ an
independent copy of X.

Definition 5.4.1 X is S-Gaussian ( S stays here for strong) if for all real o random
variables cos(a) X' +sin(a)X, and sin(a) X' — cos(a)X are independent and have the same
distribution as X.

Clearly any S-Gaussian random vector is both Z-Gaussian and £-Gaussian, which moti-
vates the adjective “strong”. Let us quickly show how Theorems 3.2.1 and 5.2.1 can be
obtained for S-Gaussian vectors. The proofs follow Fernique [55].

Theorem 5.4.1 If X is an V -valued S-Gaussian random variable and 1L is a linear
measurable subspace of V, then P(X € L) is either equal to 0, or to 1.

Proof. Let X, X' be independent copies of X. For each 0 < o < 7/2, let X, =
cos(a)X + sin(a) X', and consider the event

Alo) = {w: Xy (w) € L} N {X;/0-a(w) € IL}.

Clearly P(A(a)) = P(X € IL)P(X ¢ IL). Moreover, it is easily seen that {A(a)}ocacn/2
are pairwise disjoint events. Indeed, if A(a) N A(S) # (), then we would have vectors v, w
such that cos(a)v + sin(a)w € IL, cos(f)v + sin(3)w € IL, which for a #  implies that
v,w € IL. This contradicts cos(m/2 — a)v +sin(7/2 — a)w ¢ IL. Therefore P(A(a)) =0
for each o and in particular P(X € IL)P(X ¢ IL) = 0, which ends the proof. O

This is the Vandermonde determinant and it equals by ... b, [1;<i(b; —bs).
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The next result is taken from Fernique [56]. It strengthens considerably the conclusion of
Theorem 3.2.2.

Theorem 5.4.2 Let V be a normed linear space with the measurable norm ||-||. If X is an
S-Gaussian V-valued random variable, then there is € > 0 such that Fexp(e||X]|?) < oc.

Proof. As previously, let N(x) := P(||X]|| > z). Let X;, X5 be independent copies of X.
It follows from the definition that
Xl [[Xe

and
2712|X + X, 2712|1X — Xo|

are two pairs of independent copies of ||X||. Therefore for any 0 < y < x we have the
following estimate

N(z) = P(IXall 2 2, [ Xell 2 ) + P(IXa]l = 7, Xzl < y)

< N(@)N(y) + P(IX1 + X > @ — ) P(IX1 - Ko > 2 — ).

Thus
N(z) < N(z)N(y) + N* 27 (z — y)). (5.8)

Take xg such that N(z) < 3. Substituting ¢t = v/2z in (5.8) we get
N(V2t) < 2N%(t — t,) (5.9)

for each t > . This is similar to, but more precise than (5.3). Corollary 1.3.6 ends the
proof. O

5.5 Joint distributions

Suppose X1, ..., X,,n > 1, are (possibly dependent) random variables such that the joint
distribution of n linear forms L, Lo, ..., L, in variables X1, ..., X,, is given. Then, except
in the degenerate cases, the joint distribution of (Li, Lo, ..., L,) determines uniquely the
joint distribution of (X3,...,X,). The point to be made here is that if Xi,..., X, are
independent, then even degenerate transformations provide a lot of information. This
phenomenon is responsible for results in Chapters 3 and 5. More general results which
have little to do with the Gaussian distribution are also known. For instance, if X, X5, X3
are independent, then the joint distribution pu(dz, dy) of the pair X; — Xo, X5 — X3 de-
termines the distribution of X, X3, X3 up to a change of location, provided that the
characteristic function of 1 does not vanish, see [73, Addendum A.3]. This result was
found independently by a number of authors, see [84, 119, 124]; for related results see also
[86, 151]. Nonlinear functions were analyzed in [87] and the references therein.
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5.6 Problems

Problem 5.1 Let X, Xs,... and Y1,Y5,... be two sequences of i. i. d. copies of random
variables X, Y respectively. Suppose X,Y have finite second moments and are such that
U=X4+Y and V = X =Y are independent. Observe that in distribution X = X, =
S(U+V) =2 23X, + Y, + X, — Y2), ete. Use this observation and the Central Limit
Theorem to prove Theorem 5.1.1 under the additional assumption of finiteness of second
moments.

Problem 5.2 Let X and Y be two independent identically distributed random variables
such that U = X +Y and V = X =Y are also independent. Observe that 2X =U +V
and hence the characteristic function ¢(-) of X satisfies equation ¢(2t) = ¢(t)p(t)d(—t).
Use this observation to prove Theorem 5.1.1 under the additional assumption of i. i. d.

Problem 5.3 (Deterministic version of Theorem 5.1.1) Suppose X, U,V are inde-
pendent and X + U, X +V are independent. Show that X is non-random.

The next problem gives a one dimensional converse to Theorem 2.2.9.

Problem 5.4 (From [114]) Let XY be (dependent) random wvariables such that for
some number p # 0,£1 both X — pY and Y are independent and also Y — pX and
X are independent. Show that (X,Y’) has bivariate normal distribution.



Chapter 6

Stability and weak stability

The stability problem is the question of to what extent the conclusion of a theorem is
sensitive to small changes in the assumptions. Such description is, of course, vague until
the questions of how to quantify the departures both from the conclusion and from the
assumption are answered. The latter is to some extent arbitrary; in the characterization
context, typically, stability reasoning depends on the ability to prove that small changes
(measured with respect to some measure of smallness) in assumptions of a given character-
ization theorem result in small departures (measured with respect to one of the distances
of distributions) from the normal distribution.

Below we present only one stability result; more about stability of characterizations
can be found in [73, Chapter 9], see also [102]. In Section 6.2 we also give two results that
establish what one may call weak stability. Namely, we establish that moderate changes
in assumptions still preserve some properties of the normal distribution. Theorem 6.2.2
below is the only result of this chapter used later on.

6.1 Coefficients of dependence

In this section we introduce a class of measures of departure from independence, which we
shall call coefficients of dependence. There is no natural measure of dependence between
random variables; those defined below have been used to define strong mixing conditions
in limit theorems; for the latter the reader is referred to [65]; see also [10, Chapter 4].

To make the definition look less arbitrary, at first we consider an infinite parametric
family of measures of dependence. For a pair of o-fields F, G let

ANB)— P(A)P(B)|

1P
Ofr,s(fa g) = sup{ P(A)TP(B)S

: A € F,B € G non-trivial}

with the range of parameters 0 < r < 1,0 < s < 1I,r + s < 1. Clearly, o, is a
number between 0 and 1. It is obvious that a,s = 0 if and only if the o-fields F,G
are independent. Therefore one could use each of the coefficients o, s as a measure of
departure from independence.

Fortunately, among the infinite number of coefficients of dependence thus introduced,
there are just four really distinct, namely ayg o, 1,10, and ay/21/2. By this we mean
that the convergence to zero of «, s (when the o-fields F,G vary) is equivalent to the

81
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convergence to 0 of one of the above four coefficients. And since o and oy ¢ are mirror
images of each other, we are actually left with three coefficients only.
The formal statement of this equivalence takes the form of the following inequalities.

Proposition 6.1.1 Ifr +s < 1, then o, 5 < (apo)* " *.
Ifr+s=1and0<r < % <s <1, then a, s < (a1/2,1/2)2r.

Proof. The first inequality follows from the fact that

|P(AN B) — P(A)P(B)|
P(A)P(B)®

= |P(ANB) = P(A)P(B)|""*|P(B|A) — P(B)"|P(A|B) — P(A)[*
< |P(ANB) - P(A)P(B)['".
The second one is a consequence of

|P(AN B) — P(A)P(B)|
P(A)P(B)

_ <|P(A N B) - P(A)P

p(A)1/2p(B)1/2(B)|> |P(A|B) — P(A)]™" < (oa/2,1/2)

Coefficients agp and g1, a1 are the basis for the definition of classes of stationary se-
quences called in the limit theorems literature strong-mizing and uniform strong mizing
(called also ¢-mizing); a2 is equivalent to the mazimal correlation coefficient (6.3),
which is the basis of the so called p-mizing condition. Monograph [39] gives recent expo-
sition and relevant references; see also [42, pp. 380-385].

There is also a whole continuous spectrum of non-equivalent coefficients «, ; when
r+ s > 1. As those coefficients may attain value oo, they are less frequently used; one
notable exception is a1, which is the basis of the so called ¢-mixing condition and occurs
occasionally in the assumptions of some limit theorems. Condition equivalent to a1 < 00
and conditions related to ;. ; with r+s > 1 are also employed in large deviation theorems,
see [34, condition (U) and Chapter 5].

The following bounds' for the covariances between random variables in L,(F) and in
L,(F) will be used later on.

Proposition 6.1.2 If X is F-measurable with p-th moment finite (1 < p < o0) and Y
is G-measurable with q-th moment finite (1 < g <oo ) and 1/p+1/q <1, then

|EXY—EXE'Y| (6‘1)
(0t ,0)' TP (0 0) VP (ct0,0) V| X[V ]

IN

where | X1, = (E|X[P)Y? if p < 0o and || X || = ess sup|X|.

!Similar results are also known for agpo and a; s2,1/2- The latter is more difficult and is due to
R. Bradley, see [13, Theorem 2.2 ] and the references therein.
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Proof. We shall prove the result for p = 1,¢ = 0o and p = ¢ = oo only; these are the
only cases we shall actually need; for the general case, see eg. [46, page 347 Corollary
2.5] or [65].

Let M = ess sup|Y'|. Switching the order of integration (ie. by Fubini’s theorem) we
get, see Problem 1.1,

|[EXY — EXEY|
= [ /2% (P(X > ,Y > 5) = P(X > )P(Y > s)) dt ds]
< [ MIP(X >tY >s)— P(X >t)P(Y > s)| dtds. (6.2)

Since |[P(X > t,Y > s)—P(X > t)P(Y > s)| < a;oP(X > t) (which is good for positive
t)and |[P(X > t,Y >s)—P(X >t)P(Y > s)|=|P(X <t,Y >s) - P(X <t)P(Y >
s)| < ayoP(X <t) (which works well for negative t), inequality (6.2) implies

00 M
IEXY — EXEY| < al,o/ / P(X > t)dtds
0 —M

+a10/ / P(X < —t)dtds = 201 0E|X| |V ]]wo-
Similar argument using |P(X > t,Y > s) — P(X > t)P(Y > s)| < ag, gives

|[EXY — EXEY| < 4ol X loo|[Y [|so-

6.1.1 Normal case

Here we review without proofs the relations between the dependence coefficients in the
multivariate normal case. Ideas behind the proofs can be found in the solutions to the
Problems 6.2, 6.4, and 6.5.

The first result points points out that the coefficients o ; and «;  are of little interest
in the normal case.

Theorem 6.1.3 Suppose (X,Y) € R“T are jointly normal and a1 (X,Y) < 1. Then
X, Y are independent.

Denote by p the mazimal correlation coefficient
p = sup{corr(f(X)g(Y)) : f(X),g(Y) € La}. (6.3)

The following estimate due to Kolmogorov & Rozanov [83] shows that in the normal case
the maximal correlation coefficient (6.3) can be estimated by appo. In particular, in the
normal case we have

/2,172 < 2T 0.

Theorem 6.1.4 Suppose X, Y € RYY% are jointly normal. Then
COTT(f(X)a g(Y)) S 27T050,0(X7 Y)

for all square integrable f, g
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The next inequality is known as the so called Nelson’s hypercontractive estimate [116]
and is of importance in mathematical physics. It is also known in general that inequality
(6.4) implies a bound for maximal correlation, see [34, Lemma 5.5.11].

Theorem 6.1.5 Suppose (X,Y) € R gre jointly normal. Then

EfX)g(Y) <[[f (gl (6.4)

for all p-integrable f, g, provided p > 1+ p, where p is the mazimal correlation coefficient

(6.3).

6.2 Weak stability

A weak version of the stability problem may be described as allowing relatively large
departures from the assumptions of a given theorem. In return, only a selected part of
the conclusion is to be preserved. In this section the part of the characterization conclusion
that we want to preserve is integrability. This problem is of its own interest. Integrability
results are often useful as a first step in some proofs, see the proof of Theorem 5.3.1, or
the proof of Theorem 7.5.1 below.

As a simple example of weak stability we first consider Theorem 5.1.1, which says that
for independent r. v. X,Y we have ayo(X + Y, X —Y) = 0 only in the normal case.
We shall show that if the coefficient of dependence aq (X +Y, X —Y) is small, then the
distribution of X still has some finite moments. The method of proof is an adaptation of
the proof of Theorem 5.2.2.

Proposition 6.2.1 Suppose X,Y are independent random wvariables such that random
variables X +Y and X =Y satisfy a10(X +Y,X —Y) < 5. Then X and Y have finite
moments E|X|? < oo for < —log,(2a1).

Proof. Let N(z) = max{P(|X| > z), P(|Y| > z)}. Put @ = a;. We shall show that
for each p > 2a, there is xy > 0 such that

N(2z) < pN(z — o) (6.5)

for all x > x.

Inequality (6.5) follows from the fact that the event {|X| > 2z} implies that either
{X] > 22} n{|Y] > 2y} or {{I X +Y| > 2(x —y)} n{|X = Y| > 2(z — y)} holds
(make a picture). Therefore, using the independence of X,Y, the definition of @ =
a10(X +Y,X —Y) and trivial bound P(|X +Y| > a) < P(|X| > 3a) + P(]Y| > 3a) we
obtain

P(IX] = 2z) < P(|X] > 22)P(|Y] > 2y)

+P(|X +Y]| 2 2(zr —y))(a+ P(IX - Y[=2(x —y)))
< N(22)N(2y) + 2aN (x — y) + 4N?*(z — y).

For any € > 0 pick y so that N(2y) < ¢/(1+¢). This gives N(2z) < (14 €)2aN(z —y) +
4(1+ €)N?(z — y) for all x > y. Now pick o > y such that N(z —y) < ea/(1 + €) for all
x >y. Then

N(2z) <2(1+2¢)aN(z —y) < 2(1+ 3e)aN(x — xp)
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for all x > xy. Since € > 0 is arbitrary, this ends the proof of (6.5).
By Theorem 1.3.1 inequality (6.5) concludes the proof, eg. by formula (1.2).
(Il

In Chapter 7 we shall consider assumptions about conditional moments. In Section 7.5
we need the integrability result which we state below. The assumptions are motivated
by the fact that a pair X,Y with the bivariate normal distribution has linear regressions
E{X|Y} = ap + a1Y and E{Y|X} = by + b X, see (2.8); moreover, since X — (ag +
a1Y’) and Y are independent (and similarly Y — (by + b1 X)) and X are independent), see
Theorem 2.2.9, therefore the conditional variances Var(X|Y) and Var(Y|X) are non-
random. These two properties do not characterize the normal distribution, see Problem
7.7. However, the assumption that regressions are linear and conditional variances are
constant might be considered as the departure from the assumptions of Theorem 5.1.1
on the one hand and from the assumptions of Theorem 7.5.1 on the other. The following
somehow surprising fact comes from [20]. For similar implications see also [19] and [22,
Theorem 2.2].

Theorem 6.2.2 Let X,Y be random variables with finite second moments and suppose
that
E{|X — (ap + a;Y)]?|Y} < const (6.6)

and

E{|Y — (by + b, X)|?| X} < const (6.7)

for some real numbers ag,ay,by, by such that a;by # 0,1,—1. Then X,Y have finite
moments of all orders.

In the proof we use the conditional version of Chebyshev’s inequality stated as Problem
1.9.

Lemma 6.2.3 If F is a o-field and E|X| < oo, then
P(|X]>tF) < BE{|X] [F}/t
almost surely.

Proof. Fix ¢t > 0 and let A € F. By the definition of the conditional expectation
[ PUX| > t1F) aP = B{TuJix i} < B{XIATxpoih < 6 B{X T}

This end the proof by Lemma 1.4.2. O

Proof of Theorem 6.2.2. First let us observe that without losing generality we may
assume ag = by = 0. Indeed, by triangle inequality (E{|X —a,Y|?[Y })'/? < |ao|+(E{|X —
(ag + a1 Y)|?|Y})'/? < const, and the analogous bound takes care of (6.7). Furthermore,
by passing to —X or —Y if necessary, we may assume ¢ = a; > 0 and b = b; > 0. Let
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N(z) = P(|X| > z)+ P(|]Y| > ). We shall show that there are constants K, C' > 0 such
that
N(Kz) < ON(x)/2”. (6.8)

This will end the proof by Corollary 1.3.4.

To prove (6.8) we shall proceed as in the proof of Theorem 5.2.2. Namely, the event
{|X] > Kz}, where z > 0 is fixed and K will be chosen later, can be decomposed into
the sum of two disjoint events {|X| > Kz} N{|Y| > z} and {|X| > Kz} n{|Y| < z}.
Therefore trivially we have

P(X| > Kz) < P(X| > 2, V] > 2) (6.9)
+P(|X| > Kz, |Y| < x) = P, + P, (say) .
For K large enough the second term on the right hand side of (6.9) can be estimated by
conditional Chebyshev’s inequality from Lemma 6.2.3. Using trivial estimate |Y — bX| >
b|X| — Y] we get
P, < P(lY —bX| > (Kb—1)z,|X| > Kx) (6.10)
= Jixppre P(IY = bX| > (Kb — 1)x|X) dP < constN(Kx)/x?.
To estimate P, in (6.9), observe that the event {|X| > z} implies that either | X —aY| >

Cz, or |Y —bX| > Cx, where C' = |1 — ab|/(1 + a). Indeed, suppose both are not true,
ie. Y —bX| < Cz and |X —aY| < Cz. Then we obtain trivially

|1 —abl]|X|=|X —abX| < |X —aY|+a|]Y —bX| < C(1+ a)z.

By our choice of C, this contradicts | X| > x.
Using the above observation and conditional Chebyshev’s inequality we obtain

P <P(|X —aY|>Cuz,|Y| > x)

+P(JY = bX| > Cx,|X| > x) < C,N(z) /2%

This, together with (6.9) and (6.10) implies P(|X| > Kz) < CN(z)/2?* for anyK > 1/b
with constant C' depending on K but not on z. Similarly P(|Y| > Kz) < CN(z)/2?* for
any K > 1/a, which proves (6.8). O

6.3 Stability

In this section we shall use the coefficient g to analyze the stability of a variant? of
Theorem 5.1.1 which is based on the approach sketched in Problem 5.2.

Theorem 6.3.1 Suppose X,Y are i. i. d. with the cumulative distribution function F(-).
Assume that EX = 0, EX? =1 and E|X|?> = K < oo and let ®(-) denote the cumulative
distribution function of the standard normal distribution. If ago(X +Y;X —Y) <€, then

sup |F(z) — ®(x)] < C(K)e3, (6.11)

?Compare [112]. The proof below is taken from [73, section 9.2].
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The following corollary is a consequence of Theorem 6.3.1 and Proposition 6.2.1.

Corollary 6.3.2 Suppose X, Y are i. i. d. with the cumulative distribution function F(-).
Assume that EX = 0, EX? = 1. If a10(X +Y; X —Y) < ¢, then there is C < oo such
that (6.11) holds.

Indeed, by Proposition 6.2.1 the third moment exists if ¢ < e~3/2; choosing large enough
C inequality (6.11) holds true trivially for e > e=%/2,

The next lemma gives the estimate of the left hand side of (6.11) in terms of charac-
teristic functions. Inequality (6.12) is called smoothing inequality — a name well motivated
by the method of proof; it is due to Esseen [45].

Lemma 6.3.3 Suppose F,G are cumulative distribution functions with the characteristic
functions ¢, respectively. If G is differentiable, then for all T > 0

sup | F(a) ~ G| <~ [ 16() — w(0)| dt/i + —sup |G'(2)]. (6.12)

T J-T
Proof. By the approximation argument, it suffices to prove (6.12) for F, G differentiable
and with integrable characteristic functions only. Indeed, one can approximate F' uni-
formly by the cumulative distribution functions Fj, obtained by convoluting F' with the
normal N(0,¢) distribution, compare Lemma 5.1.3. The approximation, clearly, does not
affect (6.12). That is, if (6.12) holds true for the approximants, then it holds true for the
actual cdf’s as well.

Let f, g be the densities of " and G respectively. The inversion formula for character-

istic functions gives
1L o
= — () dt
fla) = 5= [ e ot d,

1

T o

[ O:O e~ "ap(t) dt.

From this we obtain

F(I) _ G(I) — i /_o:o e~ itw ¢(t) ;¢(t) dt.

The latter formula can be checked, for instance, by verifying that both sides have the
same derivative, so that they may differ by a constant only. The constant has to be 0,
because the left hand side has limit 0 at oo (a property of cdf) and the right hand side
has limit 0 at co (eg. because we convoluted with the normal distribution while doing
our approximation step; another way of seeing what is the asymptotic at oo of the right
hand side is to use the Riemann-Lebesgue theorem, see eg. [9, p. 354 Theorem 26.1]).

This clearly implies

1 00
sup |[F(z) — G(z)| < 2—/ |6(t) — (2)| dt/t. (6.13)

T T J—
This inequality, while resembling (6.12), is not good enough; it is not preserved by our ap-
proximation procedure, and the right hand side is useless when the density of F' doesn’t
exist. Nevertheless (6.13) would do, if one only knew that the characteristic functions
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vanish outside of a finite interval. To achieve this, one needs to consider one more convo-
lution approximation, this time we shall use density hy(z) = WIT%S(T’”) We shall need
the fact that the characteristic function 9y () of hy(z) vanishes for || > T (and we shall
not need the explicit formula ny(t) = 1 — |¢|/T for |t| < T, c¢f. Example 1.5.1). Denote by
Fr and G'7 the cumulative distribution functions corresponding to convolutions fxhr and
gxhr respectively. The corresponding characteristic functions are ¢(t)nr(t) and 1 (¢)nr(t)
respectively and both vanish for |t| > T'. Therefore, inequality (6.13) applied to Fr and
Gr gives

sup, |Fr(z) — Gr(x)| (6.14)
< L 60 - w0l < - [ o) - vl

[t remains to verify that sup, |Fr(x) — Gr(x)| does not differ too much from sup, |F(z) —
G(z)|. Namely, we shall show that

sup [F'(z) — G(2)] < 2sup |Fr(z) - Gr(z)] + ;—2 sup |G'(z)], (6.15)

which together with (6.14) will end the proof of (6.12). To verify (6.15), put M =
sup, |G'(z)| and pick zo such that

sup |F'(x) — G(2)] = |F(w0) — G(zo) -

Such zy can be found, because F' and G are continuous and F'(x) — G(x) vanishes as
x — to00. Suppose sup, |F(z) — G(z)| = G(zo) — F(xp). (The other case: sup, |F(z) —
G(z)| = F(z9) — G(z0) is handled similarly, and is done explicitly in [54, XVI. §3]). Since
F' is non-decreasing, and the rate of growth of G is bounded by M, for all s > 0 we get

G(xg —s) — Fxg — s) > G(xg) — F(xo) — sM.

G(wo)—F(z0)

Now put a = ST

,t =204+ a,x =a—s. Then for all |z| < a we get

Gt—z)—F(t—2x) > =(G(xo) — F(z9)) + M. (6.16)

DO | =

Notice that

Gr(t) — Fr( 7TT/ F(t—2)—G(t—2))(1—cosTx)r *dx

> /a(F(t —2) — Gt — 1))(1 — cos Tx)a~2 dz

1
Tl J—
—sup |F(z) / y 2 dy.

Clearly,

sup | (2) = [Ty = (Glw) — Fla) o™ = 404/ (xT)
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by our choice of a. On the other hand (6.16) gives

% _aa(F(t —2) -Gt —2))(1 —cosTx)r *dx

1
Zﬁ/aMx(l—cosTx) 2 dax

+%(G($0) )1 - —/ y~*dy)
=§muw—nm»—mwwn;

here we used the fact that the first integral vanishes by symmetry. Therefore G(xy) —
F(zo) < 2(Gr(ro+a) — Fr(zo +a)) + 12M/(nT), which clearly implies (6.15). O

Proof of Theorem 6.3.1. Clearly only small € > 0 are of interest. Throughout the proof
C will denote a constant depending on K only, not always the same at each occurrence.
Let ¢(.) be the characteristic function of X. We have Fexp it(X +Y)expit(X —Y) =
#(2t) and Eexpit(X + Y)Eexpit(X —Y) = (4(t))>¢(—t). Therefore by a complex valued
variant of (6.1) with p = ¢ = 0o, see Problem 6.1, we have

|6(2t) — (6(1))"d(—1)| < 16e. (6.17)

We shall use (6.12) with T = e '/3 to show that (6.17) implies (6.11). To this end we
need only to establish that for some C' > 0

1 (T 1,2
— [ 1ot — e | jtdt < Ce (6.18)
™ -T

Put h(t) = ¢(t) — e72"". Since EX = 0, EX% =1 and E|X[> < o0, we can choose ¢ > 0
small enough so that
h(t)] < Colt]? (6.19)

for all |t| < €'/3. From (6.17) we see that
[n(2t)] = |¢(2t) — exp(—2t*)] < 16€ + |(6(t))’d(—t) — exp(—2¢7)].

Since ¢(t) = exp(—1t®) + h(t), therefore we get

1
|h(2t)] < 16€ + Z ( 1 ) exp(—§Tt2)|h(t)|4_’". (6.20)
r=0
Put ¢, = €!/%2" where n = 0,1,2,...,[1— 2log,(¢)], and let h,, = max{|h(t)| : t,_1 <t <
t"}. Then (6.20) implies
L, 3 2 4
hpi1 < 16€ + 4exp(—§tn)h (1+ §hn +hi)+h,. (6.21)
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Claim 6.3.1 Relation (6.21) implies that for all sufficiently small € > 0 we have
hn < 2(Cp + 44)ed" exp(—t54™/6), (6.22)
ht <, (6.23)
where 0 < n < [1 — 2log,(€)], and Cy is a constant from (6.19).

Claim 6.3.1 now ends the proof. Indeed,

/ilqﬁ()—e‘t |/tdt_2/ |/tdt+22/ (t)|/t dt

n ti n .
S 2006 + 2 Z hi/ti,1 / 1dt S 2006 +4 Z(Og + 44)64“67'%4 /6

=1 i—1 =1

< 2Cpe + 24(Cy + 44)52/0 e~ dr < Ce'l3.
0

Proof of Claim 6.3.1. We shall prove (6.23) by induction, and (6.22) will be established
in the induction step. By (6.19), inequality (6.23) is true for n = 1, provided € < C’0_4/3.
Suppose m > 0 is such that (6.23) holds for all n < m. Since 2h, + h2 < 3el/4 = 4, thus

(6.21) implies
1
Byt < 32¢ + 4exp(—§ti)hm(1 +9)

n—1
<32y 4(1+0) exp ——Zt ) +4%(1+ )" exp ——Zt
j=1 214 214
n—1
=32¢ > 4/(1+6) exp(—t5(4" — 4"77)/6) + 4" (1 + d)" exp(—t5(4" — 1)/6) I
7j=1
Therefore
Bt < (hy + 44€)(1 + 8)"47e 14" /5, (6.24)
Since ,
(1 +5)n S (1 +3€1/4)2—§10g2(5) S 2
and

4n67t34"/6 < fe—4/3 exp(—%eZm) < ¢2/3

for all € > 0 small enough, therefore, taking (6.19) into account, we get hp, 11 < 2(44 +
Cp)et/? < €'/* provided € > 0 is small enough. This proves (6.23) by induction. Inequal-
ity (6.22) follows now from (6.24). O
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6.4 Problems

Problem 6.1 Show that for complex valued random variables X,Y
|[EXY — EXEY| < 1600,0[|-X [ oo Y |-
(The constant is not sharp.)

Problem 6.2 Suppose (X,Y) € R? are jointly normal and oy, (X,Y) < 1. Show that
X, Y are independent.

Problem 6.3 Suppose (X,Y) € R? are jointly normal with correlation coefficient p.
Show that Ef(X)g(Y) < |Lf(X)llg(¥)lly for all p-integrable f(X),g(Y), provided p >
1+ [pl.

Hint: Use the explicit expression for conditional density and Holder and Jensen inequal-
ities.

Problem 6.4 Suppose (X,Y) € R? are jointly normal with correlation coefficient p.
Show that

corr(f(X),9(Y)) < |p|
for all square integrable f(X), g(Y).

Problem 6.5 Suppose X,Y € IR? are jointly normal. Show that
corr(f(X),g(Y)) < 2mapo(X,Y)

for all square integrable f(X), g(Y).
Hint: See Problem 2.3.

Problem 6.6 Let X,Y be random variables with finite moments of order o > 1 and
suppose that

E{|X — aY|*|Y'} < const;

E{lY — bX|%|X} < const
for some real numbers a, b such that ab # 0,1, —1. Show that X andY have finite moments
of all orders.

Problem 6.7 Show that the conclusion of Theorem 6.2.2 can be strengthened to
E| XX < 0.
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Chapter 7

Conditional moments

In this chapter we shall use assumptions that mimic the behavior of conditional moments
that would have followed from independence. Strictly speaking, corresponding character-
ization results do not generalize the theorems that assume independence, since weakening
of independence is compensated by the assumption that the moments of appropriate or-
der exist. However, besides just complementing the results of the previous chapters, the
theory also has its own merits. Reference [37] points out the importance of description of
probability distributions in terms of conditional distributions in statistical physics. From
the mathematical point of view, the main advantage of conditional moments is that they
are “less rigid” than the distribution assumptions. In particular, conditional moments
lead to characterizations of some non-Gaussian distributions, see Problems 7.8 and 7.9.

The most natural conditional moment to use is, of course, the conditional expecta-
tion E{Z|F} itself. As in Section 4.1, we shall also use absolute conditional moments
E{|Z|*|F}, where « is a positive real number. Here we concentrate on o = 2, which
corresponds to the conditional variance. Recall that the conditional variance of a square-
integrable random variable Z is defined by the formula

Var(Z|F) = E{(Z — E{Z|F})*|F} = E{Z*|F} — (E{Z|F})".

7.1 Finite sequences

We begin with a simple result related to Theorem 5.1.1, compare [73, Theorem 5.3.2]; cf.
also Problem 7.1 below.

Theorem 7.1.1 If X, Xy are independent identically distributed random variables with
finite first moments, and for some o # 0, £1

E{Xl — OéX2|OéX1 + Xg} = 0, (71)
then X, and Xy are normal.

Proof. Let ¢ be a characteristic function of X;. The joint characteristic function of the
pair X; — aXy, aX; + X, has the form ¢(t + as)d(s — at). Hence, by Theorem 1.5.3,

¢'(ors)p(s) = ad(as)¢'(s).

93
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Integrating this equation we obtain log ¢(as) = a?log ¢(s) in some neighborhood of 0.

If a? # 1, this implies that ¢(a™™) = exp(Ca*?®) for some complex constant C'. This
by Corollary 2.3.4 concludes the proof in each of the cases 0 < a? < 1 and o? > 1 (in
each of the cases one needs to choose the correct sign in the exponent of o*"). O

Note that aside from the integrability condition, Theorem 7.1.1 resembles Theorem 5.1.1:
clearly (7.1) follows if we assume that X; —a X, and aX; + X, are independent. There are
however two major differences: parameter « is not allowed to take values £1, and X, X,
are assumed to have equal distributions. We shall improve upon both in our Theorem
7.1.2 below. But we will use second order conditional moments, too.

The following result is a special but important case of a more difficult result [73,
Theorem 5.7.1]; i. i. d. variant of the latter is given as Theorem 7.2.1 below.

Theorem 7.1.2 Suppose X1, Xy are independent random variables with finite second mo-

ments such that
E{X; - Xo|X; + X} =0, (7.2)

E{(Xl — X2)2|X1 + X2} = COnSt, (73)

where const 1s a deterministic number. Then X, and X, are normal.

Proof. Without loss of generality, we may assume that X,Y are standardized random
variables, ie. FX = EY =0, EX? = EY? =1 (the degenerate case is trivial). The joint
characteristic function ¢(¢, s) of the pair X +Y, X —Y equals ¢x (t+5)¢y (t—s), where ¢x
and ¢y are the characteristic functions of X and Y respectively. Therefore by Theorem
1.5.3 condition (7.2) implies ¢'y (s)dy (s) = ¢px(s)Py (s). This in turn gives ¢y (s) = dx(s)
for all real s close enough to 0.

Condition (7.3) by Theorem 1.5.3 after some arithmetics yields

x(8)y (s) + Ox(5) 8y () — 20 (5) Py (5) + 20x (5) v () = 0.

This leads to the following differential equation for unknown function ¢(s) = ¢y (s) =
¢x(s) ,
¢"/¢—(¢'/¢)"+1=0, (7.4)

valid in some neighborhood of 0. The solution of (7.4) with initial conditions ¢"(0) =
—1,¢'(0) = 0 is given by ¢(s) = exp(—3s?), valid in some neighborhood of 0. By Corol-
lary 2.3.4 this ends the proof of the theorem. O

Remark: Theorem 7.1.2 also has Poisson, gamma, binomial and negative binomial distribution variants,
see Problems 7.8 and 7.9.

Remark: The proof of Theorem 7.1.2 shows that for independent random variables condition (7.2)
implies their characteristic functions are equal in a neighborhood of 0. Diaconis & Ylvisaker [36, Remark
1] give an example that the variables do not have to be equidistributed. (They also point out the relevance
of this to statistics.)
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7.2 Extension of Theorem 7.1.2

The next result is motivated by Theorem 5.3.1. Theorem 7.2.1 holds true also for non-
identically distributed random variables, see eg. [73, Theorem 5.7.1] and is due to Laha
[93, Corollary 4.1]; see also [101].

Theorem 7.2.1 Let X1,..., X, be a sequence of square integrable independent identically
distributed random variables and let a1, ao, ..., a,, and by, bs, ..., b, be given real numbers.
Define random variables X,Y by X = Y0, ap X, Y = > ), bk Xy and suppose that for
some constants p, « we have

E{X|Y}=pY +a« (7.5)

and

Var(X]Y) = const, (7.6)

where const is a deterministic number. If for some 1 < k < n we have ay — pby, # 0, then
X 1s Gaussian.

Lemma 7.2.2 Under the assumptions of Theorem 7.2.1, all moments of random variable
Xy are finite.

Indeed, consider N(z) = P(|X;| > z). Clearly without loss of generality we may assume
aiby # 0. Event {|X;| > Cx}, where C is a (large) constant to be chosen later, can be
decomposed into the sum of disjoint events

A= (3 = crpn U5 2 2)

and .
B={|X,] > Cx} n ({|X,] < 2.

j=2
Since P(A) < (n —1)P(|X1| > Cx, |X3| > z), therefore P(|X;| > Cx) < P(A) + P(B) <
nN?(z) + P(B).
Clearly, if | X| > Cz and all other | X;| < z, then | Y axy X —p > bp Xi| > (Clar—pbi|—
> |lag — pbg|)z and similarly | Y b, Xy | > (C|b1| — X |b;|)z. Hence we can find constants
C1,Cy > 0 such that

Using conditional version of Chebyshev’s inequality and (7.6) we get
N(Cx) < nN?*(x) + C3N(Cox) /22 (7.7)

This implies that moments of all orders are finite, see Corollary 1.3.4. Indeed, since
N(z) < C/z?, inequality (7.7) implies that there are K < oo and € > 0 such that

N(z) < KN(ex)/x?

for all large enough =x.
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Proof of Theorem 7.2.1. Without loss of generality, we shall assume that EX; = 0
and Var(X;) = 1. Then a = 0. Let Q(t) be the logarithm of the characteristic function
of X3, defined in some neighborhood of 0. Equation (7.5) and Theorem 1.5.3 imply

> axQ'(the) = p Y beQ'(thy). (7.8)

Similarly (7.6) implies

S a2Q" (thy) = —o® + p° 3 b2Q" (thy). (7.9)

Differentiating (7.8) we get

Zakka tbk == pr Q” tbk

which multiplied by 2p and subtracted from (7.9) gives after some calculation

> (ax — pbe)*Q" (tby,) = —a®. (7.10)

Lemma 7.2.2 shows that all moments of X exist. Therefore, differentiating (7.10) we
obtain

S (ak — ph) BT QD (0) = 0 (7.11)
for all r > 1.
This shows that Q"+2)(0) = 0 for all » > 1. The characteristic function ¢ of random
variable X; — X, satisfies ¢(t) = exp(2 %, t*Q*"(0)/(2r)!); hence by Theorem 2.5.1 it
corresponds to the normal distribution. By Theorem 2.5.2, X is normal. O

Remark: Lemma 7.2.2 can be easily extended to non-identically distributed random variables.

7.3 Application: the Central Limit Theorem

In this section we shall show how the characterization of the normal distribution might be
used to prove the Central Limit Theorem. The following is closely related to [10, Theorem
19.4].

Theorem 7.3.1 Suppose that pairs (X,,Y,) converge in distribution to independent r. v.
(X,Y). Assume that

(a) {X2} and {Y?} are uniformly integrable;
(b) B{X,| X, +Y,} —272(X, +Y,) = 0in Ly as n — oo,

(c)
Var(X,| X, +Y,) — 1/2 in Ly as n — oo. (7.12)

Then X is normal.

Our starting point is the following variant of Theorem 7.2.1.
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Lemma 7.3.2 Suppose X,Y are nondegenerate (ie. EX?EY? # 0 ) centered indepen-
dent random variables. If there are constants ¢, K such that

E{X|X +Y} =¢(X +Y) (7.13)

and

Var(X|1X +Y) =K, (7.14)
then X and Y are normal.

Proof. Let QQx,Q)y denote the logarithms of the characteristic functions of X, Y respec-
tively. By Theorem 1.5.3 (see also Problem 1.19, with Q(¢,s) = Qx(t + s) + Qy(s)),
equation (7.13) implies
(1 - 0)Q%x(s) = cQy (s) (7.15)

for all s close enough to 0.

Differentiating (7.15) we see that ¢ = 0 implies EX? = 0; similarly, ¢ = 1 implies
Y = 0. Therefore, without loss of generality we may assume ¢(1 — ¢) # 0 and Qx(s) =
C1 + CyQy (s) with Cy = ¢/(1 — ¢).

From (7.14) we get

(s) = =K + Q% (s) + Qv (5)),

which together with (7.15) implies QY- (s) = const. O

Proof of Theorem 7.3.1. By uniform integrability, the limiting r. v. XY satisfy the
assumption of Lemma 7.3.2. This can be easily seen from Theorem 1.5.3 and (1.18), see
also Problem 1.21. Therefore the conclusion follows. O

7.3.1 CLT for i. 1. d. sums

Here is the simplest application of Theorem 7.3.1.

Theorem 7.3.3 Suppose &; are centered i. i. d. with E€* =1. Put S, = 21218 Then
ﬁSn is asymptotically N(0,1) as n — oc.

Proof. We shall show that every convergent in distribution subsequence converges to
N(0,1). Having bounded variances, pairs (ﬁsn, ﬁs%) are tight and one can select a
subsequence ny such that both components converge (jointly) in distribution. We shall
apply Theorem 7.3.1 to X, = ﬁsnkvXk +Y, = ﬁ_ksm.

(a) The i. i. d. assumption implies that %Sﬁ are uniformly integrable, cf. Proposition
1.7.1. The fact that the limiting variables (X, Y") are independent is obvious as X, Y arise
from sums over disjoint blocks.

(b) E{S,|S2n} = 352, by symmetry, see Problem 1.11.

(c) To verify (7.12) notice that S? = > 5]2 + Yk &€k By symmetry

2n
E{&}[Son, Y &5}
7=1
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1 2n 9
= %lefj
and
E{§1§2|52n7 Z 6]&6}
k#j, k,j<2n
_ ! > &G = ;(522 - %52)-
2n(2n —1) 5 con 2n(2n—1)" 7 Y
Therefore
__n o 2 1 2
Var(Sy|San) = T 2E{21§j |Son} — mszn-
]:

Since 1 %, €2 — 1in Ly this implies (7.12). O

7.4 Application: independence of empirical mean
and variance

For a normal distribution it is well known that the empirical mean and the empirical
variance are independent. The next result gives a converse implication; our proof is a
version of the proof sketched in [73, Remark on page 103], who give also a version for
non-identically distributed random variables.

Theorem 7.4.1 Let Xy,..., X, bei. i. d. and denote X = Ly X;, S*=1%"  X?—
X2, Ifn>2 and X, S? are independent, then X, is normal.

The following lemma resembles Lemma 5.3.2 and replaces [73, Theorem 4.3.1].

Lemma 7.4.2 Under the assumption of Theorem 7.4.1, the moments of Xy are finite.
Proof. Let ¢ = (2n)~'. Then

P(IX1| > t) (7.16)
<SS P(IX0] > 4 1X5] > gf) + P(X0] > 41X < gt | X < gt).

Clearly, one can find 7" such that
S P(X)] > 11X, > qi)
j=2

= (n=DP(Xa > )P(|Xa] > qt) < SP([Xa] > 1)

DN | =

for all ¢t > T'. Therefore

P([X1] > ) <2P(1Xq| > £, | Xo| < gty | Xa| < q2). (7.17)
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Event {|X1] > ¢,|X| < qt,...,|X,| < gt} implies |X| > (1 — ng)t/n. It also implies
5% > 1(X; — X)? > =*. Therefore by independence

P(| X1 > t,|Xs| < qt,...,| X <qt)

This by (7.17) and Corollary 1.3.3 ends the proof. Indeed, n > 2 is fixed and P(S? > -t?)
is arbitrarily small for large ¢. O

Proof of Theorem 7.4.1. By Lemma 7.4.2, the second moments are finite. Therefore
the independence assumption implies that the corresponding conditional moments are
constant. We shall apply Lemma 7.3.2 with X = X; and V' =37, Xj;.

The assumptions of this lemma can be quickly verified as follows. Clearly, E{X;|X} =
X by i. i. d., proving (7.13). To verify (7.14), notice that again by symmetry ( i. i. d.)

_ 122 _ _ _
B{X}X} = E{E Y XX} = B{S?*|X} + X2
j=1

By independence, E{S?|X} = ES? = const, verifying (7.14) with K = const. O

7.5 Infinite sequences and conditional moments

In this section we present results that hold true for infinite sequences only; they fail for
finite sequences. We consider assumptions that involve first two conditional moments
only. They resemble (7.5) and (7.6) but, surprisingly, independence assumption can be
omitted when infinite sequences are considered.

To simplify the notation, we limit our attention to Ls-homogeneous Markov chains
only. A similar non-Markovian result will be given in Section 8.3 below. Problem 7.7
shows that Theorem 7.5.1 is not valid for finite sequences.

Theorem 7.5.1 Let Xy, Xs,... be an infinite Markov chain with finite and non-zero
variances and assume that there are numbers ¢; = ci(n),...,c; = cz(n), such that the
following conditions hold for alln =1,2,...

E{Xn1|Xp2} = 1 X0 + o, (7.18)

E{Xn+1|Xn, Xn_|_2} = Can + C4Xn_|_2 + ¢s, (719)
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Var(Xn+1|Xn) = Ceg, (720)
VCL’I“(Xn+1|Xn,Xn+2) = Cy. (721)

Furthermore, suppose that correlation coefficient p = p(n) between random variables X,
and X, 1 does not depend on n and p? # 0,1. Then (X},) is a Gaussian sequence.

Notation for the proof. Without loss of generality we may assume that each X, is a
standardized random variable, ie. FX,, = 0, EX? = 1. Then it is easily seen that ¢; = p,
co=05=0,c3=c4=p/(1+p?), c6 =1—p? ¢ =(1—p*)/(1+ p*). For instance, let us
show how to obtain the expression for the first two constants ¢;, co. Taking the expected
value of (7.18) we get ¢ = 0. Then multiplying (7.18) by X,, and taking the expected
value again we get EX, X, = ¢ EX?. Calculation of the remaining coefficients is based
on similar manipulations and the formula EX, X, = p¥; the latter follows from (7.18)
and the Markov property. For instance,

7 = EXpy — (p/(L+ p)*E(Xy + Xpy2)® =1 - 29/ (1 + p°).

The first step in the proof is to show that moments of all orders of X,,,n =1,2,... are
finite. If one is willing to add the assumptions reversing the roles of n and n+1 in (7.18)
and (7.20), then this follows immediately from Theorem 6.2.2 and there is no need to
restrict our attention to Ls-homogeneous chains. In general, some additional work needs
to be done.

Lemma 7.5.2 Moments of all orders of X,,,n =1,2,... are finite.

Sketch of the proof: Put X = X,,,Y = X,,,;, where n > 1 is fixed. We shall use
Theorem 6.2.2. From (7.18) and (7.20) it follows that (6.7) is satisfied. To see that (6.6)
holds, it suffices to show that E{X|Y} = pY and Var(X|Y) =1 — p?.

To this end, we show by induction that

E{Xn+r|Xna Xn-i—k} = ak,an + bk,an—l—k (722)

is linear for 0 < r < k.
Once (7.22) is established, constants can easily be computed analogously to compu-
tation of ¢; in (7.18) and (7.19). Multiplying the last equality by X,,, then by X, and

plcfr_ k+r

taking the expectations, we get by, = ﬁ and ay, = p" — by p".

The induction proof of (7.22) goes as follows. By (7.19) the formula is true for k£ = 2
and all n > 1. Suppose (7.22) holds for some k£ > 2 and all n > 1. By the Markov

property
E{XnJrr |Xn7 Xn+k+1}

= EX”’Xn+k+1E{Xn+r|Xna Xn—l—k}
= ak,an + bk,rE{Xn+k|Xna Xn—l—k—i—l}-
This reduces the proof to establishing the linearity of EF{X, x| X, Xnixi1}-

We now concentrate on the latter. By the Markov property, we have

E{Xn+k |Xn7 Xn+k+1}
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= EXR’Xn+k+1E{Xn+k|Xn+17 Xn+k+1}
= bpr1,1 Xntht1 + @11 E{ X011 X0, Xnshgr1 b

We have agyi1 = p" 1—52—,9, in particular, ag1,; = sinh(log p)/sinh(klogp) so that one
can easily see that 0 < ag41,; < 1. Since

E{Xn+1|XnaXn+k+1} — EX”’Xn+k+1E{Xn+1|XnaXn—l—k}
— ak,an + bk,lE{Xn+k|Xna Xn—l—k—l—l}a
we get

E{ X4 X, X1 } (7.23)
= bpr1,1 Xntk+1 + Ghg1,1050 Xy + 11061 E{ X041 X0, Xnghgr }-

Notice that by, = p’“_lll;f;k = ag41,1- In particular 0 < ajy41 161 < 1. Therefore (7.23)
determines E{ X, x| Xn, Xniki1} uniquely as a linear function of X,, and X, ;1. This
ends the proof of (7.22).

Explicit formulas for coefficients in (7.22) show that by; — 0 and ax; — p as k — oo.
Applying conditional expectation EX"{.} to (7.22) we get F{X,1|X,} = limy o (aX,, +
bE{X,+k|Xn}) = pX,, which establishes required E{X|Y'} = pY.

Similarly, we check by induction that

Va?"(Xn+7-|Xn, Xn+k) =C (724)

is non-random for 0 < r < k; here ¢ is computed by taking the expectation of (7.24); as
in the previous case, ¢ depends on p, r, k.

Indeed, by (7.21) formula (7.24) holds true for £k = 2. Suppose it is true for some
k> 2 ie. E{X2, |Xn, Xnsi} = ¢+ (X + b X51k)?, where ay = ay,, b, = by, come
from (7.22). Then

E{ n+r|Xn7Xn+k+1}

= B n+k+lE{X§+k|Xn+laXn+k}
=c+ Z?X”’X”H“Jrl (aan + kan+k)2
= bQEX"’X"“““{beM} + quadratic polynomial in X,,.

We write again
E{ +k|Xn7Xn+k+1}

= BX At BIXZ X, Xk}
= E{X? 11X, Xnge1} + quadratic polynomial in Xy, p1.

Since
E{X +1 |Xn7 Xn+k+1}

- Exn n+k+1E{ +1|Xn7 Xn+k}
= &”E{X;. 1| X0, Xpik1} + quadratic polynomial in X,

and since o?b? # 1 (those are the same coefficients that were used in the first part of
the proof; namely, & = ag1,1, b = bg1.) we establish that E{X?2, |X,, X, s} is a
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quadratic polynomial in variables X,,, X,,,x. A more careful analysis permits to recover
the coefficients of this polynomial to see that actually (7.24) holds.

This shows that (6.6) holds and by Theorem 6.2.2 all the moments of X,,,n > 1, are
finite. O
We shall prove Theorem 7.5.1 by showing that all mixed moments of { X, } are equal to the
corresponding moments of a suitable Gaussian sequence. To this end let ¥ = (y1, 72, ...) be
the mean zero Gaussian sequence with covariances Ev;vy; equal to EX; X for all 4,7 > 1.
It is well known that the sequence 7, o, . . . satisfies (7.18)—(7.21) with the same constants
1, ..., c7, see Theorem 2.2.9. Moreover, (71,7, ..) is a Markov chain, too.

We shall use the variant of the method of moments.

Lemma 7.5.3 If X = (X1,..., Xy) is a random vector such that all moments
EXIW X1 = gyl i

are finite and equal to the corresponding moments of a multivariate normal random vari-
able Z = (v1,...,74), then X and Z have the same (normal) distribution.

Proof. It suffice to show that Eexp(it - X) = Fexp(it - Z) for all t € R? and all d > 1.
Clearly, the moments of (t - X) are given by

Et-X)= Y 40 #9ExO X
i(1)+...+i(d)=Fk

i(1 i(d) o _i(1 i(d
= Z tl()...td()Efyl()...fyd()
i(1) 4. +i(d) =k

=EBt-Z)" k=1,2,...

One dimensional random variable (t - X) satisfies the assumption of Corollary 2.3.3; thus
Eexp(it - X) = Eexp(it - Z), which ends the proof. O

The main difficulty in the proof is to show that the appropriate higher centered con-
ditional moments are the same for both sequences X and 7; this is established in Lemma,
7.5.4 below. Once Lemma 7.5.4 is proved, all mixed moments can be calculated easily
(see Lemma 7.5.5 below) and Lemma 7.5.3 will end the proof.

Lemma 7.5.4 Put Xg = =0. Then
E{(Xn = pXn-1)*|Xn-1} = E{(10 = pYa-1)*11n1} (7.25)
foralln,k=1,2...
Proof. We shall show simultaneously that (7.25) holds and that
E{(Xn1 = 0" X 1) [ X1} = B{ (Y1 = p* 1) |n1} (7.26)

for all n,k = 1,2.... The proof of (7.25) and (7.26) is by induction with respect
to parameter k. By our choice of (v1,72,...), formula (7.25) holds for all n and for
the first two conditional moments, ie. for £ = 0,1,2. Formula (7.26) is also easily
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seen to hold for k = 1; indeed, from the Markov property EF{X,; — p*’X,, 1|X, 1} =
E{E{X, 1|X, } X, 1} — p*X,,1 = 0. We now check that (7.26) holds for k& = 2, too.
This goes by simple re-arrangement, the Markov property and (7.20):

E{(Xn-l-l - PQXn—1)2|Xn—1}

= E{(Xn1 — pX0)? 4 0*(Xp — pXpo1)? + 20(Xp — pXpm1) (X1 — pX0) [ Xnoa }
= B{(Xnp1 — pX0)* | Xoi} + 0 E{(Xy — pX5m1)*| Xt}
= B{(Xps1 — pX0)?| X0} + P E{(Xy — pXp 1) X 1} =1 p".

Since the same computation can be carried out for the Gaussian sequence (7), this
establishes (7.26) for k = 2.

Now we continue the induction part of the proof. Suppose (7.25) and (7.26) hold for
all n and all £ < m, where m > 2. We are going to show that (7.25) and (7.26) hold for
k=m+1 and all n > 1. This will be established by keeping n > 1 fixed and producing
a system of two linear equations for the two unknown conditional moments

= FE{(Xns1 — p2Xn71)m+1|Xn*1}

and
y = E{(X, — pXn )" X0}

Clearly, x,y are random; all the identities below hold with probability one.
To obtain the first equation, consider the expression

W = E{(Xn — pXn_1)(Xni1 — p°Xno1)™ Xno1 ) (7.27)

We have
E{(Xn = pXn-1)(Xns1 — pX0)" | Xpo1}

= E{E{Xn - an71|Xn717 Xn+1}(Xn+1 - pQanl)m|Xn71}-
Since by (7.19)
E{Xn - an71|Xn717Xn+1} - p/(l + p2)(Xn+1 - PZanl),

hence
W = o/ (14 P)B{(Xus1 — pXn )™ | X1 ). (7.28)

On the other hand we can write
W=F {(Xn - an—l) ((Xn-i-l - an) + p(Xn - an—l))m |Xn—1} .
By the binomial expansion

((Xn-i-l - an) + p(Xn - an—l))m

[ m —
= Z pk(Xn—l—l - an) k(Xn - an—l)k-
k=0 k
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Therefore the Markov property gives
m m .
W= 35 () {0 = e B — g0 )
k=0

= p"E{(Xy — pXo)"M X1} + R,

where
m—1
m -
R=5 () {0 = X B X = X)X X
k=0

is a deterministic number, since E{(X,;1 — pX,)™ *|X,} and E{(X,, — pX,_1)* 1 X,_1}
are uniquely determined and non-random for 0 < k < m — 1.
Comparing this with (7.28) we get the first equation

p/(L+p")x =p"y + R (7.29)

for the unknown (and at this moment yet random) x and y.
To obtain the second equation, consider

V =E{(X, — pXp_1)*(Xns1 — 0°Xnt)" X1 ) (7.30)
We have
E{(Xn - an71)2(Xn+1 - pZanl)m71|Xn71}
= E{E{(Xn = pXno1)* | Xnt, Xng1 } (X1 — 02 X)X }
Since

Xn - an—l
= Xp = p/(1+p*) (X1 + X0 1) + 0/ (14 p*) (X1 — p° X0 1),
by (7.19) and (7.21) we get

E{(Xn - an71)2|Xn717 Xn+1}

= (1= /(L + ) + (p/(1+9") (X1 = p* X0 0))
Hence
V= (o1 + ) B{(Xu1 = X )™ X} 4 R, (731)

where by induction assumption R = ¢; E{(X,11 — p*X,—1)™ | X,_1} is uniquely deter-
mined and non-random. On the other hand we have

V = E {(Xn - anfl)Z ((Xn+1 - an) + p(Xn - anfl))m_l |Xn71} .
By the binomial expansion

(Xps1 — pXn) + (X, — an_l))m—l

m—1

m—1 ke
= Z ( k ) (Xn-H - an) F 1(AXn - an—l)k-
k=0
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Therefore the Markov property gives

V =
m—1
m—1 ke
Z ( k ) pkE {(Xn - anfl)k+2E{(Xn+1 — pXn) g 1|Xn} anl}
k=0
— pmflE{(Xn - ,OX 71)m+1|Xn71} +R”,
where
RII —
m—2
m—1 ke
Z ( k ) pkE {(Xn - an—l)k+2E{(Xn+1 - an) F 1|AXvn} Xn—l}
k=0

is a non-random number, since by induction assumption, for 0 < £ < m — 2 both
E{( X1 —pXp)™ ¥ YX,} and E{(X, — pX,_1)*"?|X,_1} are uniquely determined non-
random numbers.

Equating both expression for V' gives the second equation:

p

W)ZZU + Rl, (732)

Py = (

where again R is uniquely determined and non-random.

The determinant of the system of two linear equations (7.29) and (7.32) is p™/(1 +
p®)? # 0. Therefore conditional moments z,y are determined uniquely. In particular,
they are equal to the corresponding moments of the Gaussian distribution and are non-
random. This ends the induction, and the lemma is proved. O

Lemma 7.5.5 Equalities (7.25) imply that X and 5 have the same distribution.

Proof. By Lemma 7.5.3, it remains to show that
EXIV XM = gyl i) (7.33)

for every d > 1 and all i(1),...,i(d) € IN. We shall prove (7.33) by induction with respect
to d. Since EX; = 0 and E{-|Xo} = E{-}, therefore (7.33) for d = 1 follows immediately
from (7.25).

If (7.33) holds for some d > 1, then write X411 = (Xgy1—pX4)+pX4. By the binomial
expansion

EX{W XA i (7.34)

= Z](;iarl) ( ( ] ) >p(d+1) ]EXl(l) ---Xd(d)E{(Xd-i-l _de)]|Xd}Xd(d+1) J

Since by assumption

E{(Xap — pXa) |Xa} = E{(var1 — p7a)’ |7}
is a deterministic number for each j > 0, and since by induction assumption

EXID | IO poil) i@

therefore (7.34) ends the proof. O
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7.6 Problems
Problem 7.1 Show that if X, and X5 are i. i. d. then
E{X; — Xo|X; + X} =0.
Problem 7.2 Show that if X1 and Xs are i. i. d. symmetric and
E{(X1 + X5)?|X; — Xy} = const,
then X, s normal.

Problem 7.3 Show that if X,Y are independent integrable and E{X|X +Y} = EX then
X = const.

Problem 7.4 Show that if X,Y are independent integrable and E{X|X +Y} =X +Y
then Y = 0.

Problem 7.5 ([36]) Suppose X,Y are independent, X is nondegenerate, Y is integrable,
and E{Y|X +Y} =a(X +Y) for some a.

(i) Show that |a| < 1.

(ii) Show that if E|X P < 0o for somep > 1, then E|Y|P < co. Hint By Problem 7.3,

a#1.

Problem 7.6 ([36, page 122]) Suppose X,Y are independent, X is nondegenerate nor-
mal, Y is integrable, and E{Y |X + Y} = a(X +Y) for some a.
Show that Y is normal.

Problem 7.7 Let X,Y be (dependent) symmetric random variables taking values +1.
Fiz 0 < 0 < 1/2 and choose their joint distribution as follows.

Pxy(—1,1)=1/2 -6,

Pxy(1,-1)=1/2 -6,
PX,y(—]_,—]_) - 1/2+9,
PX7y(]_, ].) - 1/2"‘9

Show that
E{X|Y} = pY and E{Y|X} = pY;

Var(X|Y) =1-p? and Var(Y|X) =1 — p*
and the correlation coefficient satisfies p # 0, +£1.

Problems below characterize some non-Gaussian distributions, see [12, 131, 148].

Problem 7.8 Prove the following variant of Theorem 7.1.2:
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If X1, X5 are i. i. d. random variables with finite second moments, and
Vm"(Xl — X2|X1 + XZ) = ’)/(Xl + XZ);
where R 2 v # 0 is a non-random constant, then X; (and Xs) is an affine

transformation of a random variable with the Poisson distribution (ie. X has
the displaced Poisson type distribution,).

Problem 7.9 Prove the following variant of Theorem 7.1.2:
If X1, X5 are i. i. d. random variables with finite second moments, and
Var(X; — Xo| X1 + X5) = (X1 + X»)?,
where IR > v > 0 is a non-random constant, then Xy (and X3) is an affine

transformation of a random variable with the gamma distribution (ie. X, has
displaced gamma type distribution).

1U/{
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Chapter 8

Gaussian processes

In this chapter we shall consider characterization questions for stochastic processes. We
shall treat a stochastic process X as a function X;(w) of two arguments ¢ € [0, 1] and
w € ) that are measurable in argument w, ie. as an uncountable family of random
variables {X;}o<i<1. We shall also encounter processes with continuous trajectories, that
is processes where functions X;(w) depend continuously on argument ¢ (except on a set
of w’s of probability 0).

8.1 Construction of the Wiener process

The Wiener process was constructed and analyzed by Norbert Wiener [150] (please note
the date). In the literature, the Wiener process is also called the Brownian motion, for
Robert Brown, who frequently (and apparently erroneously) is credited with the first
observations of chaotic motions in suspension; Nelson [115] gives an interesting historical
introduction and lists relevant works prior to Brown. Since there are other more exact
mathematical models of the Brownian motion available in the literature, cf. Nelson [115]
(see also [17]), we shall stick to the above terminology. The reader should be however
aware that in probabilistic literature Wiener’s name is nowadays more often used for the
measure on the space C|0, 1], generated by what we shall call the Wiener process.
The simplest way to define the Wiener process is to list its properties as follows.

Definition 8.1.1 The Wiener process {W,} is a Gaussian process with continuous tra-
jectories such that

EW, = 0 forallt > 0;
EW,W, = min{t, s} for all t,s > 0.

Recall that a stochastic process {X;}o<i<1 is Gaussian, if the n-dimensional r. v.
(X4, ..., Xy,) has multivariate normal distribution for all n > 1 and all ¢4, ...,¢, € [0, 1].
A stochastic process {X;},cp0,1] has continuous trajectories if it is defined by a C[0,1]-
valued random vector, cf. Example 3.2.2. For infinite time interval ¢ € [0, c0), a stochastic
process has continuous trajectories if its restriction to ¢ € [0, N| has continuous trajecto-
ries for all V€ IN.

109
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The definition of the Wiener process lists its important properties. In particular,
conditions (8.1)—(8.3) imply that the Wiener process has independent increments, ie.
Wo, Wy — Wy, Wips — Wy, ... are independent. The definition has also one obvious de-
ficiency; it does not say whether a process with all the required properties does exist
(the Kolmogorov Existence Theorem [9, Theorem 36.1] does not guarantee continuity of
the trajectories.) In this section we answer the existence question by an analytical proof
which matches well complex analysis methods used in this book; for a couple of other
constructions, see Ito & McKean [66].

The first step of construction is to define an appropriate Gaussian random variable W;
for each fixed ¢. This is accomplished with the help of the series expansion (8.4) below. It
might be worth emphasizing that every Gaussian process X; with continuous trajectories
has a series representation of a form X(t) = fo(t) + > e fr(t), where {7} are i. i. d.
normal N(0,1) and f; are deterministic continuous functions. Theorem 2.2.5 is a finite
dimensional variant of this expansion. Series expansion questions in more abstract setup
are studied in [24], see also references therein.

Lemma 8.1.1 Let {7V,}i>1 be a sequence of i. i. d. normal N (0, 1) random variables. Let

2 & 1
Wy = — —— 7 sin(2k + 1)7t. 8.4
= 23 sk D (8.9
Then series (8.4) converges, {W;} is a Gaussian process and (8.1), (8.2) and (8.3) hold
for each 0 <t,s < %

Proof. Obviously series (8.4) converges in the Ly sense (ie. in mean-square), so random
variables {W,} are well defined; clearly, each finite collection W, ..., W, is jointly normal
and (8.1), (8.2) hold. The only fact which requires proof is (8.3). To see why it holds, and
also how the series (8.4) was produced, for ¢, s > 0 write min{t,s} = (|t + s| — [t — s|).
For |z| <1 expand f(z) = |z| into the Fourier series. Standard calculations give

1 4 1
lz]==— =) ——cos(2k + 1)7x. (8.5)
2 72 kz:% (2k +1)2
Hence by trigonometry
2 & 1
in{t = — —_— 2k + 1) (t — — 2k + 1) (t
min{t, s} 772;;) L (cos ((2k + 1)m(t — s)) — cos ((2k + )7 (t + s)))

f= 1 |
=3 192:%) 2h+1) sin((2k + 1)wt) sin((2k + 1)7s).
From (8.4) it follows that EW,W, is given by the same expression and hence (8.3) is
proved. O

To show that series (8.4) converges in probability! uniformly with respect to ¢, we need
to analyze supg<;<i/o | Lgsn TIHW sin(2k + 1)7t|. The next lemma analyzes instead the
eXpression SUP(,ceyz=1y | Lrsn spm k2> |, the latter expression being more convenient
from the analytic point of view.

!Notice that this suffices to prove the existence of the Wiener process {Wito<i<ayo!
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Lemma 8.1.2 There is C' > 0 such that

- ]‘ 2k+1
2% +1 '+

Esup
|2=1

k=m

for all m,n > 1.

Proof. By Cauchy’s integral formula

2k+1 _ .2m 2k+1
(kzm%ﬂ%z > & (,CZO % +2m + 1 %° )

1 n_m 1 Y
_ 2m L 2%k+1 d
: 2m’7{L<kz::0 2/€+2m+17k€ ) C—=z ¢

where L C € is the circle |[(| =1+ 1/(n —m).

Therefore A

sup
|z|]=1

< 1 2k+1
k;ﬂ 2%+ 1

kz:% 2k +2m +1

2k+1

Ve+mG dg.

< 1 1 7(
sup ————

- |z|:pl I —z| 27 Jo
Obviously sup,, _; ﬁ = n—m, and furthermore we have [(ZT!| < (14+1/(n—m))#**! <
e3 forall 0 <k <n—mand all ( € L. Hence

4

d¢

- 1 2k+1 nin 1
Esup E —_—
= 2k +2m+1

2k+1
jel=1 [f = 2K + 1 e

2
n—m 1
< Ci(n—
> 1(” m) (kzo (2k+2m+1)2> )

which concludes the proof. O

Now we are ready to show that the Wiener process exists.

Theorem 8.1.3 There is a Gaussian process {Wt}ogtgl/z with continuous trajectories
and such that (8.1), (8.2), and (8.3) hold.

Proof. Let W, be defined by (8.4). By Lemma 8.1.1, properties (8.1)—(8.3) are satisfied
and {W;} is Gaussian. It remains to show that series 372 Tlﬂfyk sin(2k+1)7wt converges in
probability with respect to the supremum norm in C'0, %] Indeed, each term of this series
is a C|0, 5]-valued random variable and limit in probability defines {W;}o<i<1/2 € C[0, 3]
on the set of w’s of probability one. We need therefore to show that for each ¢ > 0

o0

P( sup SYSERL sin(2k + 1)7wt| > €) — 0 as n — oc.
0<t<1/2 i,
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Since sin(2k + 1)t is the imaginary part of z2#*! with 2z = €™, it suffices to show that
P(supy,— ‘Z;":n TIJFI’W@Z%H‘ > €) — 0 as n — oo. Let r be such that 2771 < n < 27
Notice that by triangle inequality (for the L,-norm) we have

Esup
|2=1

i 1 - 2k+1

ok 41
or 1 4\ 1/4
< | Esu 2k+1
( |Z|:p1 kz:: 2k + 17
00 27 +1 1 o M
+ Z E'sup Z Y e
j=r 12=1 |g=2i 41 2k +1
From (8.6) we get
gr 1 4\ 1/4
E'su Z2k+1 < 27/,
( fe ;%H% N
and similarly
2i+1 1 4\ /4
E{sup| Y ——y2®t} < C27I
|21=1 | g=2i 41 2k +1

for every j > r. Therefore

E'sup Z 7k22k+1 <024 Z c2 it < con Yt 50
lz1=1 [g=n 2k +1 j=r+1

as n — oo and convergence in probability (in the uniform metric) follows from Cheby-
shev’s inequality. O

Remark: Usually the Wiener process is considered on unbounded time interval [0, 00). One way of
constructing such a process is to glue in countably many independent copies W, W' W' ... of the Wiener
process {W;}o<t<1/2 constructed above. That is put

W for0<t <%,
N Wi+ W, for £ <t <1,
We=q Wi+ W +W", 1y for1<t<3,

Since each copy W) starts at 0, this construction preserves the continuity of trajectories, and the

increments of the resulting process are still independent and normal.

8.2 Levy’s characterization theorem

In this section we shall characterize Wiener process by the properties of the first two
conditional moments. We shall use conditioning with respect to the past o-field F; =
o{X; : t < s} of a stochastic process {X;}. The result is due to P. Levy [98, Theorem
67.3]. Dozzi [40, page 147 Theorem 1] gives a related multi-parameter result.
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Theorem 8.2.1 If a stochastic process {X;}o<i<1 has continuous trajectories, is square
integrable, and

E{X\|Fs} =X forall s <t
Var(XFs) =t—s forall s <t,

then {X;} is the Wiener process.

Conditions (8.7) and (8.8) resemble assumptions made in Chapter 7, cf. Theorems 7.2.1
and 7.5.1. Clearly, formulas (8.7) and (8.8) hold also true for the Poisson process; hence
the assumption of continuity of trajectories is essential. The actual role of the continuity
assumption is hardly visible, until a stochastic integrals approach is adopted (see, eg.
[41, Section 2.11]); then it becomes fairly clear that the continuity of trajectories allows
insights into the future of the process (compare also Theorem 7.5.1; the latter can be
thought as a discrete-time analogue of Levy’s theorem.). Neveu [117, Ch. 7] proves
several other discrete time versions of Theorem 8.2.1 that are of different nature.

Proof of Theorem 8.2.1. Let 0 < s < 1 be fixed. Put ¢(t,u) = E{exp(iuX;;s)|Fs}.
Clearly (-, -) is continuous with respect to both arguments. We shall show that

9 it u) = —%uzqﬁ(t, ) (8.9)

ot
almost surely (with the derivative defined with respect to convergence in probability).
This will conclude the proof, since equation (8.9) implies

o(t,u) = ¢(0,u)e /2 (8.10)

almost surely. Indeed, (8.10) means that the increments X;,; — X are independent of the
past F, and have normal distribution with mean 0 and variance ¢, ie. {X;} is a Gaussian
process, and (8.1)—(8.3) are satisfied.

It remains to verify (8.9). We shall consider the right-hand side derivative only;
the left-hand side derivative can be treated similarly and the proof shows also that the
derivative exists. Since u is fixed, through the argument below we write ¢(t) = (¢, u).
Clearly

ot + h) — é(t) = E{exp(iuX,)(e™Xern=Xe) _1)| F1

= —%uthﬁ(t) + E{exp(iuXy) R(Xpsn — X3)[F},

where |R(z)] < |z|® is the remainder in Taylor’s expansion for e*. The proof will be
concluded, once we show that F{|X;., — X;|*|Fs}/h — 0 as h — 0. Moreover, since we
require convergence in probability, we need only to verify that F|X;,, — X;|*/h — 0. Tt
remains therefore to establish the following lemma, taken (together with the proof) from
[7, page 25, Lemma 3.2]. O

Lemma 8.2.2 Under the assumptions of Theorem 8.2.1 we have

E|Xin — Xi|* < oo
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Moreover, there is C' > 0 such that
E| X — X' < Oh?
for all t,h > 0.

Proof. We discretize the interval (¢, + h) and write Y}, = Xy pn/n — Xy (k—1)n/n, Where
1 <k < N. Then

X — X' = DY (8.11)
k

+ 4 YRV, +3) YY)

m#n m#n

k#m#n k#l#m#n

Using elementary inequality 2ab < a?/6 + 0?0, where 6 > 0 is arbitrary, we get

Y44 YR, (8.12)
k m#n
=AY Y -3V <20 (DY 20(Y V)
Notice, that
1> v —0 (8.13)

in probability as N — oco. Indeed, |3, V2| < 3, V.2V, | < max, |V,| 3, V2. Therefore
for every € > 0

P(IY Y| >e) < PQY] > M)+ P(max |Ya| > ¢/M).

By (8.8) and Chebyshev’s inequality P(3, Y,? > M) < h/M is arbitrarily small for all
M large enough. The continuity of trajectories of {X;} implies that for each M we have
P(max, |Y,| > ¢/M) — 0 as N — oo, which proves (8.13).

Passing to a subsequence, we may therefore assume |, V3| — 0 as N — oo with
probability one. Using Fatou’s lemma (see eg. [9, Ch. 3 Theorem 16.3]), by continuity of
trajectories and (8.11), (8.12) we have now

E{|Xpn — X'} <limsup E {29(2 V)2 +3 Y 2y (8.14)

N—00 m#n

k#m#n k#l#m#n

provided the right hand side of (8.14) is integrable.
We now show that each term on the right hand side of (8.14) is integrable and give
the bounds needed to conclude the argument. The first two terms are handled as follows.

+6 Y YRV Yi+ Y YkYzYmYn},

E( YY) <h; (8.15)
EY2Y?2 = limyy o0 EY 2y, <12 (8.16)
= limpso0 EY,2 Ly, 1<t EAY,2 | Frshmyn } < h?/N? for all m < n;
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Considering separately each of the following cases: m <n <k, m <k <n,n <m <k,
n<k<m,k<m<n,k<n<m,weget E|Y2Y,Y;| < h?/N? < co. For instance, the
case m < n < k is handled as follows

EY2YaYil = lim B {Y2 |Vl v, icn B {1Vl B |}

< lim E{Y£|Yn|T\ym|gM(E{Y192~7:t+hm/N})1/2}

— M-

= (W/N)"? 1im E{Y? T, <n B {[Yal| Fronyn} }
< (h/N)Y? Jim B {Y,gIWSM(E{Y,f|ft+hk/N})1/2} = h?/N?.

Once E|Y2Y,Yi| < oo is established, it is trivial to see from (8.7) in each of the cases
m<n<km<k<nn<m<k,k<m<n, (and using in addition (8.8) in the cases
n<k<m,k<n<m) that

EY?2Y,Y;, =0 (8.17)

for every choice of different numbers m,n, k. Analogous considerations give
EY,, Y, Y;Y)| < h?/N? < co. Indeed, suppose for instance that m < k <[ < n. Then

EY,Y, Y Y]
= lim B{|Yol <o YalTiva<nr Yelfivig<ar B {IYi] | Frnern } 3
< A/III_I)HOOE {|Ym|I‘Ym|§M|Yn|[|Yn|§M|Yk|[|Yk|§M(E{)/12|ft+hk/N})1/2}

= (h/N)Y2E|Y,, Y, Yz,

and the procedure continues replacing one variable at a time by the factor (h/N)'/2. Once
E|Y,,Y,Y.Y|| < oo is established, (8.7) gives trivially
EY,Y,Y,Y, = 0 (8.18)

for every choice of different m,n, k,l. Then (8.15)—(8.18) applied to the right hand side
of (8.14) give E|X;., — X;|* < 20h + 3h?. Since 6 is arbitrarily close to 0, this ends the
proof of the lemma. O

The next result is a special case of the theorem due to J. Jakubowski & S. Kwapien
[67]. Tt has interesting applications to convergence of random series questions, see [91]
and it also implies Azuma’s inequality for martingale differences.

Theorem 8.2.3 Suppose { Xy} satisfies the following conditions

(i) | Xl <1,k=1,2,...;

(’l’l) E{Xn+1|X1, .. ;Xn} = O,TL = ]_, 2, ce e

Then there is an i. i. d. symmetric random sequence €, = +1 and a o-field N such
that the sequence

Yk = E{€k|N}

has the same joint distribution as {Xj}.
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Proof. We shall first prove the theorem for a finite sequence {Xy}p—1 .. Let
F(dy,...,dy,) be the joint distribution of X,..., X, and let G(du) = £(6_, + &) be
the distribution of €;. Let P(dy,du) be a probability measure on IR*", defined by

P(dy,du) H + u;y;) Fdys, ..., dy,)G(duy) ... G(duy,) (8.19)

and let A be the o-field generated by the y-coordinate in IR*". In other words, take the
joint distribution @ of independent copies of (X};) and € and define P on IR*" as being
absolutely continuous with respect to ) with the density [];_, (1 + u;y;). Using Fubini’s
theorem (the integrand is non-negative) it is easy to check now, that P(dy, R") = F(dy)
and P(IR",du) = G(du,) ... G(duy). Furthermore [ u; [Tj_, (1+u;y;)G(duy) ... G(duy,) =
y; for all j, so the representation E{¢;|N'} =Y holds. This proves the theorem in the
case of the finite sequence {X}.

To construct a probability measure on IR x IR*, pass to the limit as n — oo with
the measures P, constructed in the first part of the proof; here P, is treated as a measure
on R* x IR which depends on the first 2n coordinates only and is given by (8.19). Such
a limit exists along a subsequence, because P, is concentrated on a compact set [—1, 1]%
and hence it is tight. O

8.3 Characterizations of processes without continu-
ous trajectories

Recall that a stochastic process { X;} is L, or mean-square continuous, if X; € L, for all ¢
and X; — X;, in Ly as t — £y, cf. Section 1.2. Similarly, X; is mean-square differentiable,
if t — X, € Ly is differentiable as a Hilbert-space-valued mapping IR — L,. For mean
zero processes, both are the properties® of the covariance function K(t,s) = EX, X,.

Let us first consider a simple result from [18]3, which uses Ly-smoothness of the process,
rather than continuity of the trajectories, and uses only conditioning by one variable at a
time. The result does not apply to processes with non-smooth covariance, such as (8.3).

Theorem 8.3.1 Let {X;} be a square integrable, Lo-differentiable process such that for
every t > 0 the correlation coefficient between random wvariables X; and %Xt 15 strictly
between -1 and 1. Suppose furthermore that

E{X:|Xs} is a linear function of X, for all s < t; (8.20)
Var(X| Xs) is non-random for all s < t. (8.21)

Then the one dimensional distributions of {X;} are normal.

2For instance, F(X; — X4)? = K(t,t) + K(s,s) — 2K (t, s), so mean square continuity follows from the
continuity of the covariance function K (¢, s).
3See also [139)].
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Lemma 8.3.2 Let X,Y be square integrable standardized random variables such that
p=FEXY # +1. Assume E{X|Y} = pY and Var(X|Y) = 1 — p* and suppose there is
an Lo-differentiable process {Z;} such that

Zy =Y (8.22)
d
—Zi =0 = X. 8.23
=2 imy (5.23)
Furthermore, suppose that
E{X|Z;} —atZy — 0 in Ly ast — 0, (8.24)

where a; = corr(X, Zy) /Var(Z;) is the linear regression coefficient. Then Y is normal.

Proof. It is straightforward to check that ay = p and %at limo = 1 —2p%. Put ¢(t) =
Eexp(itY) and let ¢(t,s) = EZ exp(itZ,). Clearly 1(t,0) = —i%p(t). These identities
will be used below without further mention. Put V; = E{X|Z} — asZ,. Trivially, we

have
E{X exp(itZs)} = as)(t,s) + E{Vsexp(itZs)}. (8.25)

Notice that by the Lo-differentiability assumption, both sides of (8.25) are differentiable
with respect to s at s = 0. Since by assumption Vj = 0 and Vjj = 0, differentiating (8.25)
we get

itE{X?exp(itY)}
= (1 —2p*)(t,0) + pE{X exp(itY)} + itpE{XY exp(itY)}. (8.26)

Conditional moment formulas imply that
E{X exp(itY)} = pE{Y exp(itY)} = —ip¢'(t)
E{XY exp(itY)} = pE{Y?exp(itY)} = —p?¢" (t)

E{X?exp(itY)} = (1 — p*)b(t) + p*¢" (1),
see Theorem 1.5.3. Plugging those relations into (8.26) we get

(1= p")itd(t) = —(1 — p*)ig'(¢),
which, since p? # 1, implies ¢(t) = e~*'/2. O
Proof of Theorem 8.3.1. For each fixed ¢y > 0 apply Lemma 8.3.2 to random variable

X = %XtO,Y = X; with Z; = X;,—¢. The only assumption of Lemma 8.3.2 that needs
verification is that Var(X|Y) is non-random. This holds true, because in L;-convergence

Var(X[Y) = lim e E{(Xyp4e — Y = p()Y)*|Y}

=lim e~ 'Var (X X) = 0/(0),
€E—
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where p(h) = E{X;y14 Xy, }/EX;,. Therefore by Lemma 8.3.2, X is normal for all ¢ > 0.
Since Xy is the Lo-limit of X; as t — 0, hence X is normal, too. O

As we pointed out earlier, Theorem 8.2.1 is not true for processes without continuous
trajectories. In the next theorem we use o-fields that allow some insight into the future
rather than past o-fields F; = o{X; : t < s}. Namely, put

Gsuw=0{X;:t<sort=u}

The result, originally under minor additional technical assumptions, comes from [121].
The proof given below follows [19].

Theorem 8.3.3 Suppose { X, }o<i<1 is an Lo-continuous process such that corr( Xy, X;) #
+1 for all t # s. If there are functions a(s,t,u), b(s,t,u), c(s,t,u), o%(s,t,u) such that
for every choice of s <t and every u we have

E{Xi|Gsu} = al(s,t,u)+b(s,t,u) X+ c(s,t,u)Xy; (8.27)
Var(Xi|Gsu) = o°(s,t,u), (8.28)

then { X} is Gaussian.

The proof is based on the following version of Lemma 7.5.2.

Lemma 8.3.4 Let N > 1 be fized and suppose that { X, } is a sequence of square integrable
random variables such that the following conditions, compare (7.18)-(7.21), hold for all
n>1:

B{Xp|X1, ..., Xo} = X, + oo
E{Xp1|X1,. .., X0, Xnio} = X, + X+ o,
Var(X,41|X1,..., Xn) = ¢,
Var(X,p1|X1, .., Xny Xngo) = o1

Moreover, suppose that the correlation coefficient p, = corr(X,, X,11) satisfies p2 # 0,1
for alln > N. If (Xy,...,Xn_1) is jointly normal, then {Xy} is Gaussian.

If N =1, Lemma 8.3.4 is the same as Lemma, 7.5.4; the general case N > 1 is proved sim-
ilarly, except that since (X1,..., Xy 1) is normal, one needs to calculate conditional mo-
ments ¥ = E{(X,11 — p* X, 1)¥|X1,..., X, 1} and y = E{(X,, — pX,, )¥|X1,..., X, 1}
for n > N only. Also, not assuming Markov property here, one needs to consider the
above expressions which are based on conditioning with respect to past o-field, rather
than (7.22) and (7.23). The detailed proof can be found in [19].

Proof of Theorem 8.3.3. Let {t,} be the sequence running through the set of all
rational numbers. We shall show by induction that for each N > 1 random sequence
(X4, X4y, ..., Xty ) has the multivariate normal distribution. Since {t,} is dense and X}
is Lo-continuous, this will prove that {X;} is a Gaussian process.

To proceed with the induction, suppose (X, Xy,,..., Xy ,) is normal for some
N > 1 (with the convention that the empty set of random variables is normal). Let



o.4. OLUUIND Uiy VUINULLTIUINAL O1 UL L UILE 119

s1 < S < ... be an infinite sequence such that {si,...,sy} = {t1,...,tx} and further-
more corr(X,,, Xy, ,,) # 0 for all £ > N. Such a sequence exists by L,-continuity; given
S1,...,5k, we have EX; X; — EXSZIc as s | sy, so that an appropriate rational si 1 # sg
can be found. Put X,, = X, ,n > 1. Then the assumptions of Lemma 8.3.4 are satisfied:
correlation coefficients are not equal +1 because s; are different numbers; conditional
moment assumption holds by picking the appropriate values of ¢,u in (6.3.8) and (6.3.9).
Therefore Lemma 6.3.5 implies that (X3, ..., X}, ) is normal and by induction the proof

is concluded.O

Remark: A variant of Theorem 8.3.3 for the Wiener process obtained by specifying suitable functions
a(s,t,u),b(s,t,u), c(s,t,u), %(s,t,u) can be deduced directly from Theorem 8.2.1 and Theorem 6.2.2.
Indeed, a more careful examination of the proof of Theorem 6.2.2 shows that one gets estimates for
E|X; — X4|* in terms of E|X; — X|*. Therefore, by the well known Kolmogorov’s criterion ([42, Exercise
1.3 on page 337]) the process has a version with continuous trajectories and Theorem 8.2.1 applies.

The proof given in the text characterizes more general Gaussian processes. It can also be used with
minor modifications to characterize other stochastic processes, for instance for the Poisson process, see
[21, 147].

8.4 Second order conditional structure

The results presented in Sections 4.1, 7.5, 8.2, and 8.3 suggest the general problem of
analyzing what one might call random fields with linear conditional structure. The setup
is as follows. Let (T, Br) be a measurable space. Consider random field X : 7" x Q@ — IR,
where () is a probability space. We shall think of X as defined on probability space Q = T®
by X(t,w) = w(t). Different random fields then correspond to different assignments of
the probability measure P on (). For each t € T let S; be a given collection of measurable
subsets F' € o{X; : s # t}. For technical reasons, it is convenient to have S; consisting
of sets F' that depend on a finite number of coordinates only. Even if 7' = IR, the choice
of §; might differ from the usual choice of the theory of stochastic processes, where S;
usually consists of those F' 3 s with s < t.
One can say that X has linear conditional structure if

Condition 8.4.1 For eacht € T and every F' € S; there is a measure a(.) = oy p(.) and
a number b = b(t, F) such that E{X (t)|X(s):s € F}=b+ [ X(s)a(ds).

Clearly, this definition encompasses many of the examples that were considered in previous
sections. When 7' is a measurable space with a measure p, one may also be interested in
variations of the condition 8.4.1. For instance, if X has p-square-integrable trajectories,
one can consider the following variant.

Condition 8.4.2 For eacht € T and F € S; there is a number b and a bounded linear
operator A = Ay g @ Lo(T,du) — Lo(F,dp) such that E{X (t)|X(s) : s € F} = b+ A(X).

In this notation, Condition 8.4.1 corresponds to the integral operator Af = [ f(x) dp.

The assumption that second moments are finite permits sometimes to express opera-
tors A in terms of the covariance K (¢, s) of the random field X. Namely, the “equation”
is

K(t,s) = Ay p(K(-,5))
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for all s € F.

The main interest of the conditional moments approach is in additional properties of
a random field with linear conditional structure - properties determined by a higher order
conditional structure which gives additional information about the form of

E{(X()*X(s):s€ F}. (8.29)

Perhaps the most natural question here is how to tackle finite sequences of arbitrary
length. For instance, one would want to say that if a large collection of N random variables
has linear conditional moments and conditional variances that are quadratic polynomials,
then for large N the distribution should be close to say, a normal, or Poisson, or, say,
Gamma distribution. A review of state of the art is in [142], but much work still needs
to be done. Below we present two examples illustrating the fact that the form of the first
two conditional moments can (perhaps) be grasped on intuitive level from the physical
description of the phenomenon.

Example 8.4.1 (snapshot of a random vibration) Suppose a long chain of molecules is
observed in the fized moment of time (a snapshot). Let X (k) be the (vertical) displacement
of the k-th molecule, see Figure 8.1.

Figure 8.1: Random Molecules

If all positions of the molecules except the k-th one are known, then it is natural to
assume that the average position of X (k) is centered between its neighbors, ie.

E{X(k) | given all other positions are known} (8.30)
= (X(k-1)+X(k+1))/2.

If furthermore we assume that the molecules are connected by elastic springs, then the
potential enerqy of the k-th molecule is proportional to

const + (X (k) — X(k— 1)) + (X (k) = X(k+ 1)) = 1/2(X(k + 1) — X(k — 1))~
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Therefore, assuming the only source of vibrations is the external heat bath, the average
energy is constant and it s natural to suppose that

E{(X (k) = X(k —1))* + (X (k) — X(k +1))*

—1/2(X (k+ 1) — X(k — 1))?|all except k-th known} = const.
Using (8.30) this leads after simple calculation to

Var(X(k)|...,X(1),...,X(k—=1),X(k+1),...) = const, (8.31)

and shows to what extend (8.29) might be considered to be “intuitive”. To see what might
follow from similar conditions, consult [149, Theorem 1] and [1/7, Theorem 3.1], where
various possibilities under quadratic expression (8.29) are listed; to avoid finiteness of
all moments, see the proof of [148, Theorem 1.1]. Wesotowski’s method for treatment of
moments resembles the proof of Lemma 8.2.2; in general it seems to work under broader
set of assumptions than the method used in the proof of Theorem 6.2.2.

Example 8.4.2 (a snapshot of epidemic)

Suppose that we observe the development of a disease in a two-dimensional region
which was partitioned into many small sub-regions, indexed by a parameter a. Let X, be
the number of infected individuals in the a-th sub-region at the fized moment of time (a
snapshot). If the disease has already spread throughout the whole region, and if in all but
the a-th sub-region the situation is known, then we should expect in the a-th sub-region to
have

E{X,|all other known} =1/8 > X,
benetghb(a)

Furthermore there are some obuvious choices for the second order conditional structure,
depending on the source of infection: If we have uniform external virus rain, then

Var(X,|all other known) = const. (8.32)

On the other hand, if the infection comes from the nearest neighbors only, then, in-
tuitively, the number of infected individuals in the a-th region should be a binomial r. v.
with the number of viruses in the neighboring regions as the number of trials. Therefore
it 1s quite natural to assume that

Var(X,|all other known) = const > X, (8.33)
veneighb(a)

Clearly, there are many other interesting variants of this model. The simplest would
take into account some boundary conditions, and also perhaps would mix both the virus
rain and the infection from the (not necessarily nearest) neighbors. More complicated
models could in addition describe the time development of epidemic; for finite periods of
time, this amounts to adding another coordinate to the index set of the random field.
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Appendix A

Solutions of selected problems

A.1 Solutions for Chapter 1

Problem 1.1 ([64]) Hint: decompose the integral into four terms corresponding to all possible
combinations of signs of X,Y. For X > 0 and Y > 0 use the bivariate analogue of (1.2):
EXY = [(° [i°P(X >t,Y > s)dtds. Also use elementary identities

P(X>4,Y >5)— P(X > )P(Y > s) = P(X <1,Y < s) — P(X < )P(Y < s)
=—(P(X <t,Y >s)— P(X <t)P(Y > s))
=—(P(X >t,Y <s)— P(X >t)P(Y < 3s)).

Problem 1.2 We prove a slightly more general tail condition for integrability, see Corollary
1.3.3.

Claim A.1.1 Let X > 0 be a random wvariable and suppose that there is C' < oo such that for
every 0 < p < 1 there is T = T(p) such that

P(X >Ct) < pP(X >1t) forall t >T. (A.1)
Then all the moments of X are finite.

Proof. Clearly, for unbounded random variables (A.1) cannot hold, unless C' > 1 (and there
is nothing to prove if X is bounded). We shall show that inequality (A.1) implies that for
B = —logq(p), there are constants K,T < oo such that

N(z) < Kz for all z > T. (A.2)

Since p is arbitrarily close to 0, this will conclude the proof , eg. by using formula (1.2).
To prove that (A.1) implies (A.2), put a, = C"T,n =0,2,.... Inequality (A.1) implies

N(apt+1) < pN(ap),n=0,1,2,.... (A.3)
From (A.3) it follows that N(a,) < N(T')p", ie.

N(C™T) < N(T)p" for all n > 1. (A.4)

123
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To end the proof, it remains to observe that for every x > 0, choosing n such that C"T < z <
C™FIT, we obtain N(x) < N(C™T) < C1p". This proves (A.2) with K = N(T)p~'T~1°¢cr. O

Problem 1.3 This is an easier version of Theorem 1.3.1 and it has a slightly shorter proof.
Pick ¢y # 0 and ¢ such that P(X > t3) < ¢ < 1. Then P(|X| > 2"¢)) < ¢*" holds for
n = 1. Hence by induction P(|X| > 2"t5) < ¢*" for all n > 1. If 27ty < t < 2"Fl¢y,
then P(|X| > t) < P(|X| > 2") < ¢*" < ¢/ = ¢ for some # > 0. This implies
Eexp(A|X]) < oo for all A < 6, see (1.2).

Problem 1.4 See the proof of Lemma 2.5.1.

Problem 1.9 Fixt¢ > 0 and let A € F be arbitrary. By the definition of conditional expectation
[4 P(1X] > t|F)dP = Elql x5, < Et ' X|Ial x5 < t7'E|X|I4. Now use Lemma 1.4.2.

Problem 1.11 [, UdP = [, V dP for all A = X~'(B), where B is a Borel subset of IR. Lemma
1.4.2 ends the argument.

Problem 1.12 Since the conditional expectation E{-|F} is a contraction on L; (or, to put
it simply, Jensen’s inequality holds for the convex function z +— |z|), therefore |[E{X|Y}| =
la|E|Y| < E|X| and similarly |b|E|X| < E|Y|. Hence |ab|E|X|E|Y| < E|X|E|Y]|.

Problem 1.13 E{Y|X} = 0 implies EXY = 0. Integrating YE{X|Y} = Y? we get EY? =
EXY =0.

Problem 1.14 We follow [38, page 314]: Since [y, (Y —X)dP =0 and [, (Y —X)dP =0,

we have

oz/ Y-X)dP= [ (¥ -X)dP - (Y — X)dP
X>a,Y<a X>a X>a,Y>a
:—/ (Y—X)dP:—/ (Y — X)dP + (Y — X)dP
X>a,Y>a Y>a X<a,Y>a
- (Y — X)dP <0
X<a,Y>a

therefore [y_,y,(Y — X)dP = 0. The integrand is strictly larger than 0, showing that
P(X <a<Y) =0 for all rational a. Therefore X > Y a. s. and the reverse inequality follows
by symmetry.

Problem 1.15 See the proof of Theorem 1.8.1.

Problem 1.16

a) If X has discrete distribution P(X = z;) = pj;, with ordered values z; < x4, then
for all A > 0 small enough we have ¢(zy + A) = (z + A) X<, pj + 25 Tjpj. Therefore
limp o 28FA) =) — p(x < ).

b) If X has a continuous probability density function f(z), then ¢(t) = ¢ [*_ f(z)dz +
J7° «f (z) dz. Differentiating twice we get f(z) = ¢"(z).

For the general case one can use Problem 1.17 (and the references given below).

Problem 1.17 Note: Function U,(t) = [ |z —t|u(dx) is called a (one dimensional) potential of
a measure p and a lot about it is known, see eg. [26]; several relevant references follow Theorem
4.2.2; but none of the proofs we know is simple enough to be written here.
Formula |z — t| = 2max{z,t} — x — t relates this problem to Problem 1.16.

Problem 1.18 Hint: Calculate the variance of the corresponding distribution.
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Note: Theorem 2.5.3 gives another related result.

Problem 1.19 Write ¢(t,s) = exp Q(¢,s). Equality claimed in (i) follows immediately from
(1.17) with m = 1; (ii) follows by calculation with m = 2.

Problem 1.20 See for instance [76].

Problem 1.21 Let g be a bounded continuous function. By uniform integrability (cf. (1.18))
E(Xg(Y)) = limy 00 B(X,9(Yy)) and similarly E(Yg(Y)) = lim, 00 E(Yng(Yy)). Therefore
EXg(Y) = pE(Yg(Y)) for all bounded continuous g. Approximating indicator functions by
continuous g, we get [, X dP = [, pY dP for all A = {w : Y (w) € [a,b]}. Since these A generate
o(Y'), this ends the proof.

A.2 Solutions for Chapter 2

Problem 2.1 Clearly ¢(t) = e~t/2_L 1 f (@=it)*/2 gy Since e=#/2 is analytic in complex

plane ©, the integral does not depend on the path of integration, ie. [0 e~ (@=it)*/2 gy —
= e=°/2 dg
—00 .

Problem 2.2 Suppose for simplicity that the random vectors X,Y are centered. The joint
characteristic function ¢(t,s) = Eexp(it-X+is-Y) equals ¢(t,s) = exp(——E(t X)? exp(— 3 E(s-
Y)?) exp(—E(t - X)(s - Y)). Independence follows, since E(t - X)(s-Y)) = >ijtisjEX;Y; =0.

Problem 2.3 Here is a heavy-handed approach: Integrating (2.9) in polar coordinates we
express the probability in question as foﬂ/ 2 % do. Denoting z = €% ¢ = €2 this
becomes

, z+1/z dg
47J/|.g| 14— (z—1/2)(E-1/¢) &’

which can be handled by simple fractions.

Alternatively, use the representation below formula (2.9) to reduce the question to the
integral which can be evaluated in polar coordinates. Namely, write p = sin260, where
—7n/2 <6 < m/2. Then

P(X >0,Y >0) / /—rexp( r2/2) dr d,

where I = {a € [—m, 7] : cos(a — 6) > 0 and sin(a + 0) > 0}. In particular, for > 0 we have
= (—0,7/2 + 0) which gives P(X >0,Y >0)=1/4+6/n.

Problem 2.7 By Corollary 2.3.6 we have f(t) = ¢(—it) = Fexp(tX) > 0 for each ¢t € R, ie.
log f(t) is well defined. By the Cauchy-Schwarz inequality f(4%) = Eexp(tX/2)exp(sX/2) <
(f(t)f(s))*/?, which shows that log f(t) is convex.

Note: The same is true, but less direct to verify, for the so called analytic ridge functions, see
[99].

Problem 2.8 The assumption means that we have independent random variables X, X5 such
that X1+ Xo =1. Pt Y = X, +1/2,Z = —X3 — 1/2. Then Y, Z are independent and ¥ = Z.
Hence for any ¢t € IR we have P(Y <t) = P(Y <t,Z <t) = P(Y <t)P(Z <t) = P(Z <),
which is possible only if either P(Z < t) = 0, or P(Z < t) = 1. Since ¢t was arbitrary, the
cumulative distribution function of Z has a jump of size 1, i. e. Z is non-random.

For analytic proof, see the solution of Problem 3.6 below.
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A.3 Solutions for Chapter 3

Problem 3.1 Hint: Show that there is C' > 0 such that Fexp(—tX) = C! for all ¢ > 0.
Condition X > 0 guarantees that Ee*¥ is analytic for Rz < 0.

Problem 3.4 Write X = m+7Y. Notice that the characteristic function of m—Y and m+7Y is
the same. Therefore P(m—Y € IL) = P(m+Y € IL). By Theorem 3.2.1 the probability is either
zero (in which case there is nothing to prove) or 1. In the later case, for almost all w we have
m+Y € L and m—Y € IL. But then, the linear combination m = 3(m+Y)+3(m-Y) € L,
a contradiction.

Problem 3.5 Hint: Show that Var(X) = 0.

Problem 3.6 The characteristic functions satisfy ¢x (t) = ¢x (t)Py (t). This shows that ¢y () =
1 in some neighborhood of 0. In particular, EY? = 0.
For probabilistic proof, see the solution of Problem 2.8.

A.4 Solutions for Chapter 4

Problem 4.1 See, eg. [98].

Problem 4.2 Denote p = corr(X,Y) = sinf, where —7/2 < § < n/2 By Theorem 4.1.2 we
have

E{|71] |1 cos @ + y2sinf|}
1 2 oo
= 2—/ | cos o |cosasin9+sinacost9|da/ r3e~r? /2 dr.
™Jo 0

Therefore E|X| Y] = 1 7 | cos | sin(a + 0)| do = = o7 |sin(2a + ) — sin@] do. Changing
the variable of integration to # = 2a we have

1 47
B|X| Y] = E/o |sin(8 + 0) — sin 0] dB

L /27r |sin(B + €) — sinf dg.
0

:27r

Splitting this into positive and negative parts we get

1 T—20
B|X| Y] = %/0 (sin(8 + 0) — sin0) dg

1 2 2
——/ (sin(8 + 0) —sinf) dB = —(cos @ + Osinb).
27 Jr—20 m

Problem 4.3 Hint: Calculate E|aX + bY| in polar coordinates.

Problem 4.5 E|aX + bY| = 0 implies aX 4 bY = 0 with probability one. Hence Problem 2.8
implies that both ¢ X and bY are deterministic.
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A.5 Solutions for Chapter 5

Problem 5.1 See [111].
Problem 5.2 Note: Theorem 6.3.1 gives a stronger result.

Problem 5.3 The joint characteristic function of X +U, X +V is ¢(t, s) = Px (t+5)pu (t)dy (s).
On the other hand, by independence of linear forms,

P(t,s) = hx(t)dx (s)dpu(t)pv(s).

Therefore for all ¢, s small enough, we have ¢x (t + s) = ¢x(t)px(s). This shows that there is
€ > 0 such that ¢x(e27™) = C?>". Corollary 2.3.4 ends the proof.

Note: This situation is not covered by Theorem 5.3.1 since some of the coefficients in the
linear forms are zero.

Problem 5.4 Consider independent random variables £ = X — pY,& =Y. Then X = &; + p&s
and Y — pX = —p€; + (1 — p?)&; are independent linear forms, therefore by Theorem 5.3.1 both
&1 and & are independent normal random variables. Hence X, Y are jointly normal.

A.6 Solutions for Chapter 6

Problem 6.1 Hint: Decompose X,Y into the real and imaginary parts.

Problem 6.2 For standardized one dimensional X,Y with correlation coefficient p # 0 one has
P(X > -M|Y >t) < P(X — pt > —M) which tends to 0 as ¢ — oo. Therefore ;9 > P(X >
—M) — P(X > —M]|Y > t) has to be 1.

Notice that to prove the result in the general IR? x IR%-valued case it is enough to establish
stochastic independence of one dimensional variables u- X, v -Y for all u,v € R

Problem 6.4 Without loss of generality we may assume Ef(X) = Eg(Y) = 0. Also, by a linear
change of variable if necessary, we may assume FX = EY =0, EX? = EY? = 1. Expanding
f, g into Hermite polynomials we have

= i /K H ()
k=0

= gx/k!Hy()
k=0
and Zf,?/k;' = Ef(X)?, Eg,%/k:! = Eg(Y)?2. Moreover, fo = gy = 0 since Ef(X) = Eg(y) = 0.

Denote by ¢g(z,y) the joint density of X, Y and let ¢(-) be the marginal density. Mehler’s formula
(2.12) says that

S o I H (@) He () a(2)a(y)-
k=0

Therefore by Cauchy-Schwarz inequality

Cov(f,g) Zp/k'fk9k<|9|2fk/k' )23 gr /KD

Problem 6.5 From Problem 6.4 we have corr(f(X),g(Y)) < |p| Problem 2.3 implies % <
+ arcsin|p| < P(X > 0,£Y > 0) — P(X > 0)P(£Y > 0) < agy
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For the general case see, eg. [128, page 74 Lemma 2].

Problem 6.6 Hint: Follow the proof of Theorem 6.2.2. A slightly more general proof can be
found in [19, Theorem A].

Problem 6.7 Hint: Use the tail integration formula (1.2) and estimate (6.8), see Problem 1.5.

A.7 Solutions for Chapter 7

Problem 7.1 Since (X7, X1+ X5) = (X9, X1+ X2), we have E{X | X1+ X2} = E{Xs| X1+ X5},
cf. Problem 1.11.

Problem 7.2 By symmetry of distributions, (X7 + X9, X7 — Xo) = (X7 — X0, X1 + Xo).
Therefore E{X; + X2|X; — X5} = 0, see Problem 7.1 and the result follows from Theorem 7.1.2.

Problem 7.5 (i) If Y is degenerated, then a = 0, see Problem 7.3. For non-degenerated Y the
conclusion follows from Problem 1.12, since by independence E{X +Y|Y'} = X.

(ii) Clearly, E{X|X + Y} = (1 —a)(X +Y). Therefore Y = {LFE{X|X +Y} — X and
1Yll, < 251X 1l

Problem 7.6 Problem 7.5 implies that Y has all moments and a can be expressed explicitly by
the variances of X,Y. Let Z be independent of X normal such that E{Z|Z + X} = a(X + Z)
with the same a (ie. Var(Z) = Var(Y)). Since the normal distribution is uniquely determined
by moments, it is enough to show that all moments of Y are uniquely determined (as then they
have to equal to the corresponding moments of 7).

To this end write EY (X + Y)* = aE(X + Y)""' which gives (1 — a)EY"*!
ZZ:O a (ZJrl) EYEpXxnti-k _ Z;é (Z) EYkH g xn—Fk

Problem 7.7 It is obvious that E{X|Y'} = pY, because Y has two values only, and two points
are always on some straight line; alternatively write the joint characteristic function.

Formula Var(X|Y) = 1 — p? follows from the fact that the conditional distribution of X
given Y = 1 is the same as the conditional distribution of —X given Y = —1; alternatively,
write the joint characteristic function and use Theorem 1.5.3. The other two relations follow
from (X,Y) = (Y, X).

Problem 7.3 Without loss of generality we may assume EX =0. Pt U =Y,V =X +Y. By
independence, E{V|U} = U. On the other hand E{U|V} = E{X+Y -X|X+Y} =X+Y =V.
Therefore by Problem 1.14, X +Y 2 Y and X = 0 by Problem 3.6.

Problem 7.4 Without loss of generality we may assume £X = 0. Then EU = 0. By Jensen’s
inequality EX? + EY? = E(X +Y)?2 < EX?, s0 EY? = 0.

Problem 7.8 This follows the proof of Theorem 7.1.2 and Lemma 7.3.2. Explicit computation

is in [21, Lemma 2.1].

Problem 7.9 This follows the proof of Theorem 7.1.2 and Lemma, 7.3.2. Explicit computation
is in [148, Lemma 2.3].
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