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Abstract We consider the problem of testing the null hypothesis of no change against
the alternative of multiple change points in a series of independent observations. We
propose an ANOVA-type test statistic and obtain its asymptotic null distribution. We
also give approximations of its limiting critical values. We report the results of Monte
Carlo studies conducted to compare the power of the proposed test against a number
of its competitors. As illustrations we analyzed three real data sets.

Keywords Brownian bridge · Limit theorems · Monte Carlo simulations

1 Introduction

Change-point analysis has received considerable attention in the past three decades.
Statistical inference for change-point analysis involves likelihood ratio, least squares,
nonparametric, sequential and Bayesian methods. Change point models are of increas-
ing use in various fields such as Climatology, Economics, Finance, Marketing, Medi-
cine, Psychology and Quality Control. Several examples can be found in Braun et al.
(2000), Andreou and Ghysels (2006) and Villarini et al. (2011).

Let X1, X2, . . . , Xn be independent random variables with distribution functions
Fi (·) = F(· − μi ), i = 1, 2, · · · , n, respectively, where F(·) is unknown. We will
assume throughout this paper that F(·) is continuous and has a finite variance. We
consider here the problem of testing the null hypothesis of no change
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H0 : μ1 = μ2 = · · · = μn (1)

against the multiple k-change points alternative

H1 : ∃0 < λ1 < λ2 < · · · < λk < 1 such that

μ1 = · · · = μ[nλ1] �= μ[nλ1]+1 = · · · = μ[nλ2]
�= · · · �= μ[nλk ]+1 = · · · = μn, (2)

where [y] is the integer part of y.

For testing H0 of (1) against H1 of (2), Lombard (1987) and Aly and BuHamra
(1996) proposed and studied rank tests and Aly and Bouzar (1993) proposed and
studied likelihood ratio tests. Aly et al. (2003) considered the problem of testing H0
against the ordered multiple change points alternative which corresponds to (2) when
all the �= signs are replaced by ≤ .

For additional results and references on change point analysis and its applications
we refer to Zacks (1983), Bhattacharyya (1984), Csörgő and Horváth (1988a),Csörgő
and Horváth (1988b), Sen (1988), Lombard (1989), Hušková and Sen (1989), Chen
and Gupta (1997), Csörgő and Horváth (1997), Chib (1998), Orasch (1999), Chen and
Gupta (2000), Chong (2001), Gooijer (2005), Menne and Williams (2005), Son and
Kim (2005), Lavielle and Teyssière (2006), Kim (2010), Ciuperca (2011) and Döring
(2011).

The rest of this paper is organized as follows. In Sect. 2, we present the proposed
test and obtain its limiting distribution. In Sect. 3, we present approximations of the
limiting critical values of the proposed test. Four competing tests are presented in
Sect. 4. In Sect. 5, we report the results of Monte Carlo simulations to (a) simulate the
limiting critical values of the proposed test and (b) compare the power of the proposed
test against a number of its competitors. As illustrations we analyzed three real data
sets in Sect. 6. Finally, some concluding remarks are presented in Sect. 7.

2 The proposed test

Let s = (0 < s1 < · · · < sk < 1) be such that [nsi ] ≥ [nsi−1]+2, i = 1, 2, . . . , k+1
with s0 = 0 and sk+1 = 1. Define di,n = [nsi ] − [nsi−1], i = 1, 2, · · ·, k + 1. Note
that di,n depends on si and si−1, but for notation simplicity, we do not specify it in
the notation of di,n . Let S0 = 0, Sr = ∑r

j=1 X j , r = 1, 2, . . . , n and X = 1
n Sn . For

i = 1, . . . , k + 1, the mean of X[nsi−1]+1, . . . , X[nsi ] is

Xi = S[nsi ] − S[nsi−1]
di,n

.

We propose the one-way ANOVA-type test statistic

Tn(k) :=
∫

· · ·
∫

s

Vn(s)ds, (3)
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where

Vn(s) = δ−1n−(k+1)

(
k+1∏

i=1

di,n

)

SST r(s), (4)

δ = V ar(X1) (5)

and

SST r(s) =
k+1∑

i=1

di,n
(
Xi − X

)2
.

Theorem 2.1 Assume that X1, X2, . . . , Xn are iidrv with a common continuous dis-
tribution function F(· − μ) with finite variance. Then, as n −→ ∞,

Tn(k)
D−→ ξk = 1

(2k − 1)!
1∫

0

B2(t)dt −
1∫

0

s∫

0

Qk(t, s)B(s)B(t)dtds, (6)

where
D−→ means convergence in distribution, B(·) is a Brownian bridge and

Qk(t, s) =
k−1∑

j=1

2t2 j−1(1 − s)2k−2 j−1

(2 j − 1)!(2k − 2 j − 1)! for t < s.

Proof Let Yr = Sr − r
n Sn, r = 1, . . . , n − 1. It can be shown that

{
k+1∏

i=1

di,n

}

SST r(s) =
k∑

i=1

⎧
⎨

⎩
([nsi+1] − [nsi−1])

k+1∏

j=1, j �=i,i+1

d j,n

⎫
⎬

⎭
Y 2

[nsi ]

− 2
k−1∑

i=1

⎧
⎨

⎩

k+1∏

j=1, j �=i+1

d j,n

⎫
⎬

⎭
Y[nsi ]Y[nsi+1]. (7)

Based on (7) and by Theorem A.1.1 of Csörgő and Horváth (1997) it can be proved
that under H0

Vn(s)
D−→ V (s) =

k∑

i=1

⎧
⎨

⎩
(si+1 − si−1)

k+1∏

j=1, j �=i,i+1

(
s j − s j−1

)
⎫
⎬

⎭
B2(si )

− 2
k−1∑

i=1

⎧
⎨

⎩

k+1∏

j=1, j �=i+1

(
s j − s j−1

)
⎫
⎬

⎭
B(si )B(si+1) (8)
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and

Tn(k)
D−→

∫

· · ·
∫

s

V (s)ds = ξk . (9)

By (8), (9) and routine but tedious computations we obtain (6). �	
Often, the number of change points k is unknown. To test the null hypothesis of

no change against the alternative of an unknown number of change points given some
upper bound k∗ on k, we may use the statistic

Tn,k∗ = max
1≤k≤k∗ Tn(k).

The limiting distribution of this test will be a subject of future work.
Next we consider the asymptotic distribution of Tn(k) under the alternative hypoth-

esis.

Theorem 2.2 Assume that H1 of (2) holds true. Then, as n −→ ∞,

Tn(k)
a.s.−→ ∞.

Proof Let λ0 = 0, λk+1 = 1 and λ = (0 < λ1 < · · · < λk < 1) and assume
that the change points occur at [nλi ] , i = 1, 2, . . . , k. Define τi = E

(
X[nλi ]

)
, i =

1, 2, . . . , k + 1 and τ = ∑k+1
i=1 (λi − λi−1) τi . Note that

SST r(λ) =
k+1∑

i=1

(
[nλi ] − [

nλi−1
])
(

S[nλi ] − S[nλi−1]
[nλi ] − [

nλi−1
] − X

)2

and

X = 1

n

k+1∑

i=1

(
[nλi ] − [

nλi−1
])
(

S[nλi ] − S[nλi−1]
[nλi ] − [

nλi−1
]

)

.

By the SLLN we can show that , as n −→ ∞,

S[nλi ] − S[nλi−1]
[nλi ] − [

nλi−1
]

a.s.= τi + o(1),

X
a.s.= τ + o(1)

and

SST r(λ)

n
a.s.=

k+1∑

i=1

(λi − λi−1) (τi − τ)2 + o(1).
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Hence,

Vn(λ)

n
a.s.= γ + o(1),

where

γ = 1

δ

k+1∏

i=1

(λi − λi−1)

k+1∑

i=1

(λi − λi−1) (τi − τ)2 .

Note that γ > 0 under H1 of (2) and γ = 0 under H0 of (1). Consequently, we can
argue that under H1 of (2)

Tn(k)

n
a.s.−→ γ ∗ > 0.

Hence, under H1,

Tn(k)
a.s.−→ ∞.

�	

3 The critical values of ξk

Let ξk be as defined in (6). Consider first the case of k = 2.

Lemma 3.1 Let Z1, Z2, . . . be iid N (0, 1). Then,

ξ2
D=

∞∑

j=1

{
1

6 j2π2 − 1

j4π4

}

Z2
j . (10)

Proof By (6),

ξ2 = 1

6

1∫

0

B2(t)dt −
1∫

0

1∫

0

{min(t, s) − ts} B(s)B(t)dtds. (11)

Following Shorack and Wellner (1986) and the proof of (2.3) of Lombard (1987), the
relation (10) is obtained from (11) by the substitutions

B(u) = √
2

∞∑

j=1

Z j

jπ
sin( jπu), 0 ≤ u ≤ 1

123



N. M. Al-Kandari, E.-E. A. A. Aly

Table 1 Approximate and
simulated critical values of ξ2

α ξ̂2 of (12) ξ̃2 of (13) Simulated

0.10 0.028 0.030 0.035

0.05 0.036 0.039 0.041

0.01 0.054 0.061 0.062

and

min(u, v) − uv = 2
∞∑

j=1

1

( jπ)2 sin( jπu) sin( jπv).

�	
Next we propose two approximations of the critical values of ξ2. We can show that

E(ξ2) = 1

60
and σ 2

2 = V ar(ξ2) = 1

8100
.

Let ξ2,α be the (1 − α)th percentile of ξ2. Following Lombard (1987) we only use the
first term of (10) and modify it to ensure that it has the same mean as ξ2. This gives
the first approximation

ξ2,α � ξ̂2,α =
{

1

6π2 − 1

π4

}(
χ2

1,α − 1
)

+ 1

60
, (12)

where χ2
1,α is the (1−α)th percentile of the χ2

1 distribution. Alternatively, if we ensure
that the first term of (10) has the same mean and variance as ξ2 we obtain the second
approximation

ξ2,α � ξ̃2,α = 1

90
√

2

(
χ2

1,α − 1
)

+ 1

60
. (13)

In Table 1 we give ξ̂2,α of (12), ξ̃2,α of (13) and the simulated critical values of ξ2.
Note that the results of Table 1 are close to each other.

For k ≥ 3, it is difficult to obtain a representation of ξk similar to that of (10).
However, we can follow (13) to obtain the following approximate critical values of ξk

ξk,α � ξ̃k,α = σk√
2

(
χ2

1,α − 1
)

+ E(ξk), (14)

where

E(ξk) = k

(2k + 1)! and σ 2
k = V ar(ξk). (15)

Note that the relations (12), (13) and (14) are true with probability close to one.
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To find σ 2
k we need to obtain E(ξ2

k ). Note that

E(ξ2
k ) = 2

((2k − 1)!)2

1∫

0

s∫

0

E
{

B2(t)B2(s)
}

dtds

− 2

(2k − 1)!
1∫

0

1∫

0

s∫

0

Qk(t, s)E
{

B2(u)B(s)B(t)
}

dtdsdu

+
1∫

0

s∫

0

1∫

0

v∫

0

Qk(t, s)Qk(u, v)E {B(s)B(t)B(u)B(v)} dtdsdudv

= 2

((2k − 1)!)2 Ik,1 − 2

(2k − 1)! Ik,2 + Ik,3. (16)

We can show (see p. 43 of Rencher (1998)) that

E
{

B2(t)B2(s)
}

= t (1−s) {s − t + 3t (1 − s)} , 0≤ t ≤s ≤1, (17)

E
{

B2(u)B(s)B(t)
}

=
⎧
⎨

⎩

u(1 − s) {t + 2u − 3ut} on C1 = {0<u < t <s <1}
3ut (1 − u)(1 − s) on C2 = {0< t <u <s <1}
t (1 − u) {u + 2s − 3su} on C3 = {0< t <s <u <1}

(18)

and

E {B(t1)B(t2)B(t3)B(t4)} = t1(1−t4) {t3 + 2t2 − 3t2t3} , 0< t1 < t2 < t3 < t4 < 1.

(19)

By (17)

Ik,1 = 1

40
.

As to Ik,2 we have

Ik,2 = Ik,21 + Ik,22 + Ik,23, (20)

where

Ik,2i =
∫∫∫

Ci

Qk(t, s)E
{

B2(u)B(s)B(t)
}

dtdsdu, i = 1, 2, 3. (21)

By (18), (20) and (21) we can compute Ik,2 for any k ≥ 3.
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Table 2 V ar(ξk )
k V ar(ξk )

2
1

8100

3
1

9172800

4
1

34978003200

5
1

334603693670400

As to Ik,3 we have

Ik,3 =
6∑

i=1

Ik,3i , (22)

where

Ik,3i =
∫∫∫∫

Ai

Qk(t, s)Qk(u, v)E {B(s)B(t)B(u)B(v)} dtdsdudv, i =1, 2, . . . , 6,

(23)

A1 = {0 < t < s < u < v < 1} ,

A2 = {0 < t < u < s < v < 1} ,

A3 = {0 < u < t < s < v < 1} ,

A4 = {0 < t < u < v < s < 1} ,

A5 = {0 < u < t < v < s < 1}

and

A6 = {0 < u < v < t < s < 1} .

By (19), (22) and (23) we can compute Ik,3 for any k ≥ 3. In Table 2 we give the
values of σ 2

k = V ar(ξk) for k = 2, 3, 4 and 5.
We have simulated the right hand side of (6) and obtained the corresponding simu-

lated critical values for k = 3, . . . , 6. The details of this simulation are given in Sect. 5.
In Table 3 we give the simulated critical values of ξk together with the corresponding
values obtained using the proposed approximation of (14) for α = 0.01, 0.05 and 0.10.

4 Competing tests

4.1 The rank tests of Lombard (1987)

Let h(·) be a real-valued and differentiable function on (0, 1) and let h′ be its derivative.
Assume that
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Table 3 Approximate and
simulated critical values of ξk

k α ξ̃k Simulated

3 0.10 9.96 × 10−4 1.22 × 10−3

0.05 1.26 × 10−3 1.42 × 10−3

0.10 1.91 × 10−3 1.96 × 10−3

4 0.10 1.75 × 10−5 2.30 × 10−5

0.05 2.18 × 10−5 2.61 × 10−5

0.10 3.23 × 10−5 3.44 × 10−5

5 0.10 1.91 × 10−7 2.68 × 10−7

0.05 2.35 × 10−7 3.00 × 10−7

0.10 3.43 × 10−7 3.76 × 10−7

6 0.10 1.43 × 10−9 2.11 × 10−9

0.05 1.74 × 10−9 2.36 × 10−9

0.10 2.50 × 10−9 2.85 × 10−9

μ =
1∫

0

h(t)dt (24)

and

σ 2 = 2

1∫

0

y∫

0

h′(x)h′(y)x(1 − y)dxdy. (25)

For j = 1, 2, . . . , n, let r j be the rank of X j among the X ′s, R j = ∑ j
i=1 h(

ri
n )

and R∗
j = (

R j − jμ
)
. The m tests of Lombard (1987) are given by

mn(k) = n−k−1σ−2
∫

· · ·
∫

s

k+1∑

j=1

(
R∗

[ns j ] − R∗
[ns j−1]

)2
ds (26)

for k = 2, 3, . . .. Lombard (1987) proved that under H0 of (1)

mn(k)
D−→ m(k) =

∫

· · ·
∫

s

k+1∑

j=1

(
B(s j ) − B(s j−1)

)2
ds. (27)

By (27) and routine but tedious computations we obtain

m(k) = 2

(k − 1)!
1∫

0

B2(t)dt −
1∫

0

s∫

0

Q∗
k(t, s)B(s)B(t)dtds, (28)
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Table 4 V ar(m(k))
k V ar(m(k))

2
13

360

3
1031

226800

4
131

453600

5
61307

5448643200

where

Q∗
k(t, s) = 2(1 + t − s)k−2

(k − 2)! =
k−1∑

j=1

2t j−1(1 − s)k− j−1

( j − 1)!(k − j − 1)! for t < s. (29)

Let γk,α be the (1 − α)th percentile of m(k). We can follow (14) to obtain

γk,α � γ̃k,α = σ ∗
k√
2

(
χ2

1,α − 1
)

+ E(m(k)), (30)

where

E(m(k)) = 1

(k − 1)!(k + 2)
(31)

and

σ ∗2

k = V ar(m(k)). (32)

The computation of σ ∗2

k is parallel to the that of σ 2
k of (15). In Table 4 we give the

values of σ ∗2

k = V ar(m(k)) for k = 2, 3, 4 and 5.
In Table 5 we give the simulated critical values of m(k) together with the corre-

sponding values obtained using the approximation of (30). Note that the asymptotic
critical values for m(2) and m(3) obtained by Lombard (1987) are very close to the
corresponding values of Table 5.

4.2 The rank tests of Aly and BuHamra (1996)

Following Aly and BuHamra (1996) we consider the test statistic

Ln(k) = n−k−1σ−2

(
k+1∏

i=1

di,n

)∫

· · ·
∫

s

⎧
⎪⎨

⎪⎩

k+1∑

j=1

(
R[ns j ] − R[ns j−1]

)2

d j,n
− nμ2

⎫
⎪⎬

⎪⎭
ds,

(33)
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Table 5 Approximate and
simulated critical values of m(k)

k α γ̃k Simulated

2 0.10 0.479 0.527

0.05 0.632 0.652

0.10 1.010 1.293

3 0.10 0.181 0.205

0.05 0.236 0.254

0.10 0.369 0.377

4 0.10 4.83 × 10−2 5.64 × 10−2

0.05 6.19 × 10−2 6.92 × 10−2

0.10 9.55 × 10−2 9.80 × 10−2

5 0.10 1.00 × 10−2 1.21 × 10−2

0.05 1.27 × 10−2 1.45 × 10−2

0.10 1.93 × 10−2 2.04 × 10−2

6 0.10 1.70 × 10−3 2.15 × 10−3

0.05 2.14 × 10−3 2.50 × 10−3

0.10 3.22 × 10−3 3.48 × 10−3

where μ and σ 2 are as in (24) and (25), respectively. Aly and BuHamra (1996) studied
the case when k = 2 in (33). Let ξk be as in (6). It can be argued that under H0 of (1),

Ln(k)
D−→ ξk .

4.3 The cusum-type tests of Orasch (1999)

Define the test process

�n(s) = n− 3
2 δ− 1

2

{
k∑

i=1

([nsi+1] − [nsi−1]) S[nsi ] − [nsk]Sn

}

, (34)

where δ is as in (5). Orasch (1999) proposed the test statistic

tn(k) = sup
s

∣
∣�n(s)

∣
∣ (35)

for testing H0 of (1) against H1 of (2). We can show that

�n(s) = n− 3
2 δ− 1

2

⎧
⎨

⎩

k−1∑

i=1

k∑

j=i+1

di,nd j,n
(
Xi − X j

)
⎫
⎬

⎭
. (36)

This implies that the process �n(s) of (34) and also (36) is more suitable for developing
tests which are consistent against the ordered multiple k-change points alternative
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H12 : ∃0 < λ1 < λ2 < · · · < λk < 1 such that

μ1 = · · · = μ[nλ1] > μ[nλ1]+1

= · · · = μ[nλ2] > · · · > μ[nλk ]+1 = · · · = μn . (37)

In this regard we suggest the test statistics

t∗n,1(k) = sup
s

�n(s) (38)

and

t∗n,2(k) =
∫

· · ·
∫

s

�n(s)ds (39)

for testing H0 of (1) against H12 of (37).
Orasch (1999) argued that

�n(s)
D−→ �(s) =

k∑

i=1

(si+1 − si−1) W (si ) − sk W (1), (40)

where W (·) is a Brownian motion. It is easy to show that

�(s)
D= �(s) =

k∑

j=1

(
s j+1 − s j−1

)
B(s j ). (41)

4.4 The tests of Aly et al. (2003)

For testing H0 of (1) against H12 of (37), Aly et al. (2003) proposed the two tests

An(k) := max
s

√
12Un(s) (42)

and

A∗
n(k) :=

∫

· · ·
∫

s

√
12Un(s)ds, (43)

where

Un(s) = n− 3
2

k∑

i=1

k∑

j=i

⎧
⎨

⎩

[nsi ]∑

r=[nsi−1]+1

[ns j+1]∑

l=[ns j ]+1

I (Xr < Xl) − 1

2
di,nd j+1,n

⎫
⎬

⎭
.
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Let �(s) be as in (41). Aly et al. (2003) proved that

�n(s)
D−→ �(s). (44)

By (40), (41), (44) and the results of Aly et al. (2003) we have

t∗n,2(k)
D−→ τ(k) =

1∫

0

ϕk(t)B(t)dt

and

A∗
n(k)

D−→ τ(k),

where

ϕk(x) = 1

k!
{

1 − 2xk
(

2

[
k + 1

2

]

−k + (−1)k
)}

+

[
k+1

2

]
+1

∑

j=1

(−1) j+1
{

x j + (−1)k xk− j
}

j !(k − j)! .

Hence, for k = 2, 3, . . .

τ (k)
d= N (0, η2

k ),

where

η2
k = 2

1∫

0

(1 − y)ϕk(y)

y∫

0

xϕk(x)dxdy. (45)

For example, η2
2 = 4.0873 × 10−2, η2

3 = 5.9359 × 10−3 and η2
4 = 4.2594 × 10−4.

5 Monte Carlo studies

5.1 Asymptotic critical values

We conducted Monte Carlo studies to simulate the critical values of ξk and m(k). We
generated 2,000 realizations of the Brownian bridge B(·) on a grid of 2,000 points on
[0,1] by generating multivariate Normal variates Zi= (Z1,i , Z2,i , · · · , Z2000,i ) with
covariance function, Cov(Zl,i , Z j,i ) = tl(1 − t j ), 0 < l < j ≤ 2000, where
tl = l /(2001), l = 1, . . . , 2000. For i = 1, . . . , 2000 we computed

ξk (i) = 1

(2k − 1)! × 1

2000

2001∑

j=1

Z2
j,i − 1

20002

∑∑

0<l< j≤2000

Qk

(
l

2001
,

j

2001

)

Zl,i Z j,i
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and

m(k, i) = 2

(k − 1)! × 1

2000

2001∑

j=1

Z2
j,i − 1

20002

∑∑

0<l< j≤2000

Q∗
k

(
l

2001
,

j

2001

)

Zl,i Z j,i .

The simulated critical values of ξk of Tables 1 and 3 (resp. of m(k) of Table 5) are the
(1 − α)th percentiles of the ξk (i)′ s (resp. the m(k, i)′s).

5.2 Monte Carlo power results

To compare the power of the proposed test of (3) with some multiple change point tests,
we carried out a comprehensive simulation study. In this study we obtained Monte
Carlo powers of the proposed test and the following four multiple change point tests
when k = 3.

1. The rank test of Aly and BuHamra (1996) of (33).
2. The rank test of Lombard (1987) of (26).
3. The test of (39) of Orasch (1999).
4. The rank test A∗(3) of Aly et al. (2003) of (43).

Note that the tests of Aly et al. (2003) and Orasch (1999) are consistent against H12
of (37).

In the Monte Carlo power study we used samples of size n = 100 from the
Normal and Double-Exponential distributions. We employed the five change points
combinations (k1, k2, k3) : (5, 25, 50), (5, 25, 90), (10, 50, 75), (10, 50, 90) and
(50, 75, 90) reflecting early, in the middle and late changes. The location para-
meter of X1 is taken equal to zero and the sizes of the location shifts �i at
ki + 1, i = 1, 2, 3, are the solutions of the equations P(Xki +1 > Xki ) = pi ,

i = 1, 2, 3. For (p1, p2, p3) we used the following combinations: (0.1, 0.6, 0.7),

(0.1, 0.8, 0.3), (0.3, 0.3, 0.7), (0.6, 0.2, 0.8), (0.6, 0.6, 0.6), (0.7, 0.2, 0.3), (0.7, 0.7,
0.7), (0.8, 0.8, 0.3) and (0.8, 0.8, 0.8). Note that pi > 0.5 means an upward change
and pi < 0.5 means a downward change.

We simulated the 0.05 critical values of the five tests and used them in the power
study. We generated 2,000 samples under the alternative hypothesis and computed the
fraction of times the null hypothesis was rejected for each test. As in Aly and BuHamra
(1996), we also noticed that the power results of the Normal distribution are slightly
lower than those of the double-exponential distribution. These results are summarized
in Tables 6, 7, 8, 9 and 10 of Appendix 1 and are presented in Fig. 1 for the Normal
distribution. The power results clearly suggest that, in terms of power, our proposed
test performs well compared with the other tests in all considered cases. It can also
be seen that when the changes are ordered, i.e., when pi > 0.5, i = 1, 2, 3, the test
of Aly et al. (2003) of (43) and the test of Orasch (1999) of (39) are more powerful
than the other tests. Note that all the five tests have higher powers when the 3 change
points are close to the middle part of the sample (see Fig. 1c).
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Fig. 1 Powers of test statistics Ln (3), mn (3), A∗(3), Tn (3), t∗n,2(3) for n = 100
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Fig. 2 Cusum plot

6 Real examples

6.1 Seat belt data

In this section we illustrate the proposed test on a road casualties data in the United
Kingdom. Harvey and Durbin (1986) analyzed a data set giving the monthly totals of
car drivers in UK killed or seriously injured from January, 1969 till December, 1984.
Zeileis et al. (2003) analyzed the same data and concluded that the data involved
two change points: the first in October, 1970 and the second in January, 1983. They
also mentioned that the first change point was due to the petrol rationing and the
introduction of lower speed limits during the first oil crisis. The second change point
was associated with the law of compulsory wearing of seat belts which was introduced
in January 31, 1983. Figure 2a displays the cumulative sum (Yr ) plot of the data. We
examined the same data using our proposed test statistic. We find Tn(2) = 0.296,
which, from Table (1), is significant at the 5 % level.
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6.2 Nitrogen dioxide concentrations data

Nitrogen dioxide (NO2) is an important traffic related air pollutant. It contributes to
the formation of photochemical smog, which can have significant impacts on human
health. Most of the NO2 in cities comes from motor vehicle exhaust. Nitric oxide
(NO) is emitted directly from exhausts and quickly goes on to react with ozone (O3)
to form NO2. We consider the concentrations of NO2 in Trafalgar Road in Greenwich
(Greenwich 5). The NO2 measurements are daily means from January first, 2000 till
December 31st, 2005. The full data set is available on the London Air Quality Network
(LAQN) website. Figure 2b displays the cumulative sum (Yr ) plot of the data. Carslaw
and Carslaw (2007) analyzed this data and found two change points on April 10, 2001
and November 9, 2002. Also, they discussed the factors which may have contributed
to the two change points. Using the proposed test we find Tn(2) = 0.281 which is
significant at the 5 % level.

6.3 Lombard data

Lombard (1987) presented and analyzed a data set which give the radii of circu-
lar indentations cut by a milling machine. A test proposed by Lombard (1987) was
implemented on the data set and concluded that the data contains two change point.
Also, Fig. 2c displays the cumulative sum (Yr ) plot of the data. Using the proposed
test we find Tn(2) = 0.0393 which is significant at the 5 % level.

7 Concluding remarks

We proposed an ANOVA-type test statistic for testing no change against a multiple
change in the mean. We obtained the limiting distribution of the proposed test and
proved that it is consistent against the alternative hypothesis. We obtained approxima-
tions for the limiting critical values. Monte Carlo simulation studies showed that, in
terms of power, our proposed test performs well compared with a number of competing
tests.

For a series of observations, when we do not know the true value of the change
number k, given some upper bound k∗ on k, we estimate k as the argument maximum
of Tn(k), k ≤ k∗.

Acknowledgments The authors wish to express their sincere thanks for the two referees for their valuable
remarks and suggestions which improved the presentation.

Appendix 1

The following five tables summarize the Monte Carlo powers for the normal (double-
exponential) distributions and n = 100.
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Table 6 Monte Carlo powers for k1 = 5, k2 = 25, k3 = 50

P1, P2, P3 Ln(3) mn(3) A∗(3) Tn(3) t∗n,2(3)

0.6, 0.6, 0.6 79 (100) 78 (100) 89 (100) 81 (100) 90 (100)

0.7, 0.7, 0.7 99 (100) 99 (100) 100 (100) 100 (100) 100 (100)

0.8, 0.8, 0.8 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

0.8, 0.8, 0.3 95 (100) 85 (100) 79 (100) 99 (100) 42 (89)

0.6, 0.2, 0.8 88 (100) 83 (100) 69 (99) 93 (100) 48 (88)

0.1, 0.6, 0.7 89 (100) 91 (100) 91 (100) 93 (100) 90 (100)

0.7, 0.2, 0.3 100 (100) 100 (100) 0 (0) 100 (100) 0 (0)

0.3, 0.3, 0.7 58 (99) 45 (98) 16 (47) 68 (99) 9 (12)

0.1, 0.8, 0.3 42 (96) 28 (83) 4 (13) 58 (100) 1 (0)

Table 7 Monte Carlo powers for k1 = 5, k2 = 25, k3 = 90

P1, P2, P3 Ln(3) mn(3) A∗(3) Tn(3) t∗n,2(3)

0.6, 0.6, 0.6 41 (94) 35 (89) 61 (98) 44 (89) 61 (94)

0.7, 0.7, 0.7 93 (100) 88 (100) 97 (100) 96 (100) 96 (100)

0.8, 0.8, 0.8 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

0.8, 0.8, 0.3 100 (100) 100 (100) 100 (98) 100 (100) 97 (56)

0.6, 0.2, 0.8 97 (100) 95 (100) 1 (1) 98 (100) 0 (0)

0.1, 0.6, 0.7 31 (83) 22 (68) 25 (73) 45 (98) 19 (27)

0.7, 0.2, 0.3 99 (100) 98 (100) 0 (0) 99 (100) 0 (0)

0.3, 0.3, 0.7 85 (100) 80 (100) 0 (0) 90 (100) 0 (0)

0.1, 0.8, 0.3 69 (100) 64 (99) 45 (89) 82 (100) 34 (70)

Table 8 Monte Carlo powers for k1 = 10, k2 = 50, k3 = 75

P1, P2, P3 Ln(3) mn(3) A∗(3) Tn(3) t∗n,2(3)

0.6, 0.6, 0.6 81 (100) 81 (100) 92 (100) 85 (100) 94 (100)

0.7, 0.7, 0.7 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

0.8, 0.8, 0.8 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

0.8, 0.8, 0.3 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

0.6, 0.2, 0.8 87 (100) 77 (100) 12 (29) 93 (100) 1 (0)

0.1, 0.6, 0.7 97 (100) 94 (100) 63 (99) 99 (100) 32 (40)

0.7, 0.2, 0.3 100 (100) 100 (100) 0 (0) 100 (100) 0 (0)

0.3, 0.3, 0.7 82 (100) 77 (100) 1 (0) 88 (100) 0 (0)

0.1, 0.8, 0.3 92 (100) 71 (100) 21 (80) 98 (100) 6 (4)
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Table 9 Monte Carlo powers for k1 = 10, k2 = 50, k3 = 90

P1, P2, P3 Ln(3) mn(3) A∗(3) Tn(3) t∗n,2(3)

0.6, 0.6, 0.6 62 (99) 61 (99) 81 (100) 67 (98) 83 (99)

0.7, 0.7, 0.7 99 (100) 99 (100) 100 (100) 100 (100) 100 (100)

0.8, 0.8, 0.8 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

0.8, 0.8, 0.3 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

0.6, 0.2, 0.8 98 (100) 97 (100) 0 (0) 99 (100) 0 (0)

0.1, 0.6, 0.7 87 (100) 71 (100) 14 (58) 95 (100) 5 (0)

0.7, 0.2, 0.3 100 (100) 100 (100) 0 (0) 100 (100) 0 (0)

0.3, 0.3, 0.7 94 (100) 94 (100) 0 (0) 96 (100) 0 (0)

0.1, 0.8, 0.3 97 (100) 94 (100) 65 (99) 100 (100) 37 (68)

Table 10 Monte Carlo powers for k1 = 50, k2 = 75, k3 = 90

P1, P2, P3 Ln(3) mn(3) A∗(3) Tn(3) t∗n,2(3)

0.6, 0.6, 0.6 85 (100) 84 (100) 92 (100) 88 (100) 94 (100)

0.7, 0.7, 0.7 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

0.8, 0.8, 0.8 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

0.8, 0.8, 0.3 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

0.6, 0.2, 0.6 20 (69) 15 (41) 4 (5) 33 (92) 2 (0)

0.1, 0.6, 0.7 100 (100) 100 (100) 0 (0) 100 (100) 0 (0)

0.7, 0.2, 0.3 98 (100) 93 (100) 1 (0) 99 (100) 0 (0)

0.3, 0.3, 0.7 99 (100) 99 (100) 0 (0) 99 (100) 0 (0)

0.1, 0.8, 0.3 100 (100) 100 (100) 0 (0) 100 (100) 0 (0)
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Csörgő M, Horváth L (1988a) Nonparametric methods for changepoint problems. In: Krishnaiah PR, Rao

CR (eds) Handbook of statistics, quality control and reliability, vol 7. North-Holland, Amsterdam
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