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Preface 

Danger lies not in what we don't know-. but in what we think we know 
that just ain't so. 

Mark Twain (1835 - 1910) 

As Prefaces usually start. the author(s) explain why they wrote the book 
in the first place ~ and we will follow this tradition. Both of us taught the 
graduate course on nonparametric statistics at the School of Industrial and 
Systems Engineering at Georgia Tech (ISyE 6404) several times. The audi- 
ence was always versatile: PhD students in Engineering Statistics. Electrical 
Engineering, Management, Logistics, Physics. to  list a few. While comprising 
a non homogeneous group. all of the students had solid mathematical, pro- 
gramming and statistical training needed to  benefit from the course. Given 
such a nonstandard class. the text selection was all but easy. 

There are plenty of excellent monographs/texts dealing with nonparamet- 
ric statistics, such as the encyclopedic book by Hollander and Wolfe. Non- 
parametrac Statzstzcal Methods. or the excellent evergreen book by Conover. 
Practacal Nonparametrzc Statastacs, for example. We used as a text the 3rd 
edition of Conover's book, which is mainly concerned with what most of us 
think of as traditional nonparametric statistics: proportions. ranks. categor- 
ical data. goodness of fit. and so on, with the understanding that the text 
would be supplemented by the instructor's handouts. Both of us ended up 
supplying an increasing number of handouts every year, for units such as den- 
sity and function estimation. wavelets. Bayesian approaches to nonparametric 
problems. the EM algorithm. splines, machine learning, and other arguably 

XI  
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modern nonparametric topics. About a year ago. we decided to  merge the 
handouts and fill the gaps. 

There are several novelties this book provides. We decided to  intertwine 
informal comments that might be amusing. but tried to  have a good balance. 
One could easily get carried away and produce a preface similar to  that of 
celebrated Barlow and Proschan's, Statastacal Theory of Relaabalzty and Lzfe 
Testang: Probabzlaty Models, who acknowledge greedy spouses and obnoxious 
children as an impetus to  their book writing. In this spirit. we featured pho- 
tos and sometimes biographic details of statisticians who made fundamental 
contributions to the field of nonparametric statistics, such as Karl Pearson. 
Nathan hfantel, Brad Efron, and Baron Von Munchausen. 

Computing. Another specificity is the choice of computing support. The 
book is integrated with MATLAB@ and for many procedures covered in this 
book. hfATLAB's m-files or their core parts are featured. The choice of 
software was natural: engineers. scientists, and increasingly statisticians are 
communicating in the "AlATLAB language." This language is, for example, 
taught at Georgia Tech in a core computing course that every freshman engi- 
neering student takes. and almost everybody around us "speaks MATLAB." 
The book's website: 

http://www2.isye.gatech.edu/NPbook 

contains most of the m-files and programming supplements easy to  trace and 
download. For Bayesian calculation we used N-inBUGS, a free software from 
Cambridge's Biostatistics Research Unit. Both MATLAB and WinBUGS are 
briefly covered in two appendices for readers less familiar with them. 

Outline of Chapters. For a typical graduate student to  cover the full 
breadth of this textbook, two semesters would be required. For a one-semester 
course. the instructor should necessarily cover Chapters 1-3, 5-9 to start. 
Depending on the scope of the class, the last part of the course can include 
different chapter selections. 

Chapters 2-4 contain important background material the student needs to 
understand in order to  effectively learn and apply the methods taught in a 
nonparametric analysis course. Because the ranks of observations have special 
importance in a nonparametric analysis, Chapter 5 presents basic results for 
order statistics and includes statistical methods to create tolerance intervals. 

Traditional topics in estimation and testing are presented in Chapters 7- 
10 and should receive emphasis even to students who are most curious about 
advanced topics such as density estimation (Chapter 11). curve-fitting (Chap- 
ter 13) arid wavelets (Chapter 14). These topics include a core of rank tests 
that  are analogous to  common parametric procedures (e.g.. t-tests, analysis 
of variance). 

Basic methods of categorical data analysis are contained in Chapter 9. Al- 
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though most students in the biological sciences are exposed to  a wide variety 
of statistical methods for categorical data. engineering students and other stu- 
dents in the physical sciences typically receive less schooling in this quintessen- 
tial branch of statistics. Topics include methods based on tabled data. chi- 
square tests and the introduction of general linear models. Also included in 
the first part of the book is the topic of "goodness of fit" (Chapter 6),  which 
refers to testing data not in terms of some unknown parameters, but the un- 
known distribution that generated it. In a way. goodness of fit represents an 
interface between distribution-free methods and traditional parametric meth- 
ods of inference, and both analytical and graphical procedures are presented. 
Chapter 10 presents the nonparametric alternative to maximum likelihood 
estimation and likelihood ratio based confidence intervals. 

The term "regression" is familiar from your previous course that introduced 
you to statistical methods. Konparametric regression provides an alternative 
method of analysis that requires fewer assumptions of the response variable. In 
Chapter 12 we use the regression platform to introduce other important topics 
that build on linear regression. including isotonic (constrained) regression, 
robust regression and generalized linear models. In Chapter 13. we introduce 
more general curve fitting methods. Regression models based on wavelets 
(Chapter 14) are presented in a separate chapter. 

In the latter part of the book. emphasis is placed on nonparametric proce- 
dures that are becoming more relevant to  engineering researchers and prac- 
titioners. Beyond the conspicuous rank tests, this text includes many of 
the newest nonparametric tools available to experimenters for data analysis. 
Chapter 17 introduces fundamental topics of statistical learning as a basis 
for data mining and pattern recognition. and includes discriminant analysis. 
nearest-neighbor classifiers, neural networks and binary classification trees. 
Computational tools needed for nonparametric analysis include bootstrap re- 
sampling (Chapter 15) and the ELI Algorithm (Chapter 16). Bootstrap meth- 
ods. in particular. have become indispensable for uncertainty analysis with 
large data sets and elaborate stochastic models. 

The textbook also unabashedly includes a review of Bayesian statistics and 
an overview of nonparametric Bayesian estimation. If you are familiar with 
Bayesian methods. you might wonder what role they play in nonparametric 
statistics. Admittedly. the connection is not obvious, but in fact nonpara- 
metric Bayesian methods (Chapter 18) represent an important set of tools for 
complicated problems in statistical modeling and learning, where many of the 
models are nonparametric in nature. 

The book is intended both as a reference text and a text for a graduate 
course. \Ye hope the reader will find this book useful. All comments, sugges- 
tions. updates, and critiques will be appreciated. 
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Introduction 

For every complex question. there is a simple answer .... and it is wrong. 

H. L. Xlencken 

Jacob Wolfowitz (Figure ].la) first coined the term nonparametrzc,  saying 
-We shall refer to  this situation [where a dastrzbutzon as completely determzned 
by the  knowledge of f t s  f inzte parameter  set] as the parametric case. and denote 
the opposite case. where the functional forms of the distributions are unknown. 
as the non-parametric case” (Wolfowitz, 1942). From that point on. nonpara- 
metric statistics was defined by what it is not: traditional statistics based 
on known distributions with unknown parameters. Randles. Hettmansperger. 
and Casella (2004) extended this notion by stating “nonparametric statistics 
can and should be broadly defined to include all methodology that does not 
use a model based on a single parametric family.“ 

Traditional statistical methods are based on parametric assumptions: that 
is, that the data can be assumed to be generated by some well-known family of 
distributions, such as normal. exponential, Poisson. and so on. Each of these 
distributions has one or more parameters (e.g.. the normal distribution has 
p and 02) .  at least one of which is presumed unknown and must be inferred. 
The emphasis on the normal distribution in linear model theory is often jus- 
tified by the central limit theorem. which guarantees approxzmate normalzty  
of sample means provided the sample sizes are large enough. Other distribu- 
tions also play an important role in science and engineering. Physical failure 
mechanisms often characterize the lifetime distribution of industrial compo- 
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f ig .  1.1 
pioneers in nonparametric statistics. 

(a) Jacob Wolfowitz (1910-1981) and (b) Wassily Hoeffding (1914-1991), 

nents (e.g.. Weibull or lognormal), so parametric methods are important in 
reliability engineering. 

However, with complex experiments and messy sampling plans. the gener- 
ated data might not be attributed to any well-known distribution. Analysts 
limited to basic statistical methods can be trapped into making parametric 
assumptions about the data that are not apparent in the experiment or the 
data. In the case where the experimenter is not sure about the underlying dis- 
tribution of the data. statistical techniques are needed which can be applied 
regardless of the true distribution of the data. These techniques are called 
nonparametrzc methods.  or dastrzbutzon-free methods.  

The terms nonparametric and distribution-free are not synonymous ... 
Popular usage. however, has equated the terms ... Roughly speaking. a 
nonparametric test is one which makes no hypothesis about the value of 
a parameter in a statistical density function, whereas a distribution-free 
test is one which makes no assumptions about the precise form of the 
sampled population. 

J 1’. Bradley (1968) 

It can be confusing to  understand what is implied by the word “nonpara- 
metric“. What is termed m o d e r n  nonparumetrzcs  includes statistical models 
that are quite refined, except the distribution for error is left unspecified. 
Wasserman‘s recent book All Thangs Nonparametrac (Ivasserman, 2005) em- 
phasizes only modern topics in nonparametric statistics. such as curve fitting. 
density estimation. and wavelets. Conover’s Practzcul Nonparumetrzc Statas- 
tzcs (Conover. 1999). on the other hand. is a classic nonparametrics textbook. 
but mostly limited to  traditional binomial and rank tests, contingency tables. 
and tests for goodness of fit. Topics that are not really under the distribution- 
free umbrella. such as robust analysis. Bayesian analysis. and statistical learn- 
ing also have important connections to  nonparametric statistics. and are all 
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featured in this book. Perhaps this text could have been titled A Bit Less 
of Parametric Statistics with Applications in Science and Engineering. but 
it surely would have sold fewer copies. On the other hand, if sales were 
the primary objective, we would have titled this Nonparametric Statistics for 
Dummies or maybe Nonparametric Statistics with Pictures of Naked People. 

1.1 EFFICIENCY OF NONPARAMETRIC METHODS 

It would be a mistake to  think that nonparametric procedures are simpler 
than their parametric counterparts. On the contrary, a primary criticism of 
using parametric methods in statistical analysis is that they oversimplify the 
population or process we are observing. Indeed. parametric families are not 
more useful because they are perfectly appropriate, rather because they are 
perfectly convenient. 

Nonparametric methods are inherently less powerful than parametric meth- 
ods. This must be true because the parametric methods are assuming more 
information to  construct inferences about the data. In these cases the esti- 
mators are inefficient. where the efficiencies of two estimators are assessed by 
comparing their variances for the same sample size. This inefficiency of one 
method relative to another is measured in power in hypothesis testing, for 
example. 

However. even when the parametric assumptions hold perfectly true. we 
will see that nonparametric methods are only slightly less powerful than the 
more presumptuous statistical methods. Furthermore, if the parametric as- 
sumptions about the data fail to  hold, only the nonparametric method is 
valid. A t-test between the meant3 of two normal populations can be danger- 
ously misleading if the underlying data are not actually normally distributed. 
Some examples of the relative efficiency of nonparametric tests are listed in 
Table 1.1, where asymptotic relative efficiency (A.R.E.) is used to  compare 
parametric procedures (2nd column) with their nonparametric counterparts 
(3rd column). Asymptotic relative efficiency describes the relative efficiency 
of two estimators of a parameter as the sample size approaches infinity. The 
A.R.E. is listed for the normal distribution. where parametric assumptions 
are justified, and the double-exponential distribution. For example. if the un- 
derlying data are normally distributed. the t-test requires 955 observations in 
order to  have the same power of the Wilcoxon signed-rank test based on 1000 
observations. 

Parametric assumptions allow us to  extrapolate away from the data. For 
example. it is hardly uncommon for an experimenter to make inferences about 
a population’s extreme upper percentile (say 9gth percentile) with a sample 
so small that none of the observations would be expected to  exceed that 
percentile. If the assumptions are not justified. this is grossly unscientific. 

Nonparametric methods are seldom used to  extrapolate outside the range 



Table 1.1 Asymptotic relative efficiency (A.R.E.) of some nonparametric tests 

2-Sample Test t-test 
3-Sample Test one-way layout I Variances Test ~ F-test 

Mann-Whitney 0.955 1.50 
Kruskal-Wallis 0.864 1.50 

Conover ~ 0.760 ~ 1.08 1 
of observed data. In a typical nonparametric analysis, little or nothing can be 
said about the probability of obtaining future data beyond the largest sampled 
observation or less than the smallest one. For this reason, the actual measure- 
ments of a sample item means less compared to  its rank within the sample. 
In fact, nonparametric methods are typically based on ranks of the data. and 
properties of the population are deduced using order statistics (Chapter 5 ) .  
The measurement scales for typical data are 

Nomznal Scale: Numbers used only to  categorize outcomes (e.g., we 
might define a random variable to  equal one in the event a coin flips 
heads, and zero if it flips tails). 

Ordznal Scale: Numbers can be used to  order outcomes (e.g.* the event 
X is greater than the event Y if X = medtum and Y = small). 

Interval Scale: Order between numbers as well as distances between 
numbers are used to  compare outcomes. 

Only interval scale measurements can be used by parametric methods. 
Nonparametric methods based on ranks can use ordinal scale measurements. 
and simpler nonparametric techniques can be used with nominal scale mea- 
surements. 

The binomial distribution is characterized by counting the number of inde- 
pendent observations that are classified into a particular category. Binomial 
data can be formed from measurements based on a nominal scale of measure- 
ments, thus binomial models are most encountered models in nonparametric 
analysis. For this reason. Chapter 3 includes a special emphasis on statistical 
estimation and testing associated with binomial samples. 
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1.2 OVERCONFIDENCE BIAS 

Be slow to believe what you worst want to be true 

Samual Pepys 

Confirmatzon Baas or Overconfidence Bzas describes our tendency to  search 
for or interpret information in a way that confirms our preconceptions. Busi- 
ness and finance has shown interest in this psychological phenomenon (Tver- 
sky and Kahneman, 1974) because it has proven to have a significant effect 
on personal and corporate financial decisions where the decision maker will 
actively seek out and give extra weight to  evidence that confirms a hypothesis 
they already favor. At the same time, the decision maker tends to  ignore 
evidence that contradicts or disconfirms their hypothesis. 

Overconfidence bias has a natural tendency to effect an experimenter's data  
analysis for the same reasons. While the dictates of the experiment and the 
data sampling should reduce the possibility of this problem. one of the clear 
pathways open to such bias is the infusion of parametric assumptions into the 
data analysis. After all, if the assumptions seem plausible, the researcher has 
much to gain from the extra certainty that comes from the assumptions in 
terms of narrower confidence intervals and more powerful statistical tests. 

Nonparametric procedures serve as a buffer against this human tendency 
of looking for the evidence that best supports the researcher's underlying 
hypothesis. Given the subjective interests behind many corporate research 
findings, nonparametric methods can help alleviate doubt to their validity in 
cases when these procedures give statistical significance to  the corporations's 
claims. 

1.3 COMPUTING WITH MATLAB 

Because a typical nonparametric analysis can be computationally intensive. 
computer support is essential to understand both theory and applications. 
Numerous software products can be used to  complete exercises and run non- 
parametric analysis in this textbook, including SAS, R. S-Plus. MIXITAB. 
StatXact and JMP (to name a few). A student familiar with one of these 
platforms can incorporate it with the lessons provided here, and without too 
much extra work. 

It must be stressed, however, that demonstrations in this book rely en- 
tirely on a single software tool called MATLAB@ (by Mathworks Inc.) that 
is used widely in engineering and the physical sciences. MATLAB (short for 
MATrzx LABorutory) is a flexible programming tool that  is widely popular in 
engineering practice and research The program environment features user- 
friendly front-end and includes menus for easy implementation of program 
commands. MATLAB is available on Unix systems, Microsoft Windows and 
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Apple Macintosh. If you are unfamiliar with MATLAB. in the first appendix 
we present a brief tutorial along with a short description of some MATLAB 
procedures that are used to solve analytical problems and demonstrate non- 
parametric methods in this book. For a more comprehensive guide, we rec- 
ommend the handy little book MATLAB Przmer (Sigmon and Davis, 2002). 

We hope that many students of statistics will find this book useful, but it 
was written primarily with the scientist and engineer in mind. With nothing 
against statisticians (some of our best friends know statisticians) our approach 
emphasizes the application of the method over its mathematical theory. We 
have intentionally made the text less heavy with theory and instead empha- 
sized applications and examples. If you come into this course thinking the 
history of nonparametric statistics is dry and unexciting. you are probably 
right. at least compared to  the history of ancient Rome. the British monarchy 
or maybe even Wayne Yewton'. Nonetheless, we made efforts to convince you 
otherwise by noting the interesting historical context of the research and the 
personalities behind its development. For example, we will learn more about 
Karl Pearson (1857-1936) and R. A. Fisher (1890-1962), legendary scientists 
and competitive arch-rivals, who both contributed greatly to  the foundation 
of nonparametric statistics through their separate research directions. 

f ig. 1.2 
Voltaire (1694-1778). 

"Doubt is not a pleasant condition. but certainty is absurd" - Francois Marie 

111 short. this book features techniques of data analysis that  rely less on 
the assumptions of the data's good behavior - the very assumptions that 
can get researchers in trouble. Science's gravitation toward distribution-free 
techniques is due to  both a deeper awareness of experimental uncertainty 
and the availability of ever-increasing computational abilities to deal with the 
implied ambiguities in the experimental outcome. The quote from Voltaire 

'Strangely popular Las Vegas entertainer. 
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(Figure 1.2) exemplifies the attitude toward uncertainty: as science progresses. 
we are able to see some truths more clearly. but at the same time. we uncover 
more uncertainties and more things become less “black and white”. 

1.4 EXERCISES 

1.1. Describe a potential data analysis in engineering where parametric meth- 
ods are appropriate. How would you defend this assumption? 

1.2. Describe another potential data analysis in engineering where paramet- 
ric methods may not be appropriate. What might prevent you from 
using parametric assumptions in this case? 

1.3. Describe three ways in which overconfidence bias can affect the statisti- 
cal analysis of experimental data.  How can this problem be overcome? 
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Probability Basics 

Probability theory is nothing but common sense reduced to  calculation. 

Pierre Simon Laplace (1749-1827) 

In these next two chapters, we review some fundamental concepts of elemen- 
tary probability and statistics. If yau think you can use these chapters to  catch 
up on all the statistics you forgot since you passed "Introductory Statistics'' 
in your college sophomore year, you are acutely mistaken. What is offered 
here is an abbreviated reference list of definitions and formulas that have ap- 
plications to  nonparametric statistical theory. Some parametric distributions. 
useful for models in both parametric and nonparametric procedures. are listed 
but the discussion is abridged. 

2.1 HELPFUL FUNCTIONS 

0 Permutations. The number of arrangements of n distinct objects is 
n! = n(n - 1).  . . (2)(1). In LIATLAB: factorial(n) . 

0 Combinations. The number of distinct ways of choosing k items from a 
set of n is 

n! ( y )  = k ! ( n  - k ) ! '  

In ILIATLAB: nchoosek(n,k). 

9 
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r(t) = Joxzt-l e -"dz , t > 0 is called the gamma function. If t is a 
positive integer. r(t) = ( t  - l)!. In MATLAB: gamma(t). 

0 Incomplete Gamma is defined as y( t .2)  = S;&le-"dz . I n MAT- 
LAB: gammainc(t,z). The upper tail Incomplete Gamma is defined 
as r(t, 2 )  = Jzx zt-I e --5 dz, in MATLAB: gammainc (t , z ,  'upper ' 1. If 
t is an integer, 

t - 1  

i =O 

0 Beta Function. B(a,  b )  = Ji ta- l ( l  - t ) b - l d t  = r ( a ) r ( b ) / r ( a  + b ) .  In 
MATLAB: beta(a, b). 

0 Incomplete Beta. B(z .  a. b )  = J: t"-'(l - t ) * - l d t .  0 5 z 5 1. In I1lAT- 
LAB: betainc (x, a, b) represents normalized Incomplete Beta defined 
as I z ( a .  b )  = B(z .  a ,  b ) / B ( a ,  b ) .  

0 Floor Function. 1.1 denotes the greatest integer 5 a. In MATLAB: 
floor (a). 

0 Geometric Series 

n 1 1 - p + l  x 

, so that for Ipl < 1, cfl = __ 
1 - P  j = O  1 - P  

c3 = 
3=0 

0 Stirling's Formula. To approximate the value of a large factorial, 

n! E J 2 , e - n n n + 1 / z ,  

0 Common Limit for e. For a constant a. 

lim (1 + ax)"" = ea .  
x i 0  

This can also be expressed as (1 + ~ y / n ) ~  -+ e' as n - cc 
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0 Kewton's Formula. For a positive integer n. 

(u  + b)" = 2 ( Y ) a j b " - j .  
j = O  

0 Taylor Series Expansion. For a function f ( x ) .  its Taylor series expansion 
about x = a is defined as 

( x  - u)2 
- a )  + j"'(a) ~ + .  

2 !  

where f c m ) ( a )  denotes rnth derivative of f evaluated at a and, for some 
7i between u and x, 

0 Convex Function. A function h is convex if for any 0 5 cv 5 1. 

h(ax  + (1 - Q ) Y )  I ~ L ( z )  + (I - ~ ) h ( y ) .  

for all values of x and y. If h is twice differentiable. then h is convex if 
h"(x) 2 0. Also, if -h is convex. then h is said to  be concave. 

0 Bessel Function. J n ( x )  is defined as the solution to  the equation 

In MATLAB: bessel(n,x) . 

2.2 EVENTS, PROBABILITIES AND RANDOM VARIABLES 

0 The condataonal probabalaty of an event A occurring given that event B 
occurs is P(AIB) = P ( A B ) / P ( B ) ,  where A B  represents the intersection 
of events A and B. and P(B) > 0. 

0 Events A and B are stochastically zndependent if arid only if P(A1B) = 
P(B) or equivalently, P(AB)  = P ( A ) P ( B ) .  

0 Law of Total Probabalaty. Let Al, . . . , Ak be a partition of the sample 
space R ,  i.e., A1 u A2 u.. . u A I ,  = R and A,A, = 8 for z # 3 .  For event 
B. P(B) = c, P(BIA,)P(A,).  

0 Bayes Formula. For an event B where P(B) # 0, and partition 
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(A1 . . . . .  A k )  of 0, 

A function that assigns real numbers to  points in the sample space of 

For a random variable X .  F x ( z )  = P ( X  5 z) represents its (cumu- 
lative) dzstrzbutzon functzon, which is non-decreasing with F ( - x )  = 0 
and F ( x )  = 1. In this book, it will often be denoted simply as CDF. 
The survzvor functzon is defined as S(z) = 1 - F ( z ) .  

If the CDF’s derivative exists. f (z) = a F ( z ) / d z  represents the proba- 
bzlzty denszty functaon, or PDF.  

A dzscrete random varzable is one which can take on a countable set of 
v a l u e s X E { z l . x 2 . s 3  . . . . }  s o t h a t  F x ( z ) = C , , , P ( X = t ) .  Overthe 
support X .  the probability P(X = 2 , )  is called the probability mass 
function. or PMF. 

events is called a random varzable.’ 

A contznuous random varzable is one which takes on any real value in an 
interval, so P ( X  E A) = s, f ( z ) d z ,  where f (z) is the density function 
of x. 
For two random variables X and Y .  their goznt dzstrabutzon functzon 
is F x , y ( z . y )  = P ( X  5 s,Y 5 y ) .  If the variables are continuous, 
one can define joint density function f x , y ( s . y )  as &Fx y(z .y) .  The 
conditional density of X. given Y = y is f ( z 1 y )  = f x , y ( x , y ) / f y ( y ) .  
where f y ( y )  is the density of Y. 

Two random variables X and Y ,  with distributions FX and F y ,  are znde- 
pendent if the joint distribution F x , ~  of ( X .  Y )  is such that FX y ( s %  y) = 
F x  ( z ) F y ( y ) .  For any sequence of random variables XI , .  . . , X, that are 
independent with the same (identical) marginal distribution, we will de- 
note this using z.a.d. 

2.3 NUMERICAL CHARACTERISTICS OF R A N D O M  VARIABLES 

For a random variable X with distribution function Fx.  the expected 
value of some function @ ( X )  is defined as IE(d(X)) = s d ( s ) d F x ( s ) .  If 

‘While writing their early textbooks in Statistics, J .  Doob and William Feller debated 
on whether to use this term. Doob said, “I had an argument with Feller. He asserted 
that everyone said r a n d o m  variable and I asserted that everyone said chance variable.  We 
obviously had to  use the same name in our books, so we decided the issue by a stochastic 
procedure. That is. we tossed for it and he won.” 
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FX is continuous with density f~(z)> then E ( @ ( X ) )  = Q(x) fx(z)dx. 
If X is discrete, then E(@(X)) = c, @ ( x ) P ( X  = A). 

The k th  moment about 
the mean, or k th  central moment of X is defined as E(X - P ) ~ .  where 
The kth m o m e n t  of X is denoted as EX‘. 

p = E X .  

The varaance of a random variable X is the second central moment, 
VarX = E(X - p)’ = EX2 - (EX)’. Often, the variance is denoted by 
i$, or simply by 0’ when it is clear which random variable is involved. 
The square root of variance, gx = d w 3  is called the standard devi- 
ation of X. 

With 0 5 p 5 1. the p th  quantale of F .  denoted xP is the value x such 
that P ( X  5 x) 2 p and P ( X  2 J )  2 1 - p .  If the CDF F is invertible, 
then xp = F - l ( p ) .  The 0.5t” quantile is called the medaan of F .  

For two random variables X and Y .  the covaraance of X and Y is de- 
fined as Cov(X, Y )  = E[(X - px)(Y - p y ) ] .  where px and py are the 
respective expectations of X and Y .  

For two random variables X and Y with covariance @ov(X,Y),  the 
correlataon coeficaent is defined as 

@ov(X. Y )  
@orr(X,Y) = 

ox OY 

where O X  and CTY are the respective standard deviations of X and Y .  
Note that -1 5 p L 1 is a consequence of the Cauchy-Schwartz inequal- 
ity (Section 2.8). 

The characterastac functaon of a random variable X is defined as 

px(t) == Ee‘tX = 1 e “ t ” d ~ ( z )  

The m o m e n t  generatang functaon of a random variable X is defined as 

whenever the integral exists. By differentiating T times and letting t --f 0 
we have that 

tl‘ 
dt’ 
--mx(O) = E X T .  

The conditional expectation of a random variable X is given Y = y is 
defined as 

E(XIY = ,,/) = xf(z(y)d.r:. J’ 
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where f(z1y) is a conditional density of X given Y. If the value of Y is 
not specified, the conditional expectation E(XIY) is a random variable 
and its expectation is EX. that is, E(E(X1Y)) = E X .  

2.4 DISCRETE DISTRIBUTIONS 

Ironically, parametric distributions have an important role to play in the de- 
velopment of nonparametric methods. Even if we are analyzing data without 
making assumptions about the distributions that generate the data. these 
parametric families appear nonetheless. In counting trials, for example. we 
can generate well-known discrete distributions (e.g. , binomial, geometric) as- 
suming only that the counts are independent and probabilities remain the 
same from trial to trial. 

2.4.1 Binomial Distribution 

A simple Bernoulli random variable Y is dichotomous with P(Y = 1) = p and 
P(Y = 0) = 1 - p  for some 0 5 p 5 1. It is denoted as Y N Ber(p) .  Suppose an 
experiment consists of n independent trials (Yl, . . . . Y,) in which two outcomes 
are possible (e.g.. success or failure). with P(success) = P(Y = 1) = p for 
each trial. If X = z is defined as the number of successes (out of n) .  then 
X = Yl + Yz + . I . + Y, and there are ( z )  arrangements of 5 successes and 
n - x failures, each having the same probability p x  (1 - p)"-".  X is a banomaal 
random variable with probability mass function 

This is denoted by X N B z n ( n , p ) .  From the moment generating function 
rnx(t) = (pet+(l-p)),. we obtain p = E X  = n p  and o2 = VarX = np(1-p). 

The cumulative distribution for a binomial random variable is not simpli- 
fied beyond the sum: i.e., F ( z )  = CtI,px(i) .  However. interval probabilities 
can be computed in MATLAB using binocdf ( x , n , p > .  which computes the 
cumulative distribution function at  value z. The probability mass function is 
also computed in MATLAB using binopdf (x ,  n ,  p )  . A "quick-and-dirty" plot 
of a binomial PDF can be achieved through the AlATLAB function b inoplo t .  
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2.4.2 Poisson Distribution 

The probability mass function for the Poisson distribution is 

This is denoted by X - %’(A). From rn*y(t)  = exp{X(et-l)}, we have EX = X 
and VarX = A; the mean and the variance coincide. 

The sum of a finite independent set of Poisson variables is also Poisson. 
Specifically, if X, N %’(A,), then Y = X I + .  . .+XI, is distributed as %’(XI+. . .+ 
Xk).  Furthermore, the Poisson distribution is a limiting form for a binomial 
model. i.e.. 

RlATLAB commands for Poisson CDF, PDF. quantile, and a random number 
are: poisscdf, poisspdf, poissinv, and poissrnd. 

2.4.3 Negative Binomial Distribution 

Suppose we are dealing with i.i.d. trials again. this time counting the number 
of successes observed until a fixed number of failures (k) occur. If we observe 
k consecutive failures at the start of the experiment, for example, the count 
is X = 0 and Px(0)  = pk. where p is the probability of failure. If X = 2 ,  

we have observed 2 successes and k failures in x + k trials. There are (x:k) 
different ways of arranging those x + k trials. but we can only be concerned 
with the arrangements in which the last trial ended in a failure. So there 
are really only (“+:-I) arrangements. each equal in probability. With this in 
mind, the probability mass function is 

This is denoted by X N N B ( k . p ) .  From its moment generating function 

the expectation of a negative binomial random variable is EX = k(1 - p)/p 
and variance VarX = k ( 1  - p)/p’.  hIATLAB commands for negative bino- 
mial CDF, PDF, quantile, and a random number are: nbincdf, nbinpdf, 
nbininv, and nbinrnd. 
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2.4.4 Geometric Distribution 

The special case of negative binomial for k = 1 is called the geometric distri- 
bution. Random variable X has geometric G ( p )  distribution if its probability 
mass function is 

px ( 2 )  = p (  1 - p)” , 2 = 0.1.2,  . . . 

If X has geometric G ( p )  distribution. its expected value is EX = (1 - p ) / p  and 
variance VarX = (1 - p ) / p 2 .  The geometric random variable can be considered 
as the discrete analog to the (continuous) exponential random variable because 
it possesses a “memoryless” property. That is, if we condition on X 2 m 
for some non-negative integer m, then for n 2 m. P ( X  2 nlX 2 m) = 
P ( X  2 n - m). ATATLAB commands for geometric CDF, PDF, quantile. and 
a random number are: geocdf, geopdf , geoinv, and geornd. 

2.4.5 Hypergeometric Distribution 

Suppose a box contains m balls. k of which are white and m - k of which are 
gold. Suppose we randomly select and remove n balls from the box wzthout 
replacement. so that when we finish. there are only rn - n balls left. If X is 
the number of white balls chosen (without replacement) from n. then 

This probability mass function can be deduced with counting rules. There 
are (T) different ways of selecting the n balls from a box of m. From these 
(each equally likely), there are (2) ways of selecting z white balls from the k 
white balls in the box, and similarly (:I:) ways of choosing the gold balls. 

It can be shown that the mean and variance for the hypergeometric dis- 
tribution are. respectively, 

n k  
E(X) = p = - and Var(X) = o2 - 

m 

NATLAB commands for Hypergeometric CDF. PDF. quantile. and a random 
number are: hygecdf , hygepdf , hygeinv , and hygernd. 

2.4.6 Multinomial Distribution 

The binomial distribution is based on dichotomizing event outcomes. If the 
outcomes can be classified into k 2 2 categories. then out of n trials. we 
have X ,  outcomes falling in the category i. i = 1.. . . ~ k .  The probability mass 
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function for the vector ( X I , .  . . ! X,) is 

where P I + .  . . + p k  = 1. so there are k - 1 free probability parameters to char- 
acterize the multivariate distribution. This is denoted by X = ( X I . .  . . . X,) 

The mean and variance of X ,  is the same as a binomial because this is the 
marginal distribution of X , .  i.e., E(X,) = np,. Var(X,) = n p , ( l  - p, ) .  The 
covariance between X ,  and X ,  is @ov(X,, X , )  = -n.p,p, because IE(X,X,) = 
E(IE(X,X, IX,)) = E(X,IE(X,IX,)) and conditional on X ,  = x3, X ,  is binomial 
Uzn(n-x,,p,/(l-p,)). Thus. IE(X,X,) = E(X,(n-X,))p,/(l-p,). and the 
covariance follows from this 

N Mn(n.pI . .  . . .prC). 

2.5 CONTINUOUS DISTRIBUTIONS 

Discrete distributions are often associated with nonparametric procedures. but 
continuous distributions will play a role in how we learn about nonparametric 
methods. The normal distribution, of course. can be produced in a sample 
mean when the sample size is large. as long as the underlying distribution 
of the data has finite mean and variance. Many other distributions will be 
referenced throughout the text book. 

2.5.1 Exponential Distribution 

The probability density function for an exponential random variable is 

f x ( z )  = X F X " .  Iz' > 0, X > 0. 

An exponentially distributed random variable X is denoted by X - &(A).  Its 
moment generating function is m(t) =: X / ( X  - t )  for t < A. and the mean 
and variance are 1 /X  and 1/X2. respectively. This distribution has several 
interesting features - for example, its fazlure rate, defined as 

is constant and equal to X 
The exponential distribution has ail important connection to  the Poisson 

distribution. Suppose we measure i.i.d. exponential outcomes ( X I -  X2. . . . ). 
and define S, = X I  +.  . + X,. For any positive value t .  it can be shown that 
P ( S ,  < t < &+I) = p y ( n ) .  where py(n) is the probability mass function 
for a Poisson random variable Y with parameter At .  Similar to  a geometric 
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random variable. an exponential random variable has the memoryless property  
because for t > 2.  P ( X  2 t lX 2 x) = P ( X  2 t - T ) .  

The median value, representing a typical observation. is roughly 70% of 
the mean. showing how extreme values can affect the population mean. This 
is easily shown because of the ease at which the inverse CDF is computed: 

MATLAB commands for exponential CDF. PDF. quantile. and a random 
number are: expcdf , exppdf, expinv, and exprnd. MATLAB uses the 
alternative parametrization with 1 /X  in place of A. For example, the CDF of 
random variable X - E ( 3 )  distribution evaluated at x = 2 is calculated in 
LL4TLAB as expcdf ( 2 ,  1/3).  

2.5.2 Gamma Distribution 

The gamma distribution is an extension of the exponential distribution. Ran- 
dom variable X has gamma Garnma(r. A) distribution if its probability density 
function is given by 

The moment generating function is m(t)  = (X/ (X  - t))' , so in the case r = 1. 
gamma is precisely the exponential distribution. From m(t) we have E X  = 
r/X and VarX = r/X2.  

If X I , .  . . . X ,  are generated from an exponential distribution with (rate) 
parameter A. it follows from m(t) that Y = X I  +. . .+X,  is distributed gamma 
with parameters X and n: that is. Y - Gamrna(n.X). Often. the gamma 
distribution is parameterized with 1 /X  in place of A. and this alternative 
parametrization is used in MATLAB definitions. The CDF in NATLAB is 
gamcdf (x, r, l/lambda). and the PDF is gampdf (x ,  r ,  l/lambda). The 
function gaminv(p, r ,  l/lambda) computes the pth  quantile of the gamma. 

2.5.3 Normal Distribution 

The probability density function for a normal random variable with mean 
EX = p and variance VarX = o2 is 
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The distribution function is computed using integral approximation because 
no closed form exists for the anti-derivative: this is generally not a problem for 
practitioners because most software packages will compute interval probabil- 
ities numerically. For example. in MATLAB. normcdf (x, mu, sigma) and 
normpdf (x, mu, sigma) find the CDF and PDF at x, and norminv(p, mu, 
sigma) computes the inverse CDF with quantile probability p .  A random 
variable X with the normal distribution will be denoted X - N ( p .  02). 

The central limit theorem (formulated in a later section of this chapter) el- 
evates the status of the normal distribution above other distributions. Despite 
its difficult formulation, the normal is one of the most important distributions 
in all science. and it has a critical role to play in nonparametric statistics. Any 
linear combination of normal random variables (independent or with simple 
covariance structures) are also normally distributed. In such sums. then. we 
need only keep track of the mean and variance. because these two parame- 
ters completely characterize the distribution. For example, if X I . .  . . . X, are 
i.i.d. N ( p .  02) .  then the sample mean X = (XI + . . . + X,)/n - N ( p .  0 2 / n )  
distribution. 

2.5.4 Chi-square Distribution 

The probability density function for an chi-square random variable with the 
parameter k ,  called the degrees of frecdom. is 

The chi-square distribution ( x 2 )  is a special case of the gamma distribution 
with parameters r = k / 2  and X = 1 / 2 .  Its mean and variance are E X  = p = k 
and VarX = o2 = 2 k .  

If 2 N N(O.1). then 2’ - x:. that  is, a chi-square random variable with 
one degree-of-freedom. Furthermore, if li - x: and V - xz are independent. 
then U + V - x$+,. 

From these results, it can be shown that if XI. . . . . X, - N ( p ,  02)  and X 
is the sample mean, then the sample varzance S2 = C,(X, - X)’ / (n  - 1) is 
proportional to  a chi-square random variable with n - 1 degrees of freedom: 

(n - 1)S2 2 - Yn-1. ~- 

u2 

In MATLAB. the CDF and PDF for a x i  is chi2cdf (x, k) and chi2pdf (x, k)  . 
The pth quantile of the xf distribution is chi2inv(p,k). 
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2.5.5 (Student) t - Distribution 

Random variable X has Student's t distribution with k degrees of freedom, 
x N tk; if its probability density function is 

The t-distribution' is similar in shape to the standard normal distribution 
except for the fatter tails. If X N tk, EX = 0. k > 1 and VarX = k / ( k  - 
2). k > 2. For ik = 1. the t distribution coincides with the Cauchy distribution. 

The t-distribution has an important role to  play in statistical inference. 
With a set of i.i.d. X I , .  . . . X ,  N N(p,  02). we can standardize the sample 
mean using the simple transformation of 2 = (X - p)/ox = f i ( X  - p) /o .  
However, if the variance is unknown. by using the same transformation ex- 
cept substituting the sample standard deviation S for o, we arrive at  a t- 
distribution with n - 1 degrees of freedom: 

More technically, if Z N N(O.1) and Y - xi are independent. then T = 

Z / m  N tk. In MATLAB. the CDF at x for a t-distribution with k de- 
grees of freedom is calculated as t c d f  (x,k). and the PDF is computed as 
tpdf  (x, k)  . The pth  percentile is computed with t i n v  (p , k) . 

2.5.6 Beta Distribution 

The density function for a beta random variable is 

and B is the beta function. Because X is defined only in ( O , l ) ,  the beta 
distribution is useful in describing uncertainty or randomness in proportions or 
probabilities. A beta-distributed random variable is denoted by X Be(a .  b ) .  
The Unzform dzstrzbutzon on (0. l ) ,  denoted as U ( 0 .  1). serves as a special case 

*William Sealy Gosset derived the t-distribution in 1908 under the pen name "Student" 
(Gosset. 1908). He was a researcher for Guinness Brewery, which forbid any of their workers 
to publish "company secrets". 
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with ( a ,  b )  = (1.1). The beta distribut#ion has moments 

so that E ( X )  = ./(a + b)  and VarX == a b / [ ( a  + b)’(a + b + l)]. 

In MATLAB. the CDF for a beta random variable (at 2 E (0.1)) is com- 
puted with betacdf (x, a, b) and the PDF is computed with betapdf (x, 
a ,  b). The p th  percentile is computed betainv(p,a,b). If the mean p and 
variance 0’ for a beta random variable are known, then the basic parameters 
( a >  b)  can be determined as 

a = / *  and b = (1 - p)  ( iL(l0; /*I - I) . (2.2) 

2.5.7 Double Exponential Distribution 

Random variable X has double exponential D&(/*. A) distribution if its density 
is given by 

The expectation of X is E X  = /* and the variance is VarX = 2/A2.  The 
moment generating function for the double exponential distribution is 

Double exponential is also called Laplace dzstrzbutzon. If XI and X2 are 
independent &(A).  then XI - Xz is distributed as D E ( 0 . A ) .  Also. if X - 
DE(0. A) then 1x1 N E(A). 

2.5.8 Cauchy Distribution 

The Cauchy distribution is symmetric and bell-shaped like the normal distri- 
bution, but with much heavier tails. For this reason, it is a popular distribu- 
tion to use in nonparametric procedures to represent non-normality. Because 
the distribution is 50 spread out. it has no mean and variance (none of the 
Cauchy moments exist). Physicists know this as the Lorentz dzstrzbutzon. If 
X N Ca(a .  b ) ,  then X has density 

The moment generating function for Cauchy distribution does not exist but 
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its characteristic function is Eezx = exp(iat - bltl}.  The Ca(O.1) coincides 
with t-distribution with one degree of freedom. 

The Cauchy is also related to the normal distribution. If 2 1  and 2 2  are two 
independent N(O.1) random variables, then C = 2 1 / 2 2  N Ca(O.1). Finally, 
if C, N Ca(a,, b,) for i = 1.. . . . n, then S, = C1 + . . .  + C, is distributed 
Cauchy with parameters as = C,  a% and bs = C, b,. 

2.5.9 Inverse Gamma Distribution 

Random variable X is said to have an inverse gamma ZG(r. A) distribution 
with parameters r > 0 and X > 0 if its density is given by 

The mean and variance of X are E X  = Ak/ ( r  - 1) and VarX = A 2 / ( ( r  - 
1)'(r - 2 ) ) .  respectively. If X N Barnrna(r.A) then its reciprocal X - l  is 
Zg(r>  A) distributed. 

2.5.10 Dirichlet Distribution 

The Dirichlet distribution is a multivariate version of the beta distribution in 
the same way the Multinomial distribution is a multivariate extension of the 
Binomial. A random variable X = (XI. . . . , Xk) with a Dirichlet distribution 
( X  N Dir (a l \ .  . . , ak)) has probability density function 

where A = C a,. and J: = ( 2 1 . .  . . . zk) 2 0 is defined on the simplex 5 1  +. . . + 
xk = 1. Then 

at a3 

A 2 ( A +  1)'  
and @ov(X,.X,) = - 

a a,(A - a,) 
A2(A  + 1) ' 

E(X,) = 2, Var(X,) = A 

The Dirichlet random variable can be generated from gamma random 
variables Y1.. . . , Y k  N Garnrna(a.b) as X ,  = Y , / S y .  i = 1,. . . , k  where 
S y  = c,Yt. Obviously. the marginal distribution of a component X, is 
Be(n,, A - a,). 
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2.5.11 F Distribution 

Random variable X has F distribution with m and n degrees of freedom. 
denoted as Fm,,. if its density is given by 

The CDF of the F distribution has no closed form. but it can be expressed in 
terms of an incomplete beta function. 

The mean is given by E X  = n / ( n  - 2 ) .  n > 2, and the variance by VarX = 

[2n2(m + n - 2)] / [m(n  - 2)2(n - 4)]. n > 4. If X - ,& and Y N x: are 
independent. then ( X / m ) / ( Y / n )  - Fm,,. If X - Be(u,b) .  then b X / [ a ( l  - 
X ) ]  - Fza,2b. Also. if X N Fm,, then m X / ( n  + m x )  - Be(m/2 .  n /2) .  

The F distribution is one of the most important distributions for statistical 
inference: in introductory statistical courses test of equality of variances and 
ANOVA are based on the F distribution. For example, if Sf and Si are 
sample variances of two independent normal samples with variances C$ and 
cri and sizes m and n respectively, the ratio ( S ~ / o ~ ) / ( S ~ / n ~ )  is distributed 

In MATLAB, the CDF at x for a F distribution with m. n degrees of free- 
dom is calculated as f cdf (x , m , n> . and the PDF is computed as f pdf (x ,m , n) . 
The pth percentile is computed with f inv  (p , m , n) . 

as Fm-1,n-1. 

2.5.12 Pareto Distribution 

The Pareto distribution is named after the Italian economist Vilfredo Pareto. 
Some examples in which the Pareto distribution provides a good-fitting model 
include wealth distribution. sizes of human settlements. visits to  encyclopedia 
pages, and file size distribution of internet traffic. Random variable X has a 
Pareto Pu(z0,a)  distribution with parameters 0 < xo < 3c and cv > 0 if its 
density is given by 

The mean and variance of X are EX = cvzo/(cy - 1) and VarX = cyxZ0/((cv - 
1)2(a - 2)).  If X I . .  . . , X, N Pu(x0. a ) .  then Y = 220 C l n ( X , )  x ~ ~ ~ .  

2.6 MIXTURE DISTRIBUTIONS 

Mixture distributions occur when the population consists of heterogeneous 
subgroups. each of which is represented by a different probability distribu- 
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tion. If the sub-distributions cannot be identified with the observation, the 
observer is left with an unsorted mixture. For example. a finite mixture of k 
distributions has probability density function 

k 

2 = 1  

where f 2  is a density and the weights (pz  2 0. z = 1.. . . , k) are such that 
c,pz = 1. Here. p ,  can be interpreted as the probability that an observation 
will be generated from the subpopulation with PDF fz. 

In addition to applications where different types of random variables are 
mixed together in the population, mixture distributions can also be used to 
characterize extra variability (dispersion) in a population. A more general 
continuous mixture is defined via a mzxang dzstrabutzon g ( Q ) ,  and the corre- 
sponding mixture distribution 

f X ( 2 )  = 1 f ( t ;  6MQ)dQ. 

Along with the mixing distribution, f ( t :  0) is called the kernel dzstrzbutaon. 

Example 2.1 Suppose an observed count is distributed Bin(n ,p) ,  and over- 
dispersion is modeled by treating p as a mixing parameter. In this case, 
the binomial distribution is the kernel of the mixture. If we allow g p ( p )  to 
follow a beta distribution with parameters (a. b ) .  then the resulting mixture 
distribution 

is the beta-binomial distribution with parameters (n. a.  b) and B is the beta 
function. 

Example 2.2 In 1 hlB dynamic random access memory (DRAM) chips. 
the distribution of defect frequency is approximately exponential with p = 
0.5/cm2. The 16 hlB chip defect frequency. on the other hand. is exponential 
with p = 0.1/cm2. If a company produces 20 times as many 1 MB chips 
as they produce 16 LIB chips, the overall defect frequency is a mixture of 
exponentials: 

1 20 
21 21 

f x ( x )  = -lOe-lOx + -2e-2x. 

In LIATLAB. we can produce a graph (see Figure 2.1) of this mixture 
using the following code: 

>> x = 0:O.Ol:l; 
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2.5, I -Mixture 
1 - - -Exponential E(2) 

Estimation problems involving mixtures are notoriously difficult, especially 
if the mixing parameter is unknown. In Section 16.2. the El1 Algorithm is 
used to aid in statistical estimation. 

2.7 EXPONENTIAL FAMILY OF DISTRIBUTIONS 

We say that y2 is from the exponential family. if its distribution is of form 

for some given functions b and c. Parameter Q is called canonical parameter ,  
and o dispersion parameter. 

Example 2.3 We can write the normal density as 
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thus it belongs to the exponential family. with 8 = p ,  4 = cr2. b (Q)  = Q2/2 
and c(y. 4 )  = -l /2[y2/4 + log(2n4)l. 

2.8 STOCHASTIC INEQUALITIES 

The following four simple inequalities are often used in probability proofs. 

1. Markov Inequality. If X 2 0 and p = E(X) is finite, then 

P ( X  > t )  5 p / t .  

2 .  Chebyshev's Inequality. If p = E(X) and u2 = Var(X).  then 

3. Cauchy-Schwartz Inequality. For random variables X and Y with finite 
variances, 

IE:/XYl 5 J E ( X 2 ) E ( Y 2 ) .  

4. Jensen's Inequalzty. Let h ( x )  be a convex function. Then 

h ( E ( X ) )  5 E ( h ( X ) ) .  

For example. h(x) = x2 is a convex function and Jensen's inequality 
implies [IE(X)]' 5 E(X*). 

hfost comparisons between two populations rely on direct inequalities of 
specific parameters such as the mean or median. We are more limited if no 
parameters are specified. If Fx(x) and G y ( y )  represent two distributions (for 
random variables X and Y .  respectively), there are several direct inequalities 
used to  describe how one distribution is larger or smaller than another. They 
are stochastic ordering, failure rate ordering, uniform stochastic ordering and 
likelihood ratio ordering. 

Stochastic Ordering. X is smaller than Y in stochastic order ( X  <ST Y )  iff 
F x ( t )  2 G y ( t )  V t .  Some texts use stochastic ordering to  describe any general 
ordering of distributions, and this case is referred to  as ordanary stochastzc 
orderzng. 
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f ig. 2.2 For distribution functions F (Be(2.4)) and G (Be(3.6)):  (a) Plot of (1 - 
F(z))/(l - G(z)) (b) Plot of f (z) /dz) .  

Fazlure Rate Orderang. Suppose FX arid G y  are differentiable and have prob- 
ability density functions f x  and g y .  respectively. Let r x ( t )  = f x ( t ) / ( l  - 
F x ( t ) ) .  which is called the fazlure rate or hazard rate of X .  X is smaller than 
Y in failure rate order ( X  < H R  Y )  iff r x ( t )  2 ~ y ( t )  V t .  

Uniform Stochastic Ordering. X is smaller than Y in uniform stochastic order 
( X  <us Y )  iff the ratio ( 1  - F x ( t ) ) / ( l  - G y ( t ) )  is decreasing in t .  

Lalcelzhood Ratzo Orderang. Suppose FX and G y  are differentiable and have 
probability density functions f x  and g y ,  respectively. X is smaller than Y in 
likelihood ratio order ( X  < L R  Y )  iff the ratio f x ( t ) / g y ( t )  is decreasing in t .  

It can be shown that uniform stochastic ordering is equivalent to failure 
rate ordering. Furthermore. there is a natural ordering to the three different 
inequalities: 

X <LR Y + X < I ~ R  Y =+ X <ST Y. 

That is, stochastic ordering is the weakest of the three. Figure 2.2 shows how 
these orders relate two different beta distributions. The MATLAB code below 
plots the ratios ( 1  - F ( z ) ) / ( l  - G(z))  and f ( z ) / g ( z )  for two beta random 
variables that have the same mean but different variances. Figure 2.2(a) shows 
that they do not have uniform stochastic ordering because ( 1  - F ( z ) ) / ( l  - 
G ( z ) )  is not monotone. This also assures us that the distributions do not 
have likelihood ratio ordering. which is illustrated in Figure 2.2(b). 

>> x 1 = 0 : 0 . 0 2 : 0 . 7 ;  
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>> rl=(l-betacdf(xl,2,4))./(l-betacdf(xl,3,6)); 
>> plot(x1,rl) 
>> x2=0.08:0.02:.99; 
>> r2=(betapdf(x2,2,4))./(betapdf(x2,3,6)); 
>> plot (x2 ,r2) 

2.9 CONVERGENCE OF R A N D O M  VARIABLES 

Unlike number sequences for which the convergence has a unique definition, 
sequences of random variables can converge in many different ways. In statis- 
tics. convergence refers to  an estimator's tendency to look like what it is 
estimating as the sample size increases. 

For general limits, we will say that g ( n )  is small ('0" of n and write gn = 

o(n )  if and only if g, /n  -+ 0 when n -+ x. Then if gn = o(1). gn -+ 0. The 
''bag 0" notatzon concerns equiconvergence. Define gn = O ( n )  if there exist 
constants 0 < C1 < Cz and integer no so that C1 < lgn/ni  < Cz V n  > no. 
By examining how an estimator behaves as the sample size grows to  infinity 
(its asymptotzc lzmzt), we gain a valuable insight as to  whether estimation for 
small or medium sized samples make sense. Four basic measure of convergence 
are 

Convergence zn Dastrabutzon. A sequence of random variables XI ~ . . . . X, 
converges in distribution to  a random variable X if P(X, 5 z) + P(X 5 z). 
This is also called weak convergence and is written X, + X or X, +d X. 

Convergence zn Probabzlzty. A sequence of random variables X I .  . . . . X, con- 
verges in probability to a random variable X if, for every E > 0, we have 

P(iX, - XI > E )  + 0 as n + x. This is symbolized as X, - X. P 

Almost Sure Convergence. A sequence of random variables XI. . . . . X, con- 
verges almost surely (a.s.) to a random variable X (symbolized X, % X) if 
P(1imnem /X, - XI = 0 )  = 1. 

Conuergence an Mean Square. A sequence of random variables X I  ~ . . , ~ X, 
converges in mean square to a random variable X if EIX, - XI2 + 0 This is 

also called Convergence in ILp and is written X, 4 X. L 

Convergence in distribution, probability and almost sure can be ordered: i.e.. 

P x,-x =+ x,+x =+ x,==+x. 
The Lz-convergence implies convergence in probability and in distribution but 
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it is not comparable with the almost sure convergence. 

tees the same kind of convergence of h(X,,)  to h ( X ) .  For example. if X, 
and h ( z )  is continuous. then h(X,) 

h(X,)  5 h ( X )  and h(X,)  + h ( X ) .  

If h ( z )  is a continuous mapping, then the convergence of X ,  to X guaran- 
X 

h ( X ) .  which further implies that 

Laws of Large Numbers (LLN). For i.i.d. random variables X I .  X2 ,  . . .with 
finite expectation EXl = p. the sample mean converges to p in the almost-sure 
sense. that is, Sn/n - p, for S, = XI - . . . + X,. This is termed the strong 
law of large numbers (SLLN). Finite variance makes the proof easier, but it 
is not a necessary condition for the SLLN to hold. If. under more general 
conditions. Sn/n = X converges to  p in probability. we say that the weak 
law of large numbers (IYLLK) holds. Laws of large numbers are important in 
statistics for investigating the consistency of estimators. 

a s  

Slutsky's Theorem. Let {X,}  and {Y,} be two sequences of random variables 

on some probability space. If X, -Y, --+ 0. and Y, + X .  then X ,  ==+ X .  P 

Corollary to  Slutsky's Theorem. In some texts. this is sometimes called Slut- 

sky's Theorem. If X ,  --r. X .  Y, 5 a. and 2, + b,  then X,Y, + 2, ==+ 
a X  + b. 

P 

Delta Method. If EX, = p and VarX, = c2 .  and if h is a differentiable function 
in the neighborhood of /-1 with h ' ( p )  # 0. then f i ( h ( X , )  - h ( p ) )  ==+ W .  
where W - N(0. [h'(p)I2a2). 

Central Lzmzt Theorem (CLT). Let XI,  X2. . . , be i.i.d. random variables with 
EX1 = p and VarXl = a2 < m. Let S, = XI + . . . + X,. Then 

=* 2, S, - np 

42 
where 2 - N(0. 1). For example, if X I , .  . . , X, is a sample from population 
with the mean /L and finite variance u2.  by the CLT. the sample mean X = 

( X I  + . . 1 X , ) / n  is approximately normally distributed, x "z' N(p. 02/n) ,  
or equivalently. ( + ( X  - p ) ) / o  - h r ( 0 .  1). In many cases, usable approxi- 
mations are achieved for n as low as 20 or 30. 

w p r  

Example 2.4 Iz'e illustrate the CLT by LIATLAB simulations. A single 
sample of size n = 300 from Poissoii P(1/2) distribution is generated as 
sample = poissrnd(l/2, [I, 3001 ) ; According to the CLT. the sum ,9300 = 
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Fig. 2.3 (a) Histogram of single sample generated from Poisson P(1/2)  distribution. 
(b) Histogram of S, calculated from 5.000 independent samples of size n = 300 gen- 
erated from Poisson P( 1/2) distribution. 

X I  + . . . + X ~ O O  should be approximately normal N(300 x l/2.300 x 1/2) .  
The histogram of the original sample is depicted in Figure 2.3(a). Next, we 
generated N = 5000 similar samples. each of size n = 300 from the same 
distribution and for each we found the sum S~OO. 

>> 
>> 

>> 

S-300 = [ I ;  
for i = 1:5000 

S-300 = [S-300 sum(poissmd(0 .5 ,  [1,3001))1 ; 
end 
h i s t  (S-300, 30)  

The histogram of 5000 realizations of S300 is shown in Figure 2.3(b). Notice 
that the histogram of sums is bell-shaped and normal-like, as predicted by the 
CLT. It is centered near 300 x l / 2  = 150. 

A more general central limit theorem can be obtained by relaxing the as- 
sumption that the random variables are identically distributed. Let X I .  X2. . . . 
be independent random variables with IE(X,) = pt and Var(X,) = 0,” < 3cj. 
Assume that the following limit (called Lindeberg ’s condzt ion)  is satisfied: 

For E > 0, 

where 
n 

D: = C0’ 
i=l 
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Extended CLT. Let XI,  X2. . . . be independent (not necessarily identically 
distributed) random variables with EX, = p, and VarX, = a: < x. If 
condition (2.4) holds. then 

s, - ES, 
D, 

===+ 2. 

where 2 - N(0.1)  and S, = XI + .  . , + X,. 

Contznuzty Theorem. Let F,(x) and F ( x )  be distribution functions which 
have characteristic functions pn(t)  and ~ ( t ) .  respectively. If F,(x) ===+ F ( x ) ,  
then p n ( t )  - p(t). Furthermore, let F,(z) and F ( z )  have characteristic 
functions p n ( t )  and p(t). respectively. If p,(t) -+ p(t) and g ( t )  is continuous 
at 0. then F,(r) --I' F ( z ) .  

Example 2.5 Consider the following array of independent random variables 

x11 

x21 x 2 2  

x31 x32 X33 
, .  

where X,k N Ber(p,) for k = 1, .  . . ~ n. The X,k have characteristic functions 

Px,, ( t )  = PneZt + 4, 

where q, = 1 - p,. Suppose p ,  -+ 0 in such a way that n p ,  -+ A, and let 
S, = C:=, X,k.  Then 

vsn ( t )  = rI%, Px,,, ( t )  = (pneZt + 
= (1 + pneZt - p,)" = [I +p,(eZt  - I)]" 
= [I + i ( e t t  - I)]" ---f exp[A(ezt - I)]. 

which is the characteristic function of a Poisson random variable. So. by the 
Continuity Theorem. S, ==+ ?(A). 

2.10 EXERCISES 

2.1.  For the characteristic function of' a random variable X ,  prove the three 
following properties: 

(i) P a X + b ( t )  = ezbqX(at).  

(ii) If X = c. then px(t) = ezct 
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(iii) If XI. X Z .  .X ,  are independent. then S, = X1 + X2 + . + X ,  has 
characteristic function ps, ( t )  = n:=, !px, ( t ) .  

2.2. Let U1. U2. . . . be independent uniform U(0.1) random variables. Let 
M ,  = min(U1.. . . . U,}. Prove nM, ==+ X - &(1). the exponential 
distribution with rate parameter X=l. 

2.3. Let X I .  X 2 . .  . . be independent geometric random variables with param- 
eters ~ 1 . ~ 2 . .  . . . Prove. if p ,  + 0. then p,X, + &(1). 

2.4. Show that for continuous distributions that have continuous density 
functions. failure rate ordering is equivalent to  uniform stochastic or- 
dering. Then show that it is weaker than likelihood ratio ordering and 
stronger than stochastic ordering. 

2.5. Derive the mean and variance for a Poisson distribution using (a) just 
the probability mass function and (b) the moment generating function. 

2.6. Show that the Poisson distribution is a limiting form for a binomial 
model, as given in equation (2.1) on page 15. 

2.7. Show that,  for the exponential distribution. the median is less than 70% 
of the mean. 

2.8. Use a Taylor series expansion to show the following: 

(i) e-az  = 1 - a z  + ( a ~ ) ~ / 2 !  - ( u x ) ~ / ~ !  + . ' .  

(ii) log(I+ z) = x - x2/2 + x 3 / 3  - . . . 

2.9. Use PIATLAB to plot a mixture density of two normal distributions 
with mean and variance parameters (3 ,6)  and (10,5). Plot using weight 
function ( p l r p 2 )  = (0.5,0.5). 

2.10. IVrite a MATLAB function to  compute. in table form, the following 
quantiles for a x2 distribution with v degrees of freedom, where v is a 
function (user) input: 

{0.005,0.01.0.025.0.05.0.10.0.90.0.95,0.975.0.99,0.995}. 
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Daddy's rifle in my hand felt reassurin'. 
he told me .'Red means run. son. Numbers add up to  nothin'." 
But when the first shot hit the dog. I saw it comin' ... 

Weil Young (from the song Powderfinger) 

In this chapter. we review fundamental methods of statistics. We empha- 
size some statistical methods that are important for nonparametric inference. 
Specifically, tests and confidence intervals for the binomial parameter p are 
described in detail. and serve as building blocks to  many nonparametric pro- 
cedures. The empirical distribution function. a nonparametric estimator for 
the underlying cumulative distribution, is introduced in the first part of the 
chapter. 

3.1 ESTIMATION 

For distributions with unknown parameters (say 8), we form a point estimate 
8, as a function of the sample XI ~. . . , X,. Because 0, is a function of random 
variables. it has a distribution itself. called the samplzng dzstrzbutzon. If we 
sample randomly from the same population, then the sample is said to be 
independently and identically distributed. or i.i.d. 

An unbzased estamator is a statistic 8, = Q,(X,. . . . . X,) whose expected 
value is the parameter it is meant to estimate: i.e., IE(8,) = 0.  An estimator 

33 
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is weakly conszstent if, for any E > 0, P(l8, - Q /  > E )  + 0 as n --f 30 (i.e.. 8, 
converges to  Q in probability). In compact notation: Qn -+ 8. 

Unbiasedness and consistency are desirable qualities in an estimator, but 
there are other ways to judge an estimate’s efficacy. To compare estimators, 
one might seek the one with smaller mean squared error (MSE), defined as 

* P  

AISE(8,) = E(8, - 8)’ = Var(8,) + [Bia~(d , ) ]~ .  

where Bias(8,) = JE(8, - Q).  If the bias and variance of the estimator have 
limit 0 as n -+ CG, (or equivalently, MSE(8,) + 0) the estimator is consistent. 
An estimator is defined as strongly consistent if. as n + cc, Qn - 8. A a s. 

Example 3.1 Suppose X - Bin(n ,p) .  If p is an unknown parameter, ?j = 
X / n  is unbiased and strongly consistent for p .  This is because the SLLN holds 
for i.i.d. B e r ( p )  random variables, and X coincides with S, for the Bernoulli 
case; see Laws of Large Numbers on p. 29. 

3.2 EMPIRICAL DISTRIBUTION FUNCTION 

Let X I ,  X z .  . . . . X ,  be a sample from a population with continuous CDF F. 
An empirical (cumulative) dzstribution function (EDF) based on a random 
sample is defined as 

where l ( p )  is called the indicator function of p? and is equal to 1 if the relation 
p is true, and 0 if it is false. In terms of ordered observations X I : ,  5 X z : ,  5 
’ . I Xn:,% the empirical distribution function can be expressed as 

if z < X I : ,  

if z 2 X,:, 
if X k : ,  5 z < Xk+1: ,  

Mr, can treat the empirical distribution function as a random variable 
with a sampling distribution. because it is a function of the sample. Depending 
on the argument 2 .  it equals one of n + 1 discrete values. {O/n. l / n . .  . . . (n - 
l ) / n .  I}. It is easy to see that. for any fixed n:. nF,(z) N Bin(n. F ( z ) ) .  where 
F ( z )  is the true CDF of the sample items. 

Indeed. for F,(z) to  take value k / n .  k = 0.1. .  . . ~ n. k observations from 
XI . .  . . . X, should be less than or equal to  z, and n - k observations larger 
than 2 .  The probability of an observation being less than or equal to  n: is 
F ( z ) .  Also. the k observations less than or equal to  z can be selected from 
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the sample in (L) different ways. Thus. 

From this it follows that EF,(z) = F ( z )  and VarF,(z) = F ( z ) ( l  - F ( z ) ) / n .  
A simple graph of the EDF is available in MATLAB with the plotedf  (x) 

function. For example, the code below creates Figure 3.1 that shows how the 
EDF becomes more refined as the sample size increases. 

>> yl = randn(20,l); 
>> y2 = randn(200,i); 

>> y = normcdf(x,O,l); 

>> hold on; 
>> plotedf ( y l )  ; 
>> plotedf (y2) ; 

>> x = - 3 : 0 . 0 5 : 3 ;  

>> plot (x,y) ; 

-3 -2 -1 0 1 2 3 

Fig 3.1 EDF of normal samples (sizes 20 and 200) plotted along with the true CDF. 
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3.2.1 Convergence for EDF 

The mean squared error (hISE) is defined for F, as IE(F,(z)-F(z))2.  Because 
F,(z) is unbiased for F ( z ) .  the h4SE reduces to VarF,(z) = F ( z ) ( l - F ( z ) ) / n .  
and as n + m, hISE(F,(z)) + 0. so that F,(z) --f F ( z ) .  

There are a number of convergence properties for F, that are of limited 
use in this book and will not be discussed. However, one fundamental limit 
theorem in probability theory, the Glivenko-Cantelli Theorem. is worthy of 
mention. 

Theorem 3.1 (Glzvenko-Cantellz) If F n ( x )  as the emparacal dzstrzbutaon f u n c -  
tzon based o n  a n  z.a.d. sample X I .  . . . , X ,  generated f r o m  F ( x ) ,  

P 

sup IFn(z) - F ( z ) /  = 0.  
5 

3.3 STATISTICAL TESTS 

I shall not require of a scientific system that it shall be capable of being 
singled out. once and for all, in a positive sense; but I shall require that 
its logical form shall be such that it can be singled out, by means of 
empirical tests: in a negative sense: it must be possible for an empirical 
scientific system to be refuted by experience. 

Karl Popper, Philosopher (1902-1994) 

Uncertainty associated with the estimator is a key focus of statistics, 
especially tests of hypothesis and confidence intervals. There are a variety of 
methods to construct tests and confidence intervals from the data, including 
Bayesian (see Chapter 4) and frequentist methods, which are discussed in 
Section 3.3.3. Of the two general methods adopted in research today, methods 
based on the Likelihood Rat io  are generally superior to  those based on Fisher 
Information.  

In a traditional set-up for testing data. we consider two hypotheses re- 
garding an unknown parameter in the underlying distribution of the data. 
Experimenters usually plan to  show new or alternative results: which are 
typically conject,ured in the alternative hypothesis (HI or Ha). The null hy- 
pothesis, designated Ho,  usually consists of the parts of the parameter space 
not considered in H I .  

W%en a test is conducted and a claim is made about the hypotheses, two 
distinct errors are possible: 

Type I error. The type I error is the action of rejecting Ho when HO was 
actually true. The probability of such error is usually labeled by a. and 
referred to as szgnzficance level of the test. 
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Type I1 error. The type I1 error is an action of failing to  reject Ho when 
HI was actually true. The probability of the type I1 error is denoted by 0 .  
Power is defined as 1 - 3. In simple terms. the power is propensity of a test 
to reject wrong alternative hypothesis. 

3.3.1 Test Properties 

A test is unbzased if the power is always as high or higher in the region of 
H1 than anywhere in Ho. A test is conszstent if, over all of H I ,  3 + 0 as the 
sample sizes goes to infinitv. 

Suppose we have a hypothesis test of Ho : 8 = 80 versus H I  : 8 # 80. 
The Wald test of hypothesis is based on using a normal approximation for the 
test statistic. If we estimate the variance of the estimator 8, by plugging in 
0, for 8 in the variance term a& (denote this e-,",). we have the z-test statistic 

H, - 00 

D o n  
20 = T. 

The critical region (or rejection region) for the test is determined by the 
quantiles zq of the normal distribution. where q is set to match the type I 
error. 

p-values: The p-value is a popular but controversial statistic for describing 
the significance of a hypothesis given the observed data. Technically. it is 
the probability of observing a result as "rejectable" (according to  Ho) as the 
observed statistic that actually occurred but from a new sample. So a p-value 
of 0.02 means that if Ho is true, we would expect to  see results more reflective 
of that hypothesis 98% of the time in repeated experiments. Note that if 
the p-value is less than the set Q: level of significance for the test. the null 
hypothesis should be rejected (and otherwise should not be rejected). 

In the construct of classical hypothesis testing, the p-value has potential 
to  be misleading with large samples. Consider an example in which Ho : p = 
20.3 versus H I  : p # 20.3. As far as the experimenter is concerned, the null 
hypothesis might be conjectured only to three significant digits. But if the 
sample is large enough. Z = 20.30001 will eventually be rejected as being 
too far away from Ho (granted. the sample size will have to be awfully large, 
but you get our point?). This problem will be revisited when we learn about 
goodness-of-fit tests for distributions. 

Binomial Distribution. For binomial data. consider the test of hypothesis 

If me fix the type I error to a ,  we would have a critical region (or rejection 
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regzon) of {x : x > zo}, where 20 is chosen so that a = P ( X  > 20 1 p = P O ) .  
For instance. if n = 10, an a = 0.0547 level test for HO : p 5 0.5 vs H I  : p > 0.5 
is to reject HO if X 2 8. The test’s power is plotted in Figure 3.2 based on the 
following MATLAB code. The figure illustrates how our chance at rejecting 
the null hypothesis in favor of specific alternative H1 : p = p l  increases as p l  
increases past 0.5. 

>> p1=0.5:0.01:0.99; 
>> pow=l-binocdf (7,lO ,pi) ; 
>> plot (pl ,pow) 

Fig. 3.2 
p = PI. Values of p l  are given on the horizontal axis. 

Graph of statistical test power for binomial test for specific alternative H I  : 

Example 3.2 A semiconductor manufacturer produces an unknown propor- 
tion p of defective integrative circuit (IC) chips, so that chip yzeld is defined 
as 1 - p .  The manufacturer’s reliability target is 0.9. With a sample of 25 
randomly selected microchips, the Wald test will reject HO : p 5 0.10 in favor 
of HI : p > 0.10 if 

6 - 0.1 
> ZCY, 

J(0.1) (0.9)/100 

or for the case a = 0.05. if the number of defective chips X > 14.935. 
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3.3.2 Confidence Intervals 

A 1 - Q level confidence interval is a statistic, in the form of a region or in- 
terval, that contains an unknown parameter 0 with probability 1 - Q. For 
communicating uncertainty in layman's terms, confidence intervals are typi- 
cally more suitable than tests of hypothesis, as the uncertainty is illustrated 
by the length of the interval constructed, along with the adjoining confidence 
statement. 

A two-sided confidence interval has the form ( L ( X ) .  V ( X ) ) .  where X is 
the observed outcome, and P ( L ( X )  5 0 5 U ( X ) )  = 1 -a.  These are the most 
commonly used intervals. but there are cases in which one-sided intervals are 
more appropriate. If one is concerned with how large a parameter might be. 
we would construct an upper bound U ( X )  such that P(O 5 V ( X ) )  = 1 - Q. 

If small values of the parameter are of concern to  the experimenter, a lower 
bound L ( X )  can be used where P ( L ( X )  5 0) = 1 - Q. 

Example 3.3 Binomial Distribution. 
confidence interval for p .  we solve the equation 

To construct a two-sided 1 - Q 

for p to  obtain the upper 1 - Q limit for p .  and solve 

to  obtain the lower limit. One sided 1 - Q intervals can be constructed by 
solving just one of the equations using Q in place of a / 2 .  Use MATLAB 
functions binup (n, x , a )  and binlow (n, x, a). This is named the Clopper- 
Pearson interval (Clopper and Pearson, 1934). where Pearson refers to Egon 
Pearson, Karl Pearson's son. 

This exact interval is typically conservatzve, but not conservative like a 
G.O.P. senator from hlississippi. In this case, conservative means the coverage 
probabalzty of the confidence interval is at least as high as the nomznal cover- 
age probability 1 - Q, and can be much higher. In general. "conservative" is 
synonymous with risk averse. The nominal and actual coverage probabilities 
disagree frequently with discrete data, where an interval with the exact cover- 
age probability of 1 - Q may not exist. While the guaranteed confidence in a 
conservative interval is reassuring, it is potentially inefficient and misleading. 

Example 3.4 If n = 10 , s  = 3 .  then J? = 0.3 and a 95% (two-sided) con- 
fidence interval for p is computed by finding the upper limit pl for which 
F x ( 3 : p l )  = 0.025 and lower limit p2 for which 1 - F x ( 2 : p 2 )  = 0.025. where 
FX is the CDF for the binomial distribution with n = 10. The resulting 
interval, (0.06774.0.65245) is not symmetric in p .  
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Intervals Based on Normal Approximation. The interval in Example 
3.4 is “exact“, in contrast to  more commonly used intervals based on a normal 
approximation. Recall that  5 & izapu/45 serves as a 1 - Q level confidence 
interval for p with data generated from a normal distribution. Here z ,  rep- 
resents the cy quantile of the standard normal distribution. With the normal 
approximation (see Central Limit Theorem in Chapter 2). p has an approxi- 
mate normal distribution if n is large, so if we estimate 0; = p(1 - p)/n with 
6s = @(I - fi)/n. an approximate 1 - a interval for p is 

p k za,2J5(n - .)/n3. 

This is called the Wald interval because it is based on inverting the (Wald) 
z-test statistic for HO : p = po versus HI : p # P O .  Agresti (1998) points out 
that  both the exact and Wald intervals perform poorly compared to  the score 
anterval which is based on the Wald z-test of hypothesis, but instead of using 
lj in the error term, it uses the value po for which (6 - p o ) / d p o ( l  - p o ) / n  = 

k z , p .  The solution, first stated by Wilson (1927), is the interval 

p + + * za/2dmy5F 
1 + Z : / z / n  

This actually serves as an example of shrankage. which is a statistical phe- 
nomenon where better estimators are sometimes produced by “shrinking” or 
adjusting treatment means toward an overall (sample) mean. In this case, 
one can show that the middle of the confidence interval shrinks a little from 
p toward l /2 ,  although the shrinking becomes negligible as n gets larger. Use 
MATLAB function binomial-shrink-ci (n, x , alpha) to  generate a two-sided 
Wilson‘s confidence interval. 

Example 3.5 In the previous example, with n = 10 and 2 = 3, the ex- 
act 2-sided 95% confidence interval (0.06774. 0.65245) has length 0.5847. so 
the inference is rather vague. Using the normal approximation, the interval 
computes to (0.0616. 0.5384) and has length 0.4786. The shrinkage interval is 
(0.1078, 0.6032) and has length 0.4954. Is this accurate? In general, the exact 
interval will have coverage probability exceeding 1 - Q, and the Wald interval 
sometimes has coverage probability below 1 - a.  Overall. the shrinkage inter- 
val has coverage probability closer to 1 - a. In the case of the binomial, the 
word “exact” does not imply a confidence interval is better. 

>> x=O:lO; 
>> y=binopdf(x,l0,0.3); 
>> bar(x,y) 
>> barh(C1 2 31, C0.067 0.652; 0.061, 0.538; 0.213 0.4051 ,’stacked’) 
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Fig. 3 3 
exact. TVald and TVilson method. 

(a) The binomial Bin(10.0.3) PLIF: (b) 95% confidence intervals based on 

3.3.3 Likelihood 

Sir Ronald Fisher. perhaps the greatest innovator of statistical methodology. 
developed the concepts of likelihood and sufficiency for statistical inference. 
With a set of random variables XI ~. . . , X,. suppose the joint distribution 
is a function of an unknown parameter 8: f n ( x l , .  . . .x,: Q). The lakelzhood 
functaon pertaining to the observed data L(0)  = fn(xl.. . . .x,; Q) is associated 
with the probability of observing the data at each possible value Q of an 
unknown parameter. In the case the sample consists of i.i.d. measurements 
with density function f ( x ;  Q). the likelihood simplifies to 

n 

L ( Q )  = n. f ( z , :  0) 
2= 1 

The likelihood function has the same numerical value as the PDF of a random 
variable. but it is regarded as a function of the parameters 8. and treats the 
data as fixed. The PDF. on the other hand, treats the parameters as fixed and 
is a function of the data points. The lakelzhood pranctple states that  after x is 
observed. all relevant experimental information is contained in the likelihood 
function for the observed 2 .  and that 81 supports the data more than Q2 if 
L(&) 2 L(Q2).  The muxzmum lzkelzhood estzmute (hlLE) of Q is that  value of 
Q in the parameter space that maximizes L ( Q ) .  Although the hILE is based 
strongly on the parametric assumptions of the underlying density function 
f ( x :  Q).  there is a sensible nonparametric version of the likelihood introduced 
in Chapter 10. 
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MLEs are known to  have optimal performance if the sample size is suf- 
ficient and the densities are “regular”; for one. the support of f ( z ;  8) should 
not depend on 8. For example, if 8 is the WILE, then 

f i ( e  - 8) ===+ N(0. i?(8)). 

where i ( 8 )  = IE([dlogf/dO]*) is the Fisher Informatzon of 8. The regularity 
conditions also demand that i ( 8 )  2 0 is bounded and J f ( z ; Q ) d z  is thrice 
differentiable. For a comprehensive discussion about regularity conditions for 
maximum likelihood, see Lehmann and Casella (1998). 

The optimality of the MLE is guaranteed by the following result: 

Cramer-Rao Lower Bound. From an i.i.d. sample XI,. . . ,X, where Xi has 
density function f x ( z ) ,  let 4, be an unbiased estimator for 8. Then 

var(4,) 2 (i(e)n)-l .  

Delta Method for  MLE.  The invariance property of MLEs states that if g 
is a one-to-one function of the parameter 8, then the hiLE of g(0)  is g ( 6 ) .  
Assuming the first derivative of g (denoted 9’) exists. then 

Example 3.6 After waiting for the kth success in a repeated process with 
constant probabilities of success and failure, we recognize the probability dis- 
tribution of X = no. of failures is negatzve bznomzal. To estimate the unknown 
success probability p ,  we can maximize 

L ( p )  = p x ( x ; p )  x pk(1 -p )” .  0 < p < 1. 

Note the combinatoric part of px was left off the likelihood function because 
it plays no part in maximizing L.  From l ogL(p )  = klog(p) + xlog(1 - p ) .  
d L / d p  = 0 leads to 6 = k / ( k  + x), and i(p) = k/(p2(1 - p ) ) .  thus for large n. 
@ has an approximate normal distribution, i.e.. 

p “ E r N ( p . p 2 ( 1  - p ) / k ) .  

Example 3.7 In Example 3.6, suppose that k = 1. so X has a geometric 
g ( p )  distribution. If we are interested in estimating 0 = probability that m 
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or more failures occur before a success occurs. then 

x 

and from the invariance principle. the hlLE of 6 is 8 = (l-@)m. Furthermore. 

f i (8  - 6) * N(0. a;). 

where 0; = g’(p)2/i(p) = p2(1 - p ) 2 m - 1 m 2  

3.3.4 Likelihood Ratio 

The likelihood ratio function is defined for a parameter set 6 as 

where sups L(6)  = L(8)  and 8 is the hILE of 6. Wilks (1938) showed that 
under the previously mentioned regularity conditions, - 2  log R(6) is approxi- 
mately distributed x 2  with k degrees of freedom (when 6 is a correctly specified 
vector of length k ) .  

The likelihood ratio is useful in setting up tests and intervals via the 
parameter set defined by C(6) = (6 . R(B) 2 ro} where T O  is determined so 
that if 6 = 60, P(8 E C) = 1 - a. Given the chi-square result above, we have 
the following 1 - a confidence interval for 6 based on the likelihood ratio: 

{ e  : -210gR 5 xp2(1 - a ) } ,  (3.3) 

where xp2(1 - a) is the 1 - a quantile of the x p 2  distribution. Along with the 
nonparametric AILE discussed in Chapter 10, there is also a nonparametric 
version of the likelihood ratio. called the empzrzcal likelzhood which we will 
introduce also in Chapter 10. 

Example 3.8 If X I . .  . . , X ,  N N ( p %  1). then 

n 
qP) = J-J2n;)-n”e-B c L ( ~ z - P . ) 2 ,  

7 = 1  

Because /2 = z is the hlLE. R ( p )  = L ( p ) / L ( Z )  and the interval defined in 
(3.3) simplifies to  

n 

I i= l  i=l 
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By expanding the sums of squares. one can show (see Exercise 3.6) that this 
interval is equivalent to the Fisher interval 5 i z , / ~ / & .  

3.3.5 EfFiciency 

Let 41 and 42 be two different statistical tests (i.e., specified critical regions) 
based on the same underlying hypotheses. Let 721 be the sample size for 01. 
Let 122 be the sample size needed for 452 in order to make the type I and 
type I1 errors identical. The relatzve e f iczency  of q1 with respect to 42 is 
RE = n2/n1. The asymptotzc relatzve ef iczency ARE is the limiting value 
of RE as n1 + cc. Nonparametric procedures are often compared to their 
parametric counterparts by computing the ARE for the two tests. 

If a test or confidence interval is based on assumptions but tends to come 
up with valid answers even when some of the assumptions are not. the method 
is called robust. Nost nonparametric procedures are more robust than their 
parametric counterparts, but also less efficient. Robust methods are discussed 
in more detail in Chapter 12. 

3.3.6 Exponential Family of Distributions 

Let f ( y l 6 ' )  be a member of the exponential famzly  with natural parameter 0. 
Assume that 6' is univariate. Then the log likelihood k'(6')  = Cr=l log(f(y,)O) = 
Cr=l & ( 6 ' ) .  where k', = logf(yz16'). The MLE for 6' is solution of the equation 

The following two properties (see Exercise 3.9) hold: 

(i) IE (2)  = 0 and (ii) E (g) +Var (g )  = 0. 

For the exponential family of distributions, 

(3.4) 

and = y-b'o and a2C a Q 2  - - -- b'y). By properties (i)  and (ii) from (3.4), if 
0 

Y has pdf f(yl6'). then E ( Y )  = 1-1 = b / ( Q )  and Var(Y) = b / / ( 0 ) 4 .  The function 
b"(6') is called variance functzon and denoted by V ( p )  (because Q depends on 
P ) .  
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The unit deviance is defined as 

and the total deviance, a measure of the distance between y and p ,  is defined 
as 

n 

where the summation is over the data and w, are the prior weights. The 
quantity D(y. p ) / ~  is called the scaled deviance. For the normal distribution. 
the deviance is equivalent to the residual sum-of-squares, C:=l(y, - p ) * .  

3.4 EXERCISES 

3.1. With n = 10 observations and II: = 2 observed successes in i.i.d. trials, 
construct 99% two-sided confidence intervals for the unknown binomial 
parameter p using the three methods discussed in this section (exact 
method. Wald method, Wilson method). Compare your results. 

3.2. From a manufacturing process, n = 25 items are manufactured. Let X 
be the number of defectives found in the lot. Construct a a = 0.01 level 
test to see if the proportion of defectives is greater than 10%. What are 
your assumptions? 

3.3. Derive the hlLE for p with an i.i.d. sample of exponential random vari- 
ables. and compare the confidence interval based on the Fisher informa- 
tion to an exact confidence interval based on the chi-square distribution. 

3.4. A single parameter ("shape" parameter) Pareto distribution ( P a ( 1 , a )  
on p. 23) has density function given by f ( z la )  = a/x"+l ,  z 2 1. 

For a given experiment. researchers believe that in Pareto model the 
shape parameter a exceeds 1. and that the first moment EX = a/ (a-1)  
is finite. 

(i) What is the moment-matching estimator of parameter a? Moment 
matching estimators are solutions of equations in which theoretical mo- 
ments are replaced empirical counterparts. In this case. the moment- 
matching equation is X = a / ( ( ~  - 1). 

(ii) LVhat is the maximum likelihood estimator (hlLE) of a? 

(iii) Calculate the two estimators when X1 = 2. X2 = 4 and X3 = 3 are 
observed. 
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3.5. Write a MATLAB simulation program to estimate the true coverage 
probability of a two-sided 90% Wald confidence interval for the case in 
which n = 10 and p = 0.5. Repeat the simulation at p = 0.9. Repeat 
the p = 0.9 case but instead use the Wilson interval. To estimate, 
generate 1000 random binomial outcomes and count the proportion of 
time the confidence interval contains the true value of p .  Comment on 
your results. 

3.6. Show that the confidence interval (for p )  derived from the likelihood ra- 
tio in the last example of the chapter is equivalent to the Fisher interval. 

3.7. Let X I . .  . . . X ,  be i.i.d. ?(A). and Y k  be the number of X I , .  . . . X ,  equal 
to  k .  Derive the conditional distribution of Y k  given T = C X ,  = t .  

3.8. Consider the following i.i.d. sample generated from F ( z ) :  

{2.5,5.0,8.0,8.5.10.5,11.5.20}. 

Graph the empirical distribution and estimate the probability P(8 5 
X 5 10). where X has distribution function F ( z ) .  

3.9. Prove the equations in (3.4): (i) E( %) = 0, (ii) IE( a) + Var( g )  = 0. 
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Bayesian Statistics 

To anyone sympathetic with the current neo-Bernoullian neo-Bayesian 
Ramseyesque Finettist Savageous movement in statistics. the subject of 
testing goodness of fit is something of an embarrassment. 

F. J. Anscombe (1962) 

4.1 THE BAYESIAN PARADIGM 

There are several paradigms for approaching statistical inference, but the two 
dominant ones are frequentzst (sometimes called classical or traditional) and 
Bayeszan. The overview in the previous chapter covered mainly classical ap- 
proaches. According to the Bayesian paradigm. the unobservable parameters 
in a statistical model are treated as random. When no data are available. 
a przor dastrzbutaon is used to  quantify our knowledge about the parameter. 
When data are available. we can update our prior knowledge using the con- 
ditional distribution of parameters. given the data. The transition from the 
prior to the posterior is possible via the Bayes theorem. Figure 4. l (a)  shows a 
portrait of the Reverend Thomas Bayes whose posthumously published essay 
gave impetus to alternative statistical approaches (Bayes, 1763). His signature 
is shown in Figure 4.l(b).  

Suppose that before the experiment our prior distribution describing 0 is 
~ ( 0 ) .  The data are coming from the assumed model (likelihood) which depends 
on the parameter and is denoted by f (x1Q) .  Bayes theorem updates the prior 

47 
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Fig. 4.1 The Reverend Thomas Bayes (1702-1761): (b) Bayes‘ signature. 

~ ( 0 )  to  the posterior by accounting for the data x. 

where m ( x )  is a normalizing constant, m ( x )  = 1, f(zlO)7r(Q)d6’ 

Once the data x are available. Q is the only unknown quantity and the pos- 
terior distribution 7r(Qlx) completely describes the uncertainty. There are two 
key advantages of Bayesian paradigm: (i) once the uncertainty is expressed 
via the probability distribution and the statistical inference can be automated, 
it follows a conceptually simple recipe, and (ii) available prior information is 
coherently incorporated into the statistical model. 

4.2 INGREDIENTS FOR BAYESIAN INFERENCE 

The model for a typical observation X conditional on unknown parameter Q 
is the density function f (x1Q).  As a function of 0. f (x1Q)  = L ( Q )  is called a 
lzkelzhood. The functional form of f is fully specified up to  a parameter 6’. 
According to  the lakelahood prznczple, all experimental information about the 
data must be contained in this likelihood function. 

The parameter 0. with values in the parameter space 0. is considered 
a random variable. The random variable 6’ has a distribution 7 r ( Q )  called 
the prior distribution. This prior describes uncertainty about the parameter 
before data are observed. If the prior for 0 is specified up to  a parameter 7 ,  

~ ( 0 1 ‘ ~ ) .  ‘T is called a hyperparameter. 

Our goal is to  start with this prior information and update it using the 
data to make the best possible estimator of 8.  We achieve this through the 
likelihood function to  get ~ ( Q l x ) .  called the posterzor distribution for 8 .  given 



lNGREDlENTS FOR BAYESlAN lNFERENCE 49 

X = z. Accompanying its role as the basis to Bayesian inference. the poste- 
rior distribution has been a source for an innumerable accumulation of tacky 
"butt" jokes by unimaginative statisticians with low-brow sense of humor. 
such as the authors of this book, for example. 

To find ~ ( 8 1 ~ ) .  we use Bayes rule to  divide joznt distribution for X and 
6' (h(z .8)  = f(xIQ).ir(8)) by the margznal distribution m ( z ) ,  which can be 
obtained by integrating out parameter i9 from the joint distribution h(z. Q ) ,  

m(z)  = h ( z ,  6')dQ = f(zlQ)7r(Q)d6'. L L 
The marginal distribution is also called the przor predictive distribution. Fi- 
nally we arrive at an expression for the posterior distribution .iT(6'(z): 

h ( z , Q )  - - f(46')46') - - 
m ( x )  m(z )  J, f(zI6"6')d6'' 

f (46')46') 
T(6'1.) = - 

The following table summarizes the notation: 

Likelihood f (46') 
Prior Distribution 46') 

Joint Distribution h(z,6') = f(zl8)7T(O) 

Marginal Distribution 

Posterior Distribution 

m ( z )  = /, f(zi6)~(6')d6'  

7r( 6' 1.) = f ( 2  ~ O ) T (  6') /m(  z) 

Example 4.1 Normal Likelihood with Normal Prior. The normal like- 
lihood and normal prior combination is important as it is often used in prac- 
tice. Assume that an observation X is normally distributed with mean 8 and 
known variance 0'. The parameter of interest, 8. has a normal distribution 
as well with hj-perparameters p and T*. Starting with our Bayesian model of 
Xl6' N N(8.c~~) and 6' N N(p , r2 )% we will find the marginal and posterior 
distributions. 

The exponent < in the joint distribution h(z, 8 )  is 

After straightforward but somewhat tedious algebra. C can be expressed as 
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where 

Recall that h ( x ,  8) = f ( x l 8 ) ~ ( 8 )  = ;7(8ix)m(z). so the marginal distribution 
simply resolves to X - N ( p , 0 2  + 7’) and the posterior distribution comes 

If X I ,  X2 . .  . . . X ,  are observed instead of a single observation X ,  then the 
sufficiency of x implies that the Bayesian model for 8 is the same as for X 
with u2 /n  in place of 02.  In other words. the Bayesian model is 

producing 

Notice that the posterior mean 

is a weighted linear combination of the AILE X and the prior mean p with 
weights 

nr2 0 2  
A =  1 - A =  

o2 + nr2 ‘ f9 + n7-2. 

When the sample size n increases. X + 1. and the influence of the prior mean 
diminishes. On the other hand when n is small and our prior opinion about 
p is strong (i.e., T~ is small) the posterior mean is close to the prior mean p .  
We will see later several more cases in which the posterior mean is a linear 
combination of a frequentist estimate and the prior mean. 

For instance, suppose 10 observations are coming from N(Q.  100). Assume 
that the prior on 8 is iv (20 .20) .  Using the numerical example in the MATLAB 
code below. the posterior is N(6.8352.6.6667). These three densities are shown 
in Figure 4.2. 

>> dat=[2.9441,-13.3618,7.1432,16.2356,-6.9178,8.5800,. 

>> [m, v] = BA-nornor2 (dat ,100,20,20) 
12.5400,-15.9373,-14.4096,5.7115] ; 
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f ig. 4.2 The normal h'(Q, 100) likelihood, h'(20.20) prior. and posterior for data 
(2.9441. -13.3618.. . . .5.7115}. 

4.2.1 Quantifying Expert Opinion 

Bayesian statistics has become increasingly popular in engineering, and one 
reason for its increased application is that it allows researchers to input ex- 
pert opinion as a catalyst in the analysis (through the prior distribution). 
Expert opinion might consist of subjective inputs from experienced engineers. 
or perhaps a summary judgment of past research that yielded similar results. 

Example 4.2 Prior Elicitation for Reliability Tests. Suppose each of 
n independent reliability tests a machine reveals either a successful or unsuc- 
cessful outcome. If 6' represents the reliability of the machine. let X be the 
number of successful missions the machine experienced in n independent tri- 
als. X is distributed binomial with parameters n (known) and Q (unknown). 
U'e probably won't expect an expert to quantify their uncertainty about 0 
directly into a prior distribution ~(6). Perhaps the researcher can elicit infor- 
mation such as the expected value and standard deviation of 6'. If we suppose 
the prior distribution for 6' is B e ( a ,  3). where the hyper-parameters a and 3 
are known. then 
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With XI6 N Bin(n. 6). the joint, marginal. and posterior distributions are 

. z=O. l  . . . . .  n 
( : ) B ( z + c Y . T L - x + / ~ )  

m(z) = 
B(Q.  P )  

It is easy to see that the posterior distribution is Be(a+z.n-z+0).  Suppose 
the experts suggest that the previous version of this machine was ”reliable 93% 
of the time, plus or minus 2%”. We might take E(0) = 0.93 and insinuate 
that 0 0  = 0.04 (or Var(6) = 0.0016), using two-sigma rule as an argument. 
From the beta distribution, 

We can actually solve for CY and 0 as a function of the expected value p 
and variance 0’. as in ( 2 . 2 ) .  

Q = p ( p  - p’ - o’))/o’, and 0 = (1 - p ) ( p  - p’ - n’))/o’. 

In this example. (p ,o ’ )  = (0.93. 0.0016) leads to Q = 36.91 and 3=2.78. To 
update the data X .  we will use a Be(36.91,2.78) distribution for a prior on 
6. Consider the weight given to the expert in this example. If we observe one 
test only and the machine happened to fail, our posterior distribution is then 
Be(36.91.3.78), which has a mean equal to 0.9071. The NLE for the average 
reliability is obviously zero, with with such precise information elicited from 
the expert. the posterior is close to the prior. In some cases when you do not 
trust your expert, this might be unsettling and less informative priors may be 
a better choice. 

4.2.2 Point Estimation 

The posterior is the ultimate experimental summary for a Bayesian. The loca- 
tion measures (especially the mean) of the posterior are of great importance. 
The posterior mean represents the most frequently used Bayes estimator for 
the parameter. The posterior mode and median are less commonly used al- 
ternative Bayes estimators. 

An objective way to choose an estimator from the posterior is through a 
penalty or loss function L(6.  6) that describes how we penalize the discrepancy 
of the estimator 6 from the parameter 6. Because the parameter is viewed as 



a random variable. we seek to  minimize expected loss. or posterzor risk: 

R(8. z) = L(8. 8)7r(81X)d8 .i 
For example, the estimator based on the common squared-error loss L(d.8)  = 

(8 - 8)' minimizes E((8 - d ) ' ) ,  where expectation is taken over the posterior 
distribution ~ ( 8 j X ) .  It's easy to  show that the estimator turns out to  be the 
posterior expectation. Similar to  squared-error loss. if we use absolute-error 
loss L(8,O) = (8 - 01. the Bayes estimator is the posterior median. 

The posterior mode maximizes the posterior density the same way A4LE is 
maximizing the likelihood. The generulzzed MLE maximizes ~ ( 8 l X ) .  Bayesians 
prefer the name MAP (maximum aposteriori) estimator or simply posterior 
mode. The MAP estimator is popular in Bayesian analysis in part because it 
is often computationally less demanding than the posterior mean or median. 
The reason is simple: to  find the maximum. the posterior need not to be fully 
specified because argmaxesT(8lr) = argmaxef(n:lQ)T(O), that is. one simply 
maximizes the product of likelihood and the prior. 

In general. the posterior mean will fall between the MLE and the the prior 
mean. This was demonstrated in Example 4.1. As another example. suppose 
we flipped a coin four times and tails showed up on all 4 occasions. We are 
interested in estimating probability of heads, 8. in a Bayesian fashion. If 
the prior is U ( 0 , l ) .  the posterior is proportional to Q0(1 - 8)4 which is beta 
Be(l .5) .  The posterior mean shrank the LILE toward the expected value 
of the prior (1/2) to get 8, = 1/(1 + 5) = 1/6, which is a more reasonable 
estimator of 8 then the MLE. 

Example 4.3 Binomial-Beta Conjugate Pair. Suppose x l 8  N Bzn(n. 8). 
If the prior distribution for 8 is Be(a ,  3 ) ,  the posterior distribution is Be(a + 
IC, n - z + 0 ) .  Under squared error loss L(8 .8)  = (8 - 8 ) 2 .  the Bayes estimator 
of 8 is the expected value of the posterior 

Q + X  - - 
a + z  

OB = 
( a  + X) ( p  + 12 - IC) (Y + n + n ' 

This is actually a weighted average of hILE. X/n, and the prior mean ./(a + 
3).  Notice that, as n becomes large. the posterior mean is getting close to 
LILE, because the weight n / ( n  + Q + 3) tends to  1. On the other hand, when 
Q is large, the posterior mean is close to the prior mean. Large Q indicates 
small prior variance (for fixed 3. the variance of Be(cr. 3)  behaves as O(l/cy2)) 
and the prior is concentrated about its mean. Recall the Example 4.2: after 
one machine trial failure the posterior distribution mean changed from 0.93 
(the prior mean) to  0.9071. shrinking only slightly toward the MLE (which is 
zero). 
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Example 4.4 Jeremy’s I&. Jeremy. an enthusiastic Georgia Tech student. 
spoke in class and posed a statistical model for his scores on standard IQ tests. 
He thinks that. in general, his scores are normally distributed with unknown 
mean 8 and the variance of 80. Prior (and expert) opinion is that the I& 
of Georgia Tech students, 8, is a normal random variable, with mean 110 
and the variance 120. Jeremy took the test and scored 98. The traditional 
estimator of 8 would be 6 = X = 98. The posterior is N(102.8,48), so the 
Bayes estimator of Jeremy’s IQ score is 6~ = 102.8. 

Example 4.5 Poisson-Gamma Conjugate Pair. Let X I , .  . . , X,, given 
8 are Poisson P(8)  with probability mass function 

and 8 G(a.p) is given by r ( 8 )  x Oa-le-as. Then; 

7r(OlXl,. . . . 

w h i c h i s 4 ( C , X z + a , n + / ? ) .  ThemeanisIE(8IX) = ( c X i + a ) / ( n + P ) ,  and 
it can be represented as a weighted average of the RILE and the prior mean: 

n E X ,  B a E81X = - - +-- 
n+B n n + B p ’  

4.2.3 Conjugate Priors 

We have seen two convenient examples for which the posterior distribution 
remained in the same family as the prior distribution. In such a case, the ef- 
fect of likelihood is only to “update” the prior parameters and not to change 
prior‘s functional form. We say that such priors are conjugate with the like- 
lihood. Conjugacy is popular because of its mat hematical convenience: once 
the conjugate pair likelihood/prior is found, the posterior is calculated with 
relative ease. In the years BC1 and pre-SICRIC era (see Chapter 18). conju- 
gate priors have been extensively used (and overused and misused) precisely 
because of this computational convenience. Nowadays. the general agreement 
is that simple conjugate analysis is of limited practical value because. given 
the likelihood, the conjugate prior has limited modeling capability. 

There are many univariate and multivariate instances of conjugacy. The 
following table provides several cases. For practice you may want to workout 
the posteriors in the table. 

’For some. the BC era signifies Before Christ, rather than  Before Computers. 
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Table 4.2 Some conjugate pairs. Here X stands for a sample of size n. XI . .  . . , X,. 

Likelihood Prior Posterior 

4.2.4 Interval Estimation: Credible Sets 

Bayesians call interval estimators of model parameters credzble sets .  Natu- 
rally, the measure used to assess the credibility of an interval estimator is 
the posterior distribution. Students learning concepts of classical confidence 
intervals (CIS) often err by stating that -the probability that the CI interval 
[L.  U ]  contains parameter B is 1 - a". The correct statement seems more con- 
voluted: one needs to generate data from the underlying model many times 
and for each generated data set to calculate the CI. The proportion of CIS cov- 
ering the unknown parameter "tends to'' 1 - a.  The Bayesian interpretation 
of a credible set C is arguably more natural: The probability of a parameter 
belonging to the set C is 1 - a.  A formal definition follows. 

Assume the set C is a subset of 0. Then. C is credzble set with credibility 
(1 - c r ) l O O %  if 

P(B E CjX) = IE(I(B E C)jX) = J x(Bjz)dB 2 1 - a.  
C 

If the posterior is discrete. then the integral is a sum (using the counting 
measure) and 

P(B t C l X )  = c 7r(B&) 2 1 - Q .  

e , E c  

This is the definition of a (1 -a)lOO% credible set, and for any given posterior 
distribution such a set is not unique. 
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For a given credibility level (1 - a )  100%. the shortest credible set has obs-i- 
ous appeal. To minimize size. the sets should correspond to highest posterior 
probability density areas (HPDs). 

Definition 4.1 The ( 1  - a)100% HPD credible set for parameter 0 is  a set 
C, subset of 0 of the fo rm 

c = { B  E 017r(Bl.) 2 k ( a ) } ;  

where k(a) is  the largest constant for  which 

P(0  E C l X )  2 1 - a.  

Geometrically, if the posterior density is cut by a horizontal line at the 
hight k ( a ) .  the set C is projection on the B axis of the part of line that lies 
below the density. 

Example 4.6 Jeremy’s I&, Continued. Recall Jeremy. the enthusiastic 
Georgia Tech student from Example 4.4, who used Bayesian inference in mod- 
eling his I& test scores. For a score XlB he was using a N(0.80)  likelihood, 
while the prior on 8 was N( l l0 ,120) .  After the score of X = 98 was recorded. 
the resulting posterior was normal N(102.8.48). 

1 . 9 6 m ]  = [80.4692.115.5308]. The length of this interval is approximately 
35. The Bayesian counterparts are 6 = 102.8, and [102.8 - 1.96-, 102.8 + 
1.96-1 = [89.2207,116.3793]. The length of 95% credible set is approxi- 
mately 27. The Bayesian interval is shorter because the posterior variance is 
smaller than the likelihood variance: this is a consequence of the incorporation 
of information. The construction of the credible set is illustrated in Figure 
4.3. 

Here, the MLE is 6 = 98, and a 95% confidence interval is [98-1.96J80, 98+ 

4.2.5 Bayesian Testing 

Bayesian tests amount to comparison of posterior probabilities of the param- 
eter regions defined by the two hypotheses. 

Assume that 00 and 01 are two non-overlapping subsets of the parameter 
space 0. We assume that 0 0  and 01 partition 0. that  is. 01 = 0;. although 
cases in which 01 # 06 are easily formulated. Let 0 E 00 signify the null 
hypothesis HO and let 8 E 01 = 06 signify the alternative hypothesis H I :  

Given the information from the posterior. the hypothesis with higher posterior 
probability is selected. 
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Fig. 4 . 3  Bayesian credible set based on A'( 102.8.48) density. 

Example 4.7 Me return again to Jeremy (Examples 4.4 and 4.6) and con- 
sider the posterior for the parameter 8. N(102.8,48). Jeremy claims he had a 
bad day and his genuine I& is at  least 105. After all, he is at Georgia Tech! 
The posterior probability of B 2 105 is 

= 1 - (P(0.3175) = 0.3754, 
105 - 102.8 

po = PeIx(B 2 105) = P 

less that 3870, so his claim is rejected. Posterior odds in favor of Ha are 
0.3754/(1-0.3754)=0.4652, less than 50%. 

We can represent the prior and posterior odds in favor of the hypothesis 
Ho. respectively, as 

Po - P Q l X ( Q  E 0 0 )  T O  - E 0 0 )  and - 
T I  PB(B E 01) p1 P Q l X ( B  E 01). 

- - -  

The Bayes  factor in favor of HO is the ratio of corresponding posterior to  prior 
odds. 

When the hypotheses are simple (i.e.. Ho : 8 = 00 vs. H I  : B = Bl), and the 
prior is just the two point distribution T ( B o )  = T O  and ~ ( 0 1 )  = T I  = 1 - T O ,  
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Table 4.3 Treatment of Ho According to the Value of log-Bayes Factor 

0 5 logBlo(z) 5 0.5 

0.5 5 logBlo(z) 5 1 

1 5 logBlo(z) 5 2 

logBlo(z) > 2 

evidence against Ho is poor 

evidence against HO is substantial 

evidence against HO is strong 

evidence against HO is decisive 

then the Bayes factor in favor of HO becomes the likelihood ratio: 

If the prior is a mixture of two priors. <o under Ho and (1 under H I .  then 
the Bayes factor is the ratio of two marginal (prior-predictive) distributions 
generated by (0 and (1. Thus. if ~( '3 )  = *o<o(Q) + 7 r l ( z ( Q )  then, 

I,, . u w T o c o ( e ) d e  

s,, f(Zl@)Tlcl(@)do - rno(z) 

ml ( X I  ' 

- B&(x)  = - 7 0  

T1 

The Bayes factor measures relative change in prior odds once the evidence 
is collected. Table 4.3 offers practical guidelines for Bayesian testing of hy- 
potheses depending on the value of log-Bayes factor. One could use B,",(z) of 
course, but then a 5 logBlo(z) 5 b becomes -b 5 logBo~(x)  I -a. Negative 
values of the log-Bayes factor are handled by using symmetry and changed 
wording. in an obvious way. 

4.2.5.1 Bayesian Testing of Precise Hypotheses Testing precise hypotheses 
in Bayesian fashion has a considerable body of research. Berger (1985), pp. 
148-157. has a comprehensive overview of the problem and provides a wealth 
of references. See also Berger and Sellke (1984) and Berger and Delampady 
(1987). 

If the priors are continuous, testing precise hypotheses in Bayesian fashion 
is impossible because with continuous priors and posteriors. the probability 
of a singleton is 0. Suppose XI0 - f(z1Q) is observed and we are interested 
in testing 

H~ : Q = Q~ V . S .  H~ : o # eo. 
The answer is to  have a prior that has a point mass at the value 80 with prior 
weight TO and a spread distribution [(Q) which is the prior under H1 that  has 
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prior weight 7r1 = 1 - "0. Thus. the prior is the 2-point mixture 

.(Q) = ~ O 6 O 0  + .l<(Q). 
where 60, is Dirac mass at 190. 

The marginal density for X is 

The posterior probability of % = 00 is 

4.2.6 Bayesian Prediction 

Statistical prediction fits naturally into the Bayesian framework. Suppose 
Y N f ( y i 6 )  is to be observed. The posterior predictive distribution of Y, 
given observed X = z is 

For example, in the normal distribution example. the predictive distribution 
o f Y ,  givenX l . . . . . X ,  is 

Example 4.8 Mart2 and Waller (1985) suggest that Bayesian reliability 
inference is most helpful in applications where little system failure data exist. 
but past data from like systems are considered relevant to the present system. 
They use an example of heat exchanger reliability, where the lifetime X is the 
failure time for heat exchangers used in refining gasoline. From past research 
and modeling in this area. it is determined that X has a Tf'eibull distribution 
with K = 3.5. Furthermore. the scale parameter X is considered to be in the 
interval 0.5 5 X 5 1.5 with no particular value of X considered more likely 
than others. 

From this argunient. we have 

1 
0 otherwise 

0.5 5 X 5 1.5 .(A) = 
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where K = 3.5. With n=9 observed failure times (measured in years of service) 
at (0.41. 0.58. 0.75, 0.83. 1.00. 1.08. 1.17, 1.25. 1.35), the likelihood is 

so the sufficient statistic is 

e z z 3 . ’  = 10.16. 
z=1 

The resulting posterior distribution is not distributed Weibull (like the likeli- 
hood) or uniform (like the prior). It can be expressed as 

and has expected value of X g  = 0.6896. Figure 4.4(a) shows the posterior den- 
sity From the prior distribution, E(X) = 1, so our estimate of X has decreased 
in the process of updating the prior with the data. 

2 3 4 

(a) (b) 

Fig. 4.4 (a) Posterior density for A:  
exchanger lifetime. 

(b) Posterior predictive density for heat- 

Estimation of X was not the focus of this study: the analysts were interested 
in predicting future lifetime of a generic (randomly picked) heat exchanger. 
Using the predictive density from (4.4). 



BAYESIAN COMPUTATION AND USE OF WINBUGS 61 

The predictive density is a bit messy, but straightforward to  work with. 
The plot of the density in Figure 4.4(b) shows how uncertainty is gauged for 
the lifetime of a new heat-exchanger. From f(y1z). we might be interested 
in predicting early failure by the new item: for example. a 95% lower bound 
for heat-exchanger lifetime is found by computing the lower 0.05-quantile of 
f (y l z ) .  which is approximately 0.49. 

4.3 BAYESIAN COMPUTATION AND USE OF WINBUGS 

If the selection of an adequate prior was the major conceptual and modeling 
challenge of Bayesian analysis, the major implementational challenge is com- 
putation. When the model deviates from the conjugate structure, finding the 
posterior distribution and the Bayes rule is all but simple. A closed form so- 
lution is more an exception than the rule. and even for such exceptions, lucky 
mathematical coincidences. convenient mixtures. and other tricks are needed 
to  uncover the explicit expression. 

If the classical statistics relies on optimization, Bayesian statistics relies 
on integration. The marginal needed for the posterior is an integral 

m ( z )  = f( .~8)7r(Q)d8. s, 
and the Bayes estimator of h(8).  with respect to  the squared error loss is a 
ratio of integrals. 

The difficulties in calculating the above Bayes rule come from the facts that 
(i) the posterior may not be representable in a finite form, and (ii) the integral 
of h(8) does not haTe a closed form even when the posterior distribution is 
explicit. 

The last two decades of research in Bayesian statistics contributed to  
broadening the scope of Bayesian models. Models that could not be han- 
dled before by a computer are now routinely solved. This is done by Markow 
cham Monte Carlo (LlChlC) Methods. and their introduction to  the field of 
statistics revolutionized Bayesian statistics. 

The hlarkov chain Monte Carlo (h1CMC) methodology was first applied 
in statistical physics. (Lletropolis et al.. 1953). Work by Gelfand and Smith 
(1990) focused on applications of LICAIC to Bayesian models. The principle 
of AICSIC is simple: to sample randomly from a target probability distribu- 
tion one designs a hlarkov chain whose stationary distribution is the target 
distribution. By simulating long runs of such a hlarkov chain, the target 
distribution can be well approximated. Various strategies for constructing 
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appropriate Markov chains that simulate form the desired distribution are 
possible: Metropolis-Hastings, Gibbs sapmler, slice sampling, perfect sam- 
pling. and many specialized techniques. They are beyond the scope of this 
text and the interested reader is directed to Robert (2001), Robert and Casella 
(2004). and Chen, Shao, and Ibrahim (2000), for an overview and a compre- 
hensive treatment. 

We will use WinBUGS for doing Bayesian inference on non conjugate 
models. Appendix B offers a brief introduction to the front-end of Win- 
BUGS. Three volumes of examples are standard addition to the software. in 
the Examples menu of WinBUGS. see Spiegelhalter, Thomas. Best, and Gilks 
(1996). It is recommended that you go over some of those in detail because 
they illustrate the functionality and real modeling power of WinBUGS. A 
wealth of examples on Bayesian modeling strategies using WinBUGS can be 
found in the monographs of Congdon (2001. 2003. 2005). The following ex- 
ample demonstrates the simulation power of WinBUGS, although it involves 
approximating probabilities of complex events and has nothing to do with 
Bayesian inference. 

Example 4.9 Paradox DeMere in WinBUGS. In 1654 the Chevalier 
de Mere asked Blaise Pascal (1623-1662) the following question: In playzng 
a game wzth three dzce why the sum 11 as advantageous to sum 12 when both 
are results of szx posszble outcomes? Indeed, there are six favorable triplets 
for each of the sums 11 and 12. 

11: 
12: 

(1, 4, 6). (1, 5, 5). (2, 3. 6), ( 2 .  4, 5). (3. 3, 5). (3, 4, 4) 
(1, 5. 6) ,  (2. 4, 6). (2. 5. 5), (3, 3, 6),  (3, 4. 5) ,  (4. 4. 4) 

The solution to this "paradox" dehlere is simple. By taking into account all 
possible permutations of the triples, the sum 11 has 27 favorable permutations 
while the sum 12 has 25 favorable permutation. But what if 300 fair dice are 
rolled and we are interested if the sum 1111 is advantageous to the sum 1112? 
Exact solution is unappealing, but the probabilities can be well approximated 
by WinBUGS model demerel. 

model demerel; 

-E 
for (i in 1:300) C 
dice [i] - dcat ( p .  dice [I ) ; 

isllll <- equals(sum(dice[1),llll) 
is1112 <- equals(sum(diceC1) ,1112) 
> 
The data are 

list(p.dice=c(0.1666666, 0.1666666, 
0.1666667, 0.1666667, 0,1666667, 0.1666667) ) 
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and the initial values are generated. After five million rolls. WinBUGS outputs 
is1111 = 0.0016 and is1112 = 0.0015, so the sum of 1111 is advantageous 
to the sum of 1112. 

Example 4.10 Jeremy in WinBUGS. We will calculate a Bayes estima- 
tor for Jeremy's true IQ using BUGS. Recall, the model in Example 4.4 was 
X - N(0.80) and 6' N N(l00,120) .  In WinBUGS we will use the precision 
parameters 11120 = 0.00833 and 1/80 = 0.0125. 

#Jeremy i n  WinBUGS 
model{ 
x - dnorm( t h e t a ,  t au)  
t h e t a  - dnorm( 110, 0.008333333) 
> 
#data 
l ist  ( tau=O. 0125, x=98) 
# i n i t s  
1 i st ( the ta=  100) 

Below is the summary of hlCMC output. 

1 node 1 mean 1 sd I MC error 1 2.5% I median I 97.5% 1 
1 B 1 102.8 1 6.917 1 0.0214 1 89.17 I 102.8 I 116.3 1 

Because this is a conjugate normal/normal model, the exact posterior dis- 
tribution, N(102.8.48). was easy to  find, (see Example 4.4). Note that in 
simulations, the MCMC approximation, when rounded. coincides with the 
exact posterior mean. The hIChIC variance of 6' is 6.9172 = 47.84489. close 
to  the exact posterior variance of 48. 

4.4 EXERCISES 

4.1. A lifetime X (in years) of a particular machine is modeled by an exponen- 
tial distribution with unknown failure rate parameter 6'. The lifetimes 
of X I  = 5. X2 = 6. and X3 = 4 are observed. and assume that an expert 
believes that 6' should have exponential distribution as well and that,  
on average 6' should be 1/3. 

(i) VL-rite down the l I L E  of 6' for those observations. 

(ii) Elicit a prior according to the expert's beliefs. 

(iii) For the prior in (ii). find the posterior. Is the problem conjugate? 

(iv) Find the Baves estimator 8 ~ ~ ~ ~ ~ .  and compare it with the LlLE 
estimator from (i) .  Discuss. 
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4.2. Suppose X = (Xl.. . . , X n )  is a sample from U ( 0 . 8 ) .  Let 8 have Pareto 
Pa(/&. a )  distribution. Show that the posterior distribution is Pa(max(80. 
z1. . . . .  z,} a + n ) .  

4.3. Let X - G(n/2.28). so that X / 8  is xi. Let 8 - ZG(cr. p) .  Show that 
the posterior is ZG(n/2 + a. (z/2 + F1)-'). 

4.4. If X = ( X I  ~. . . , X,) is a sample from NB(rn, 8) and 6' - Be(cr, 3 ) ,  show 
that the posterior for 8 is beta Be(a t mn, ,3 + CZ, xz). 

4.5. In Example 4.5 on p. 54, show that the marginal distribution is negative 
binomial. 

4.6. What is the Bayes factor B:l in Jeremy's case (Example 4.7)? Test HO 
is using the Bayes factor and wording from the Table 4.3. Argue that 
the evidence against HO is poor. 

4.7. Assume XI8 N N(8. a 2 )  and 8 - ~ ( 8 )  = 1. Consider testing HO : 8 5 80 
V.S. H1 : 8 > 80. Show that po = PBix(8 5 80) is equal to  the classical 
p-value. 

4.8. Show that the Bayes factor is B,",(z) = f(zIQ~)/rn~(z). 

where r ( z )  = sup@#@o f(zl8).  Usually. r ( z )  = f(z16bfLE). where Qmle is 
MLE estimator of 8. The Bayes factor B,",(z) is bounded from below: 

4.10. Suppose X = -2 was observed from the population distributed as 
iY(O.l/O) and one wishes to  estimate the parameter 8. (Here 8 is the 
reciprocal of variance a2 and is called the preczsaon parameter. The 
precision parameter is used in WinBUGS to parameterize the normal 
distribution). A classical estimator of 8 (e.g.. the LILE) does exist. but 
one may be disturbed to  estimate l/a2 based on a single observation. 
Suppose the analyst believes that the prior on 8 is Garnrna(1 /2 ,3) .  

(i) What is the hlLE of d? 

(ii) Find the posterior distribution and the Bayes estimator of 8. If the 
prior on 8 is Garnrna(a.P). represent the Bayes estimator as weighted 
average (sum of weights = 1) of the prior mean and the AlLE. 

(iii) Find a 95% HPD Credible set for 8. 

(iv) Test the hypothesis HO : 8 5 1/4 versus H1 : 8 > 1/4. 
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4.11. The Lzndley (1957) Paradox. Suppose gl8 N N(8.1,'n). We wish to test 
HO : 8 = 0 versus the two sided alternative. Suppose a Bayesian puts 
the prior P(8 = 0) = P(8 # 0) = l / 2 ,  and in the case of the alternative, 
the 1/2 is uniformly spread over the interval [ - M / 2 . M / 2 ] .  Suppose 
n = 40.000 and $i = 0.01 are observed. so v'% 0 = 2 .  The classical 
statistician rejects HO at level a: = 0.05. Show that posterior odds in 
favor of Ho are 11 if M = 1. indicating that a Bayesian statistician 
strongly favors Ho. according to Table 4.3. 

4.12. This exercise concerning Bayesian binary regression with a probit model 
using WinBUGS is borrowed from David Madigan's Bayesian Course 
Site. Finney (1947) describes a binary regression problem with data  of 
size n = 39. two continuous predictors x1 and 2 2 .  and a binary response 
y .  Here are the data in BUGS-ready format: 

1ist(n=39,x1=c(3.7,3.5,1.25,0.75,0.8,0.7,0.6,1.1,0.9,0.9,0.8,0.55,0.6,1.4, 
0.75,2.3,3.2,0.85,1.7,1.8,0.4,0.95,1.35,1.5,1.6,0.6,1.8,0.95,1.9,1.6,2.7, 
2.35,1.1,1.1,1.2,0.8,0.95,0.75,1.3), 
x2=c(0.825,1.09,2.5,1.5,3.2,3.5,0.75,1.7,0.75,0.45,0.57,2.75,3.0,2.33,3.75, 
1.64,1.6,1.415,1.06,1.8,2.0,1.36,1.35,1.36,1.78,1.5,~.5,1.9,0.95,0.4,0.75, 
0.03,1.83,2.2,2.0,3.33,1.9,1.9,1.625~, 
y=c~1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0,1,0,0,~,1, 
1,0,0,1)) 

The objective is to build a predictive model that predicts y from z1 

and x2. Proposed approach is the probit model: P ( y  = 1lzl.s~) = 
Q(30 + 31 2 1  + 3 2  x2)  where Q is the standard normal CDF. 

(i) Use PYinBUGS to compute posterior distributions for Do. 31 and 02 
using diffuse normal priors for each. 

(ii) Suppose instead of the diffuse normal prior for 3,. z = 0 , l .  2 .  you 
use a normal prior with mean zero and variance ut .  and assume the v,s 
are independently exponentially distributed with some hyperparameter 
7 .  Fit this model using BUGS. How different are the two posterior 
distributions from this exercise? 

4.13. The following WinBUGS code flips a coin. the outcome H is coded by 
1 and tails by 0. Mimic the following code to  simulate a rolling of a fair 
die. 

#coin.bug: 
model coin; 
c 
f lip12 - dcat (p . coin [I ) 
coin <- flip12 - 1 
> 
#coin. dat : 
list(p.coin=c(0.5, 0 . 5 ) )  
# just generate initials 
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4.14. The highly publicized (recent TV reports) zn vztro fertzlzzatzon success 
cases for women in their late fifties all involve donor's egg. If the egg is 
the woman's own, the story is quite different. 

In vitro fertilization (IVF). one of the assisted reproductive technology 
(ART) procedures, involves extracting a woman's eggs, fertilizing the 
eggs in the laboratory. and then transferring the resulting embryos into 
the womans uterus through the cervix. Fertilization involves a special- 
ized technique known as intracytoplasmic sperm injection (ICSI). 

The table shows the live-birth success rate per transfer rate from the 
recipients' eggs, stratified by age of recipient. The data  are for year 
1999, published by US - Centers for Disease Control and Prevention 
(CDC): (http: //www . cdc. gov/reproductivehealth/ART99/index99. htm ) 

Age (x) 24 25 26 27 28 29 30 31 
Percentage (y) I 38.7 38.6 38.9 41.4 39.7 41.1 38.7 37.6 

Age (XI 32 33 34 35 36 37 38 39 
Percentage(y) 36.3 36.9 35.7 33.8 33.2 30.1 27.8 22.7 

Age (x) 40 41 42 43 44 45 46 
Percentage(y) 21.3 15.4 11.2 9.2 5.4 3.0 1.6 

Assume the change-point regression model 

Yi = Po+Plzz+ti ,  i = l ' . . , , ' T  

Yi 
~i N N(0 ,a2) .  

= YO + rizi + E , '  i = 7 + 1. . . . n 

(i)  Propose priors (with possibly hyperpriors) on g 2 ,  80, 61. yo, and ~ 1 .  

(ii) Take discrete uniform prior on 'T and write a WinBUGS program. 

4.15. Is the cloning of humans moral? Recent Gallup Poll estimates that 
about 88% Americans opposed cloning humans. Results are based on 
telephone interviews with a randomly selected national sample of n = 
1000 adults. aged 18 and older, conducted May 2-4. 2004. In these 1000 
interviews. 882 adults opposed cloning humans. 

(i) Write IVinBUGS program to estimate the proportion p of people 
opposed to  cloning humans. Use a non-informative prior for p .  

(ii) Test the hypothesis that p 5 0.87. 

(iii) Pretend that the original poll had n = 1062 adults, i.e.. results 
for 62 adults are missing. Estimate the number of people opposed to 
cloning among the 62 missing in the poll. Hznt: 

model { anticlons - dbin(prob,npolled) ; 
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lessthan87 <- step(prob-0.87) 
anticlons.missing - dbin(prob,nmissing) 
prob dbeta(1,l)) 

Data 
list(anticlons=882,npolled= 1000, nmissing=62) 
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Order St a tis t i cs 

The early bird gets the worm, but the second mouse gets the cheese. 

Steven Wright 

Let X I  ~ X2 . . . , X ,  be an independent sample from a population with ab- 
solutely continuous cumulative distribution function F and density f .  The 
continuity of F implies that P ( X i  = X , )  = 0: when i # j and the sample 
could be ordered with strict inequalities, 

X I : ,  < X2:,  < . . . < X n - h  < x,:nj (5.1) 

where X i : ,  is called the ith order statist ic (out of n). The range of the data 
is X n : ,  - XI:,, where X n : ,  and X I : ,  are. respectively, the sample maximum 
and minimum. The study of order statistics permeates through all areas of 
statistics, including nonparametric. There are several books dedicated just to  
probability and statistics related to order statistics; the textbook by David 
and Nagaraja (2003) is a deservedly popular choice. 

The marginal distribution of X t : ,  is not the same as X , .  Its distribut,ion 
function Fi:,(t) = P(Xi : ,  5 t )  is the probability that at least i out of n 
observations from the original sample are no greater than t .  or 

If F is differentiable, it is possible to show that the corresponding density 

69 
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function is 

Example 5.1 
sample F ( X 1 ) .  
distribution of 
the densities a1 

f t  n( t )  = i F(t)"-l (1 - F ( t ) ) n - 2  f ( t ) .  (5.2) ("> 
Recall that  for any continuous distribution F ,  the transformed 
. . . . F(X , )  is distributed U ( 0 , l ) .  Similarly. from (5.2) the 
F ( X z  n) is Be(i ,  n - i + 1). Using the MATLAB code below, 
.e graphed in Figure 5.1. 

>> x=O:O.O25:1; 
>> f o r  i=1,5 
>> plo t (be tapdf  (x,i,6-i)) 
>> hold  a l l  
>> end 

Example 5.2 Reliability Systems. In reliability. series and parallel sys- 
tems are building blocks for system analysis and design. A serzes system is one 
that works only if all of its components are working. A parallel system is one 
that fails only if all of its components fail. If the lifetimes of a n-component 
system ( X I ,  . . . . X,) are i.i.d. distributed. then if the system is in series. the 
system lifetime is XI  n .  On the other hand, for a parallel system, the lifetime 
is X ,  n .  

5.1 JOINT DISTRIBUTIONS OF ORDER STATISTICS 

Unlike the original sample ( X I .  X z . .  . . . X,).  the set of order statistics is in- 
evitably dependent. If the vector ( X I .  X z . .  . . ~ X,) has a joint density 

f l 2 ,  ,(a. z2>.  . . ? z,) = fi f (GI* 
z = l  

then the joint density for the order statistics. fl 2 , ,(XI, .... 2,)  is 

To understand why this is true. consider the conditional distribution of 
the order statistics y = ( 2 1  ,. 2 2  ,.. . . ,x, ,) given x = (XI. 2 2 . .  . . . z n ) .  Each 
one of the n! permutations of ( X I .  X2 . .  . . X,) are equal in probability, so 
computing f, = f,~,dF, is incidental. The joint density can also be derived 
using a Jacobian transformation (see Exercise 5 . 3 ) .  
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"0 0.2 0.4 0.6 0.8 1 
Fig. 5.1 Distribution of order statistics from a sample of five U ( O . l ) .  

From ( 5 . 3 )  we can obtain the distribution of any subset of order statistics. 
The joint distribution of X ,  n. X ,  n. 1 T < s 5 n is defined as 

which is the probability that at least r out of n observations are at most x,, 
and at  least s of n observations are at most x,. The probability that exactly 
z observations are at most x, and j are at most xs is 

where --x < x, < x, < x: hence 

F ( x T ) Z  ( F ( z , )  - F ( x r ) ) 3 - z  (1 - F ( x s ) ) n - J .  (5.4) 

If F is differentiable. it is possible to formulate the joint density of two order 
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statistics as 

Example 5.3 Sample Range. The range of the sample. R: defined before 
as Xn:n  - XIzn, has density 

-x 

fR(U) = J' n(n - l ) [ F ( u )  - F ( u  - u)]"-2 f (u  - u ) f ( v ) d v .  

To find f~(u). start with the joint distribution of ( X I  n . X n  n) in (5.5). 

(5.6) 
--x 

f l  n n(Y1. Yn) = n(n - 1 ) [ F ( Y n )  - F(Y1)1n-2f(Yl)f(Yn). 

and make the transformation 

The Jacobian of this transformation is 1. and ~1 = u - u. yn = 'u. Plug Y1,Yn 
into the joint distribution f ~ , ~ : ~ ( y l .  un) and integrate out u to arrive at (5.6). 
For the special case in which F ( t )  = t ,  the probability density function for 
the sample range simplifies to 

fR(U) = n(n - l)u"-2(l- u). 0 < u < 1. 

5.2 SAMPLE QUANTILES 

Recall that for a distribution F .  the pth quantile (xp) is the value J: such 
that F ( z )  = p ,  if the distribution is continuous. and more generally, such 
that F ( z )  2 p and P(X 2 J:) 2 1 - p .  if the distribution is arbitrary. For 
example. if the distribution F is discrete, there may not be any value z for 
which F ( z )  = p .  

Analogously. if XI,. . . . X ,  represents a sample from F, the pth sample 
quantzle ( Z p )  is a value of z such that loop% of the sample is smaller than z. 
This is also called the loop'% sample percentzle. JT'ith large samples. there is 
a number 1 5 r 5 n such that X, = zp .  Specifically. if n is large enough 
so that p ( n  + 1) = r for some r E Z. then 2p = X ,  because there would be 
r - 1 values smaller than g p  in the sample, and n - r larger than it. 

If p ( n  + 1) is not an integer. we can consider estimating the population 
quantile by an inner point between two order statistics, say X, and X(,+ll n. 
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where F ( X ,  ,) < p - E and F(X(,+1) ,) > p + E for some small E > 0. In this 
case. we can use a number that interpolates the value of 2, using the line 
between ( X r  n .  r / ( n  + 1)) and (X(?+l)  n. ( r  + l ) / (n  + 1)): 

2 p  = ( - P ( n  + 1) + r + 1) x, 71 + ( p ( n  + 1) - r )  X(?+I) n. (5.7) 

Note that i fp  = 112 and n is an even number. then r = 7 2 1 2  and r+l = n/2+1. 
and + X ( % + l )  n ) / 2 .  That is. the sample median is the average of 
the two middle sample order statistics. 

We note that there art. alternative definitions of sample quantile in the 
literature. but they all have the same large sample properties. 

= ( X S  

5.3 TOLERANCE INTERVALS 

Unlike the confidence interval, which is constructed to  contain an unknown 
parameter with some specified degree of uncertainty (say. 1 - y). a tolerance 
znterval contains at least a proportion p of the population with probability y. 
That is. a tolerance interval is a confidence interval for a distribution. Both 
p .  the proportion of coverage. and 1 - -, ~ the uncertainty associated with the 
confidence statement. are predefined probabilities. For instance, we may be 
95% confident that 90% of the population will fall within the range specified 
by a tolerance interval. 

Order statistics play an important role in the construction of tolerance 
intervals. From a sample X I , .  . . . X ,  from (continuous) distribution F ,  two 
statistics TI < Tz represent a 1007 percent tolerance interval for loop percent 
of the distribution F if 

Obviously, the distribution F(T2)  - F(T1) should not depend on F .  Recall 
that  for an order statistic X ,  ,. U, , = F(X,.,) is distributed Be(i.  n - i + 1). 
Choosing TI and T2 from the set of order statistics satisfies the requirements 
of the tolerance interval and the computations are not difficult. 

One-sided tolerance intervals are related to  confidence intervals for quan- 
tiles. For instance. a 90% upper tolerance bound for 95% of the population is 
identical to  a 90% one-sided confidence interval for xo 95. the 0.95 quantile of 
the distribution. IVith a sample of x1 ~. . . . s, from F .  a y interval for loop% 
of the population would be constructed as (-x% x, ,) for some r E (1.. . . , n}. 



74 ORDER STATISTICS 

Here are four simple steps to help determine T :  

1. We seek T so that P(-cc < x p  < XT,,) = y = P(X,: ,  > q,) 

2 .  At most T - 1 out of n observations are less than xp 

3. Let Y = number of observations less than x p .  so that Y w Bin(n,p) if 
xp is the p t h  quantile 

4. Find r large enough so that P(Y 5 T - 1) = y. 

Example 5.4 A 90% upper confidence bound for the 75th percentile (or 
upper quartile) is found by assigning Y= number of observations less than 
2 0 . 7 5 ,  where Y - Bin(n,0.75). Let n = 20. Note P(Y 5 16) = 0.7748 and 
P(Y 5 17) = 0.9087, so r - 1 = 17. The 90% upper bound for 5 0 . 7 5 ,  which 
is equivalent to a 90% upper tolerance bound for 75% of the population, is 
2 1 8  20 (the third largest observation out of 20). 

For large samples, the normal approximation allows us to generate an 
upper bound more simply. For the upper bound 2 ,  ,. T is approximated with 

F = n p  + z 7 J m  

In the example above. with n = 20 (of course. this is not exactly what we 
think of as "large"). F = 20(0.75) + 1.28,/0.75(0.25)20 = 17.48. According to 
this rule. 2 1 7  20 is insufficient for the approximate interval. so 2 1 8  20 is again 
the upper bound. 

Example 5.5 Sample Range. From a sample of n. what is the probability 
that loop% of the population lies within the sample range  XI:^, X,,,)? 

P (F(X, n) - F(X1 n) 2 P )  = 1 - p (U, < P )  

where U, = Un 
we let -/ = P(Un 2 p ) .  then y. the tolerance coefficient can be solved 

- U1 ,. From (5.6) it was shown that Un w Be(n - 1 , 2 ) .  If 

1 - y = npn--l - (n  - 1)pn. 

Example 5.6 The tolerance interval is especially useful in compliance moni- 
toring at industrial sites. Suppose one is interested in maximum contaminant 
levels (AICLs). The tolerance interval already takes into account the fact that 
some values will be high. So if a few values exceed the SICL standard. a site 
may still not be in violation (because the calculated tolerance interval may 
still be lower than the UCL). But if too many values are above the NCL, 
the calculated tolerance interval will extend beyond the acceptable standard. 
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As few as three data points can be used to  generate a tolerance interval, but 
the EPA recommends having at least eight points for the interval to have any 
usefulness (EPA/530-R-93-003). 

Example 5.7 How large must a sample size n be so that at least 75% of 
the contamination lex-els are between X2 with probability of 
at least 0.95? If we follow the approach above. the distribution of V, = 

U(,-,) - U2 is Be ( ( n  - I) - 2 .  n - ( n  - 1) + 2 + 1) = Be(n - 3.4).  IVe 
need n so that P(Vn 2 0.75) = betainc(0.25,4,n-3) 2 0.95 which occurs 
as long as n 2 29. 

and X ( n - l )  

5.4 ASYMPTOTIC DISTRIBUTIONS OF ORDER STATISTICS 

Let Xr,, ,  be rth order statistic in a sample of size n from a population with 
an absolutely continuous distribution function F having a density f .  Let 
r / n  -+ p ,  when n -i x. Then 

where x p  is pth quantile of F ,  i.e.. F(zJ , )  = p .  

size n. Let r / n  -+ p l  and s / n  -+ p2.  when n -+ x. Then, for large n. 
Let X ,  , and X ,  be rth and sth order statistics ( T  < s) in the sample of 

where 

Example 5.8 Let r = n/2 so we are estimating the population median with 
2 50 = z(”/2) n .  If f (z )  = Qexp(-Oz). for z > 0. then T O  50 = ln(2)/0 and 

&i (20 50 - 5 0  5 0 )  ==+ N (0.0-2) . 
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5.5 EXTREME VALUE THEORY 

Earlier we equated a series system lifetime (of n i.i.d. components) with the 
sample minimum X I  ,. The limiting distribution of the minima or maxima 
are not so interesting. eg . .  if X has distribution function F ,  X I  , -+ 20. 

where 50 = inf,{z : F ( z )  > O}. However. the standardzzed lzmzt is more 
interesting. For an example involving sample maxima, with X I ,  ..., X ,  from 
an exponential distribution with mean 1, consider the asymptotic distribution 
of x, , - log(n): 

P ( X ,  , - log(n) 5 t ) )  = P ( X ,  , 5 t + log(n)) = [I - exp{-t - log(n)}]" 
- - [I - e- tn- l]n + exp{-ePt}. 

This is because (1 + a/n)" -+ e" as n ---f x. This distribution, a special form 
of the Gumbel distribution, is also called the extreme-value dzstrabutzon. 

Extreme value theory states that the standardized series system lifetime 
converges to  one of the three following distribution types F* (not including 
scale and location transformation) as the number of components increases to  
infinity: 

Gumbel F * ( z )  = exp(-exp(-z)), - x < 2 < 30 

Frkchet 

exp(-(-z)a). J: < 0, a > 0 
x > o  Negative Weibull F * ( z )  = 

5.6 RANKED SET SAMPLING 

Suppose a researcher is sent out to Leech Lake. IIinnesota, to ascertain the 
average weight of \:alleye fish caught from that lake. She obtains her data by 
stopping the fishermen as they are returning to  the dock after a day of fishing. 
In the time the researcher waited at the dock, three fishermen arrived. each 
with their daily limit of three Walleye. Because of limited time, she only has 
time to make one measurement with each fisherman. so at the end of her field 
study. she will get three measurements. 

hIcIntyre (1952) discovered that with this forced limitation on measure- 
ments. there is an efficient way of getting information about the population 
mean. M'e might assume the researcher selected the fish to be measured ran- 
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domly for each of the three fishermen that were returning to shore. 5lcIntyre 
found that if she instead inspected the fish visually and selected them non- 
randomly. the data could beget a better estimator for the mean. Specifically. 
suppose the researcher examines the three Walleye from the first fisherman 
and selects the smallest one for measurement. She measures the second small- 
est from the next batch, and the largest from the third batch. 

Opposed to a simple random sample (SRS). this ranked set sample (RSS) 
consists of independent order statistics which we will denote by Xll 31. XlZ 3 1 ,  

Xp 3 1 .  If X is the sample mean from a SRS of size n. and X ~ s s  is the mean 
of a ranked set sample Xll n ~ l  . . . . XIn n ~ l  it is easy to  show that like X ,  X ~ s s  
is an unbiased estimator of the population mean. illoreover. it has smaller 
variance. That is. Var(XRss) 5 Var(X).  

This property is investigated further in the exercises. The key is that 
variances for order statistics are generally smaller than the variance of the i.i.d. 
measurements. If you think about the SRS estimator as a linear combination 
of order statistics. it differs from the linear combination of order statistics 
from a RSS by its covariance structure. It seems apparent. then. that  the 
expected value of X ~ s s  must be the same as the expected value of a X ~ s s .  

The sampling aspect of RSS has received the most attention. Estimators of 
other parameters can be constructed to be more efficient than SRS estimators. 
including nonparametric estimators of the CDF (Stokes and Sager. 1988). The 
book by Chen, Bai, and Sinha (2003) is a comprehensive guide about basic 
results and recent findings in RSS theory. 

5.7 EXERCISES 

5.1. In MATLAB: Generate a sequence of 50 uniform random numbers and 
find their range. Repeat this procedure M = 1000 times: you will obtain 
1000 ranges for 1000 sequences of 50 uniforms. Next, simulate 1000 
percentiles from a beta Be(49.2) distribution for p = (1 : 1000)/1001. 
Use ?\I-file betainv(p, 49, 2 ) .  Produce a histogram for both sets of 
data, comparing the ordered ranges and percentiles of their theoretical 
distribution. Be(49.2). 

5.2. For a set of i.i.d. data from a continuous distribution F ( z ) .  derive the 
probability densitj- function of the order statistic X ,  in (5.2). 

5.3. For a sample of n = 3 observations. use a Jacobian transformation to 
derive the joint density of the order statistics. X1 3 .  X z  3 ,  X3 3 .  

5.4. Consider a system that is composed of n identical components that 
have independent life distributions. In reliability. a k-out-of-n system is 
one for which at least k out of n components must work in order for the 
system to work. If the components have lifetime distribution F .  find the 
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distribution of the system lifetime and relate it to the order statistics of 
the component lifetimes. 

5.5. In 2003, the lab of Human Computer Interaction and Health Care In- 
formatics at  the Georgia Institute of Technology conducted empirical 
research on the performance of patients with Diabetic Retinopathy. The 
experiment included 29 participants placed either in the control group 
(without Diabetic Retinopathy) or the treatment group (with Diabetic 
Retinopathy). The visual acuity data of all participants are listed be- 
low. Normal visual acuity is 20120, and 20160 means a person sees at 
20 feet what a normal person sees at  60 feet. 

20120 20120 20120 20125 20115 20130 20125 20120 
20125 20180 20130 20125 20130 20150 20130 20120 
20115 20120 20125 20116 20130 20115 20115 20125 

The data of five participants were excluded from the table due to their 
failure to meet the requirement of the experiment, so 24 participants 
are counted in all. In order to verify if the data can represent the visual 
acuity of the general population, a 90% upper tolerance bound for 80% 
of the population is calculated. 

5.6. In MATLAB. repeat the following 111 = 10000 times 

0 Generate a normal sample of size n = 100, X I .  . . . , Xl00. 

0 For a two-sided tolerance interval, fix the coverage probability as 
p = 0.8. and use the random interval (X5 100, X95 100). This interval 
will cover the proportion Fx(X95 100) - Fx(X5 100) = U95 100 - 

Us 100 of the normal population. 

0 Count how many times in M runs Us5 100 - U5 100 exceeds the 
preassigned coverage p? Use this count to estimate y. 

0 Compare the simulation estimator of y with the theory, y = 1 - 
betainc(p, s-r, (n+l>-(s-r)). 
What if instead of normal sample you used an exponentially dis- 
tributed sample? 

5.7. Suppose that components of a system are distributed i.i.d. U ( 0 , l )  life- 
time. By standardizing with 11. where n are the number of components 
in the system. find the limiting lifetime distribution of a parallel system 
as the number of components increases to infinity. 

5.8. How large of a sample is needed in order for the sample range to serve 
as a 99% tolerance interval that contains 90% of the population? 
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5.9. How large must the sample be in order to have 95% confidence that at  
least 90% of the population is less than X ( n - l )  n? 

5.10. For a large sample of i.i.d. randomly generated U ( O . l )  variables. com- 
pare the asymptotic distribution of the sample mean with that of the 
sample median. 

5.11. Prove that a ranked set sample mean is unbiased for estimating the 
population mean by showing that C ~ = l E ( X ~ , , ~ )  = n p .  In the case 
the underlying data are generated from U ( 0 ,  l),  prove that the sample 
variance for the RSS mean is strictly less than that of the sample mean 
from a SRS. 

5.12. Find a 90% upper tolerance interval for the 9gth percentile of a sample 
of size n=1000. 

5.13. Suppose that N items, labeled by sequential integers as ( 1 . 2 , .  . . . N } .  
constitute the population. Let X I ,  X2 . .  . . . X ,  be a sample of size n 
(without repeating) from this population and let XI ,. . . . . X ,  , be the 
order statistics. It is of interest to estimate the size of population, N .  

This theoretical scenario is a basis for several interesting popular prob- 
lems: tramcars in San Francisco. captured German tanks. maximal lot- 
tery number. etc. The most popular is the German tanks story. featured 
in The Guardzan (2006). The full story is quite interesting. but the bot- 
tom line is to estimate total size of production if five German tanks with 
"serial numbers" 12, 33. 37. 78, and 103 have been captured by Allied 
forces. 

(i)  Show that the distribution of X ,  ,, is 

k - 1  i\'-k 

~ 
k = 2.2 + 1..  . . . h'- 12 + 1 ( 1 - 1 )  ( n--z 1 

(9 
P ( X , ,  = k )  = 

(ii) Using the identity Ck=, N-n+z ( z - I )  k-- l  ( A\'-k n-,) = (':) and distribution from 

(i), show that EX, , = z(N + l ) / ( n  + 1). 

(iii) Show that the estimator Y, = (n + l)/zX,, - 1 is unbiased for 
estimating N for any z = 1 , 2 . .  . . , n. Estimate number of tanks N on 
basis of Ys from the observed sample {12,33,37.78.103}. 
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Goodness of Fit 

Believe nothing just because a so-called wise person said it. 
Believe nothing just because a belief is generally held. 
Believe nothing just because it is said in ancient books. 
Believe nothing just because it is said to be of divine origin. 
Believe nothing just because someone else believes it. 
Believe only what you yourself test and judge to be true. 

paraphrased from the Buddha 

Modern experiments are plagued by well-meaning assumptions that the data 
are distributed according to some “textbook“ CDF. This chapter introduces 
methods to  test the merits of a hypothesized distribution in fitting the data. 
The term goodness of fit was coined by Pearson in 1902. and refers to  sta- 
tistical tests that check the quality of a model or a distribution’s fit to a set 
of data. The first measure of goodness of fit for general distributions was 
derived by Kolmogorov (1933). Andrei Nikolaevich Kolmogorov (Figure 6.1 
(a)) ,  perhaps the most accomplished and celebrated Soviet mathematician 
of all time. made fundamental contributions to  probability theory. includ- 
ing test statistics for distribution functions - some of which bear his name. 
Nikolai Vasil’yevich Smirnov (Figure 6.1 (b)).  another Soviet mathematician, 
extended Kolmogorov’s results to two samples. 

In this section we emphasize objective tests (with p-values. etc.) and later 
we analyze graphzcal methods for testing goodness of fit. Recall the empirical 
distribution functions from p. 34. The Kolmogorov statzstzc (sometimes called 

81 
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Fig. 6.1 
Smirnov (1900-1966) 

(a) Andrei Diikolaevich Kolmogorov (1905-1987) : (b) Xkolai Vasil’yevich 

the Kolmogorov-Smirnov test statistic) 

is a basis to  many nonparametric goodness-of-fit tests for distributions. and 
this is where we will start. 

6.1 KOLMOGOROV-SMIRNOV TEST STATISTIC 

Let X I ,  X 2 , .  . . . X ,  be a sample from a population with continuous. but un- 
known CDF F. As in (3.1), let F,(z) be the empirical CDF based on the 
sample. To test the hypothesis 

Ho : F ( z )  = Fo(z), (VZ) 

versus the alternative 

we use the modified statistics &D, = sup,f i~F, , (z)  - Fo(x)/ calculated 
from the sample as 

f i D ,  = J;; max{max IFn(Xz) - Fo(X,)/.rnax/F,(X,-) - Fo(X,)/}. 
Z 2 

This is a simple discrete optimization problem because F,, is a step function 
and FO is nondecreasing so the maximum discrepancy between F,, and FO 
occurs at the observation points or at their left limits. \Vhen the hypothesis 
Ho is true. the statistic JED, is distributed free of F , .  In fact. Kolmogorov 
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(1933) showed that under Ho. 

30 

P(&Dn 5 d )  ===+ H ( d )  = 1 - 2 ~ ( - 1 ) " - ' ~ - ~ ~ ~ " * .  
J = 1  

In practice, most Kolmogorov-Smirnov (KS) tests are two sided, testing 
whether the F is equal to  Fo. the distribution postulated by Ho. or not. 
Alternatively. we might test to see if the distribution is larger or smaller than 
a hypothesized Fo. For example. to find out if X is stochastically smaller than 
Y (Fx(x) 2 F y ( z ) ) .  the two one-sided alternatives that can be tested are 

HI - : F ~ ( z )  5 Fo(z) or : F X ( Z )  2 F~(z). 

Appropriate statistics for testing HI,- and H I , +  are 

&D: E SUP fi(&(~) - Fo(z))? 
X 

which are calculated at the sample values as 

A D ;  = &max{max(Fo(X,) - Fn(X7-)).0} and 

f i D :  = fimax{max(F,(X,) - Po(X,)),O}. 

Obviously. D, = max{D;. D k } .  In terms of order statistics, 

7 

7 

0,' 

D, = max{max(Fo(X, - (Z - 1) /n) ,  O } .  

= max{max(F,(X,) - Fo(X,)).O} = max{max(z/n - Fo(X, ,).(I} and 
7 2 

7 

Under Ho. the distributions of Dk and D; coincide. Although conceptually 
straightforward. the derivation of the distribution for Dk is quite involved. 
Under Ho, for c E (0. 1). vie have 

P(D,' < c) = P(z/n - U , ,  < c. for all z = 1 . 2 . .  . . . n )  

= P(C: > z/n - c. for all z = 1 . 2 . .  . . ~ n )  

where f (u1 . .  . . , u,) = n!1(0 < u1 < . .  . < un < 1) is the joint density of n 
order statistics from U(O.1) .  

Birnbauin and Tingey (1951) derived a more computationally friendly rep- 
resentation: if c is the observed value of 0,' (or D;). then the p-value for 
testing HO against the corresponding one sided alternative is 
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This is an exact p-value. When the sample size n is large (enough so that the 
error of order O(nP3l2)  can be tolerated), an approximation can be used: 

To obtain the p-value approximation, take x = (6nc+1)'/(18n). where c i s  the 
observed 0,' (or D;) and plug in the right-hand-side of the above equation. 

Table 6.4. taken from Miller (1956). lists quantiles of D,f for values of 
n 5 40. The DL values refer to  the one-sided test. so for the two sided test, 
we would reject Ho at level Q if 0,' > k,(l  - a/2) .  where k,(l  - a )  is the 
tabled quantile under a .  If n > 40, we can approximate these quantiles k,(ci) 
as 

k ,  1 1.07/& 1.22/& 1.36/& 1.52/f i  1.63/& 

Q I 0.10 0.05 0.025 0.01 0.005 

Later, we will discuss alternative tests for distribution goodness of fit. 
The KS test has advantages over exact tests based on the x 2  goodness-of- 
fit statistic (see Chapter 9),  which depend on an adequate sample size and 
proper interval assignments for the approximations to  be valid. The KS test 
has important limitations. too. Technically. it only applies to  continuous 
distributions. The KS statistic tends to  be more sensitive near the center of 
the distribution than at the tails. Perhaps the most serious limitation is that  
the distribution must be fully specified. That is, if location, scale. and shape 
parameters are estimated from the data,  the critical region of the KS test is 
no longer valid. It typically must be determined by simulation. 

Example 6.1 With 5 observations { O . l .  0.14.0.2.0.48.0.58). we wish to  test 
Ho: Data are distributed I A ( O . 1 )  versus HI: Data are not distributed IA(0.1). 
We check F, and Fo(x) = x at the five points of data along with their left- 
hand limits. IF, (x,) - Fo (x,) I equals (0.1. 0.26, 0.4. 0.32. 0.42) at z = 1. . . . .5. 
and IFn(x2-) - Fo(x,)/ equals (0.1. 0.06. 0.2, 0.12. 0.22). so that D ,  = 0.42. 
According to the table, k5(.10) = 0.44698. This is a two-sided test, so the test 
statistic is not rejectable at Q = 0.20. This is due more to the lack of sample 
size than the evidence presented by the five observations. 

Example 6.2 Galaxy velocity data,  available on the book's website. was 
analyzed by Roeder (1990). and consists of the velocities of 82 distant galaxies. 
diverging from our own galaxy. A mixture model was applied to  describe the 
underlying distribution. The first hypothesized fit is the normal distribution. 
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Table 6.4 Upper Quantiles for Kolmogorov-Smirnov Test Statistic. 

n I a = .10 a = .05 a = ,025 a = .01 LY = ,005 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

.90000 
,68377 
,56481 
,49265 
,44698 
,41037 
,38148 
,35831 
,33910 
,32260 

,30829 
,29577 
,28470 
,27481 
,26588 
,25778 
,25039 
,24360 
,23735 
,23156 

,22617 
,22115 
.21645 
,21205 
.20790 
,20399 
,20030 
,19680 
,19348 
,19032 

,18732 
,18445 
,18171 
,17909 
,17659 
,17418 
,17188 
,16966 
,16753 
,16547 

,95000 
,77639 
,63604 
,56522 
,50935 
,46799 
,43607 
,40962 
.38746 
,36866 

,35242 
,33815 
,32549 
,31417 
,30397 
,29472 
,28627 
,27851 
,27136 
,26473 

,25858 
,25283 
,24746 
,24242 
,23768 
,23320 
,22898 
,22497 
,22117 
,21756 

,21412 
,21085 
,20771 
,20472 
,20185 
,19910 
,19646 
,19392 
,19148 
,18913 

,97500 
,84189 
,70760 
,62394 
,56328 
,51926 
,48342 
,45427 
,43001 
,40925 

,39122 
,37543 
,36143 
,34890 
,33760 
,32733 
,31796 
,30936 
,30143 
,29408 

,28724 
,28087 
.27490 
,26931 
,26404 
,25907 
,25438 
,24993 
,24571 
,24170 

,23788 
,23424 
,23076 
,22743 
,22425 
,22119 
,21826 
,21544 
.21273 
,21012 

.99000 

.90000 
,78456 
,68887 
,62718 
,57741 
,53844 
,50654 
,47960 
,45662 

,43670 
,41918 
,40362 
,38970 
,37713 
,36571 
,35528 
,34569 
,33685 
,32866 

,32104 
,31394 
,30728 
,30104 
.29516 
,28962 
,28438 
,27942 
,27471 
.27023 

,26596 
,26189 
,23801 
,25429 
,25073 
,24732 
,24404 
,24089 
,23786 
,23494 

.99300 
,92929 
,82900 
,73424 
,66853 
,61661 
,57581 
,54179 
.5 1332 
,48893 

,46770 
,44005 
,43247 
,41762 
,40420 
,39201 
,38086 
,37062 
,36117 
,35241 

,34427 
,33666 
,32954 
,32286 
,31657 
,31064 
,30502 
,29971 
,29466 
.28987 

,28530 
.28094 
,27677 
,27279 
,26897 
,26532 
,26180 
,25843 
,25518 
,25205 
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specifically M(2l .  (m)’). and the KS distance (&On = 1.6224 with p-value 
of 0.0103. The following mixture of normal distributions with five components 
was also fit to the data: 

I? = 0.1@(9. 0.5’) + 0.02@(17. (m)’) + 0.4@(20, (A)’) 
+0.4@(23. (A)’) + 0.05@(33, (A)’). 

where @ ( p , o )  is the CDF for the normal distribution. The KS statistics is 
&Dn = 1.1734 and corresponding p-value is 0.1273. Figure 6.2 plots the 
the CDF of the transformed variables 6 ( X ) .  so a good fit is indicated by a 
straight line. Recall, if X N F .  than F ( X )  N U U(0.1) and the straight line 
is, in fact, the CDF of U(0.1). F ( x )  = 2.0 5 z 5 1. Panel (a) shows the fit for 
the M(21, (m)2) model while panel (b) shows the fit for the mixture model. 
Although not perfect itself, the mixture model shows significant improvement 
over the single normal model. 

Fig. 6.2 Fitted distributions: (a) N(21, and (b) Mixture of Normals. 

6.2 SMIRNOV TEST TO COMPARE TWO DISTRIBUTIONS 

Smirnov (1939a, 1939b) extended the KS test to compare two distributions 
based on independent samples from each population. Let X I ,  X’, . . . , X ,  and 
Yl.  Y’. . . . . Y, be two independent samples from populations with unknown 
CDFs F x  and G y .  Let F,(x) and G,(z) be the corresponding empirical 
distribution functions. 

We would like to  test 

We will use the analog of the KS statistic D,: 
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where Dm,, can be simplified (in terms of programming convenience) to  

Dm,n = max{ICn(Zt) - Gn(Zt)I} 

and Z = 2 1 ,  . . . . Z,+, is the combzned sample X I ,  . . . ~ X,. Y I .  . . . . Y,. Dm,n 
will be large if there is a cluster of values from one sample after the samples 
are combined. The imbalance can be equivalently measured in how the ranks 
of one sample compare to  those of the other after they are joined together. 
That is, values from the samples are not directly relevant except for how they 
are ordered when combined. This is the essential nature of rank tests that  we 
will investigate later in the next chapter. 

The two-distribution test extends simply from two-sided to  one-sided. 
The one-sided test statistics are DL,,  = supz(Fm(z) - G,(x) )  or D;.n = 

supz(G,(z) - Fm(z)) .  Note that the ranks of the two groups of data deter- 
mine the supremum difference in (6.1)> and the values of the data determine 
only the position of the jumps for Gn(z)  - F,(rc). 

Example 6.3 For the test of HI : &(z) > G y ( z )  with 71 = m = 2 ,  there 
are (i) = 6 different sample representations (with equal probability): 

sample order D+m.n 

X < X < Y < Y  1 

x < Y  < x < Y 112 
* < Y < Y < X  112 

l / 2  Y < x  < x  < Y 
Y < X < Y < X  0 

Y < Y < * < X  0 

The distribution of the test statistic is 

113 if d =  0 

{ 116 if d =  1. 
P(D2 2 = d )  = 112 if d = 1/2  

If we reject Ho in the case 0 2  2 = 1 (for H I  : Fx(z )  > G y ( x ) )  then our type-I 
error rate is Q = 1/6. 

If m = n in general. the null distribution of the test statistic simplifies to  

(,n(:n+ljJ) 
P(D:, > d )  = P(D& > d )  = 

(2) ' 
where [a] denotes the greatest integer 5 a. For two sided tests, this is doubled 
to obtain the p-value. If m and n are large (m ,n  > 30) and of comparable 
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Table 6.5 Tail Probabilities for Smirnov Two-Sample Test. 

One-sided test a = 0.05 cy = 0.025 cy = 0.01 a = 0.005 
Two-sided test a = 0.10 a: = 0.05 cy = 0.02 a = 0.01 

1 . 2 2 e  1 . 3 6 e  1 . 5 2 e  1 . 6 3 m  

size. then an approximate distribution can be used: 

A simpler large sample approximation, given in Table 6.5 works effectively if 
m and n are both larger than, say, 50. 

Example 6.4 Suppose we have n = m = 4 with data ( ~ 1 . ~ 2 . ~ 3 . ~ 4 )  = 
(16.4.7,21) and (y l ,  y2. y3,yd) = (56,31.15.19). For the Smirnov test of 
HI : F # G, the only thing important about the data is how they are 
ranked within the group of eight combined observations: 

IF, - G,J is never larger than l / 2 ,  achieved in intervals (7,15), (16.19), (21. 
31). The p-value for the two-sided test is 

Example 6.5 Figure 6.3 shows the EDFs for two samples of size 100. One 
is generated from normal data, and the other from exponential data. They 
have identical mean ( p  = 10) and variance (02 = 100). The MATLAB m-file 

k s t e s t  and k s t e s t 2  

both can be used for the two-sample test. The MATLAB code shows the 
p-value is 0.0018. If we compared the samples using a two-sample t-test. the 
significance value is 0.313 because the t-test is testing only the means. and not 
the distribution (which is assumed to be normal). Note that sups IFm(x) - 
Gn(z)l = 0.26, and according to  Table 6.5, the 0.99 quantile for the two-sided 
test is 0.2305. 

>> xn=randgauss(l0,100,100); 
>> ne=randexpo(.1,100) 
>> c d f p l o t  (xn) 
>> hold on 
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Fig. 6.3 EDF for samples of n = m = 100 generated from normal and exponential 
with = 10 and 0’ = 100. 

Current plot held 
>> cdfplot (ne) 
>> [h,p, ks21 =kstest2 (xn,ne) 

h =  1 
p = 0.0018 
ks2 = 0.2600 

h =  0 
p = 0.3130 
ci = -3.8992 1.2551 

>> [h,p,  ci]=ttest2(ne,xn) 

6.3 SPECIALIZED TESTS FOR GOODNESS OF F IT  

In this section. we will go over some of the most important goodness-of-fit 
tests that were made specifically for certain distributions such as the normal 
or exponential. In general, there is not a clear ranking on which tests below 
are best and which are worst. but they all have clear advantages over the 
less-specific KS test. 
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Table 6.6 
and Upper Tail Percentage Points 

Null Distribution of Anderson-Darling Test Statistic: Modifications of A' 

Upper Tail Probability Q 

Modification A * .  A'* 0.10 0.05 0.025 0.01 

( a )  Case 0: Fully specified N ( p .  uE) 1.933 2.492 3.070 3.857 
( b )  Case 1: N ( p , u E ) .  only u2 known 0.894 1.087 1.285 1.551 

Case 2: u2 estimated by s2, p known 1.743 2.308 2.898 3.702 
Case 3: p and c2 estimated. A* 0.631 0.752 0.873 1.035 

( c )  Case 4: Ixp(8).  A** 1.062 1.321 1.591 1.959 

6.3.1 Anderson-Darling Test 

Anderson and Darling (1954) looked to improve upon the Kolmogorov-Smirnov 
statistic by modifying it for distributions of interest. The Anderson-Darling 
test is used to  verify if a sample of data came from a population with a specific 
distribution. It is a modification of the KS test that accounts for the distri- 
bution and test and gives more attention to  the tails. As mentioned before. 
the KS test is distribution free. in the sense that the critical values do not 
depend on the specific distribution being tested. The Anderson-Darling test 
makes use of the specific distribution in calculating the critical values. The 
advantage is that this sharpens the test, but the disadvantage is that critical 
values must be calculated for each hypothesized distribution. 

The statistics for testing Ho : F ( z )  = Po(.) versus the two sided alterna- 
tive is A2 = -n - S .  where 

Tabulated values and formulas have been published (Stephens. 1974. 1976) for 
the normal, lognormal. and exponential distributions. The hypothesis that the 
distribution is of a specific form is rejected if the test statistic. A2 (or modified 
A*, A*) is greater than the critical value given in Table 6.6. Cases 0, 1, and 
2 do not need modification. i.e., observed A2 is directly compared to those in 
Table. Case 3 and (c) compare a modified A2 (A* or A**)  to  the critical values 
in Table 6.6. In (b). A* = A2(1 + + y). and in (c). A*" = A2(1 + y ) .  

Example 6.6 The following example has been used extensively in testing 
for normality. The weights of 11 men (in pounds) are given: 148, 154. 
158. 160, 161, 162, 166, 170, 182, 195. and 236. The sample mean is 172 
and sample standard deviation is 24.952. Because mean and variance are 
estimate. this refers to Case 3 in Table 6.6. The standardized observa- 
tions are 2c1 = (148 - 172)/24.952 = -0.9618, . . . .w11 = 2.5649. and 
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z1 = @(q) = 0.1681,. . . ~ 211 = 0.9948. Next we calculate A' = 0.9468 and 
modify it as A* = A2(1 + 0.75/11 + 0.25/121) = 1.029. From the table we 
see that this is significant at all levels except for a = 0.01, e.g.. the null hy- 
pothesis of normality is rejected at level cy = 0.05. Here is the corresponding 
MATLAB code: 

>> weights = [148, 154, 158, 160, 161, 162, 166, 170, 182, 195, 2361; 
>> n = length(weights); us = (weights - rnean(weights))/std(weights); 
>> zs = 1/2 + 1/2*erf(ws/sqrt(2)); 

% transformation to uniform O.S. 
% calculation of anderson-darling s=O; for i = l:n 

>> s = s + (2*i-l)/n * (log(zs(i)) + log(l-zs(n+l-i))); 
>> a2 = -n - s ;  

>> astar = a2 * (1 + 0.75/n + 2.25/n-2 1; 

Example 6.7 Weight is one of the most important quality characteristics of 
the positive plate in storage batteries. Each positive plate consists of a metal 
frame inserted in an acid-resistant bag (called 'oxide holder') and the empty 
space in the bag is filled with active material, such as powdered lead oxide. 
About 75% of the weight of a positive plate consists of the filled oxide. It is 
also known from past experience that variations in frame and bag weights are 
negligible. The distribution of the weight of filled plate weights is, therefore, 
an indication of how good the filling process has been. If the process is 
perfectly controlled. the distribution should be normal, centered around the 
target: whereas departure from normality would indicate lack of control over 
the filling operation. 

Weights of 97 filled plates (chosen at random from the lot produced in a 
shift) are measured in grams. The data are tested for normality using the 
Anderson-Darling test. The data and the MATLAB program written for this 
part are listed in Appendix A. The results in the MATLAB program list 
A' = 0.8344 and A* = 0.8410. 

6.3.2 Cram&-Von Mises Test 

The Cram&-Von LIises test measures the weighted distance between the em- 
pirical CDF F, and postulated CDF Fo. Based on a squared-error function, 
the test statistic is 

J-CX 

There are several popular choices for the (weight) functional q. When $(z) = 
1, this is the *'standard" Cram&-Von Mises statistic .i)i(l) = u;. in which case 
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Fig. 6.4 Harald Cram& (1893-1985): Richard von Vises (1883-1953). 

the test statistic becomes 

When W ( T )  = s-'(l - x)-'% wi(l/(FO(l - Fo))) = A2/n.  and A' is the 
Anderson-Darling statistic. Under the hypothesis HO : F = Fo. the asymp- 
totic distribution of w i ( $ ( F ) )  is 

( 4 j  + ( 4 j  + ( 4 j  + q2 
1 6 ~  } ' [J-1/4 ( 162 ) - J1/4 ( 16z )] ' 

where J k ( z )  is the modified Bessel function (in LIATLAB: bessel(k,z)). 

applied to a sample z with the function 
In LIATLAB. the particular Cram&-Von LIises test for normal z t y  can be 

mtes t (x .a ) .  

where the weight function is one and cy must be less than 0.10. The AIATLAB 
code below shows how it works. Along with the simple "reject or not'' output. 
the m-file also produces a graph (Figure 6.5) of the sample EDF along with 
the nl'(0.1) CDF. Note :  t he  data are assumed t o  be standardzzed. The output 
of 1 implies we do not reject the null hypothesis (Ho : N(O.1)) at the entered 
a level. 
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f ig. 6.5 Plots of EDF versus d ( O . 1 )  CDF for n = 25 observations of d ( O . 1 )  data 
and standardized Bin(100.0.5) data. 

>> x = rand_nor(O,1,25,1) 
>> mtest(x',0.05) 

ans = 
1 

>> y = rand-bin(100,0.5,25) 

>> y2 = (y-mean(y))/std(y) 
>> mtest(y2,0.05) 

ans = 

1 

6.3.3 Shapiro-Wilk Test for Normality 

The Shapiro-Wilk (Shapiro and \frill<. 1965) test calculates a statistic that 
tests whether a random sample. X I .  X2. . . . . X ,  comes from a normal distri- 
bution. Because it is custom made for the normal. this test has done well in 
comparison studies with other goodness of fit tests (and far outperforms the 
Kolmogorov-Smirnov test) if normally distributed data are involved. 

The test statistic ( W )  is calculated as 

where the X I  < . . . < X ,  , are the ordered sample values and the 
a, are constants generated from the means, variances and covariances of the 
order statistics of a sample of size n from a normal distribution (see Table 
6.8). If Ho is true. I/t' is close to one: otherwise. W < 1 arid we reject H ,  

< X2 
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Fig 6.6 (a) Samuel S. Shapiro: (b) Martin Bradbury \&’ilk, born 1922. 

for small values of W .  Table 6.7 lists Shapiro-Wilk test statistic quantiles for 
sample sizes up to n = 39. 

The weights a, are defined as the components of the vector 

where Af denotes the expected values of standard normal order statistic for a 
sample of size n, and V is the corresponding covariance matrix. While some 
of these values are tabled here, most likely you will see the test statistic (and 
critical value) listed in computer output. 

Example 6.8 For n = 5. the coefficients a, given in Table 6.8 lead to  

If the data resemble a normally distributed set, then the numerator will 
be approximately to  C(zZ - %)’, and W = 1. Suppose ( 2 1  . . .  ..z5) = 
(-2, - 1 , O .  1.2). so that C ( x z  - = 10 and 111 = 0.1(0.6646[2 - (-a)] + 
0.2413[1 - (-1)])2 = 0.987. From Table 6.7. UIO 10 = 0.806, so our test statis- 
tic is clearly not significant, In fact, W M wo 95 = 0.986. so the critical value 
(p-value) for this goodness-of-fit test is nearly 0.95. Undoubtedly the perfect 
symmetry of the invented sample is a cause for this. 

6.3.4 Choosing a Goodness of Fit Test 

At this point, several potential goodness of fit tests have been introduced 
with nary a word that recommends one over another. There are several other 
specialized tests we have not mentioned, such as the Lilliefors tests (for ex- 
ponentiality and normality) , the D’Agostino-Pearson test, and the Bowman- 
Shenton test. These last two tests are extensions of the Shapiro-LVilk test. 
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Table 6.7 Quantiles for Shapiro-\Vilk Test Statistic 

I ff 

n 

3 
4 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 

- 

5 

0.01 0.02 

0.753 0.756 
0.687 0.707 
0.686 0.715 
0.713 0.743 
0.730 0.760 
0.749 0.778 
0.764 0.791 
0.781 0.806 

0.792 0.817 
0.805 0.828 
0.814 0.837 
0.825 0.846 
0.835 0.855 

0.844 0.863 
0.851 0.869 
0.858 0.874 
0.863 0.879 
0.868 0.884 

0.873 
0.878 
0.881 
0.884 
0.888 

0.891 
0.894 
0.896 
0.898 
0.900 

0.902 
0.904 
0.906 
0.908 
0.910 

0.912 
0.914 
0.916 
0.917 

0.888 
0.892 
0.895 
0.898 
0.901 

0.904 
0.906 
0.908 
0.910 
0.912 

0.914 
0.915 
0.917 
0.919 
0.920 

0.922 
0.924 
0.925 
0.927 

0.05 

0.767 
0.748 
0.762 
0.788 
0.803 
0.818 
0.829 
0.842 

0.850 
0.859 
0.866 
0.874 
0.881 

0.887 
0.892 
0.897 
0.901 
0.905 

0.908 
0.911 
0.914 
0.916 
0.918 

0.920 
0.923 
0.924 
0.926 
0.927 

0.929 
0.930 
0.931 
0.933 
0.934 

0.935 
0.936 
0.938 
0.939 

0.10 

0.789 
0.792 
0.806 
0.826 
0.838 
0.851 
0.859 
0.869 

0.876 
0.883 
0.889 
0.895 
0.901 

0.906 
0.910 
0.914 
0.917 
0.920 

0.923 
0.926 
0.928 
0.930 
0.931 

0.933 
0.935 
0.936 
0.937 
0.939 

0.940 
0.941 
0.942 
0.943 
0.944 

0.943 
0.946 
0.947 
0.948 

0.50 

0.959 
0.935 
0.927 
0.927 
0.928 
0.932 
0.935 
0.938 

0.940 
0.943 
0.945 
0.947 
0.930 

0.952 
0.954 
0.956 
0.957 
0.959 

0.960 
0.961 
0.962 
0.963 
0.964 

0.965 
0.965 
0.966 
0.966 
0.967 

0.967 
0.968 
0.968 
0.969 
0.969 

0.970 
0.970 
0.971 
0.971 

0.90 

0.998 
0.987 
0.979 
0.974 
0.972 
0.972 
0.972 
0.972 

0.973 
0.973 
0.974 
0.975 
0.975 

0.976 
0.977 
0.978 
0.978 
0.979 

0.980 
0.980 
0.981 
0.981 
0.981 

0.982 
0.982 
0.982 
0.982 
0.983 

0.983 
0.983 
0.983 
0.983 
0.984 

0.984 
0.984 
0.984 
0.984 

~~~ 

0.95 0.98 0.99 

0.999 1.000 1.000 
0.992 0.996 0.997 
0.986 0.991 0.993 
0.981 0.986 0.989 
0.979 0.985 0.988 
0.978 0.984 0.987 
0.978 0.984 0.986 
0.978 0.983 0.986 

0.979 0.984 0.986 
0.979 0.984 0.986 
0.979 0.984 0.986 
0.980 0.984 0.986 
0.980 0.984 0.987 

0.981 0.985 0.987 
0.981 0.985 0.987 
0.982 0.986 0.988 
0.982 0.986 0.988 
0.983 0.986 0.988 

0.983 
0.984 
0.984 
0.984 
0.985 

0.985 
0.985 
0.985 
0.985 
0.985 

0.986 
0.986 
0.986 
0.986 
0.986 

0.986 
0.987 
0.987 
0.987 

0.987 
0.987 
0.987 
0.987 
0.988 

0.988 
0.988 
0.988 
0.988 
0.988 

0.988 
0.988 
0.989 
0.989 
0.989 

0.989 
0.989 
0.989 
0.989 

0.989 
0.989 
0.989 
0.989 
0.989 

0.989 
0.990 
0.990 
0.990 
0.900 

0.990 
0.990 
0.990 
0.990 
0.990 

0.990 
0.990 
0.990 
0.991 
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n 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

i= l  
0.7071 
0.7071 
0.6872 
0.6646 
0.6431 
0.6233 
0.6052 
0.5888 
0.5739 
0.5601 
0.5475 
0.5359 
0.5251 
0.5150 
0.5056 

Table 6.8 

i=2 

0.0000 
0.1677 
0.2413 
0.2806 
0.3031 
0.3164 
0.3244 
0.3291 
0.3315 
0.3325 
0.3325 
0.3318 
0.3306 
0.3290 

Coefficients for the Shapiro-n'ilk Test 

i=3 i=4 

0.0000 
0.0875 
0.1401 0.0000 
0.1743 0.0561 
0.1976 0.0947 
0.2141 0.2141 
0.2260 0.1429 
0.2347 0.1586 
0.2412 0.1707 
0.2460 0.1802 
0.2495 0.1878 
0.2521 0.1939 

0.0000 
0.1224 0.0399 
0.0695 0.0000 
0.0922 0.0303 
0.1099 0.0539 0.0000 
0.1240 0.0727 0.0240 
0.1353 0.0880 0.0433 0.0000 
0.1447 0.1005 0.0593 0.0196 

Obviously, the specialized tests will be more powerful than an omnibus test 
such as the Kolmogorov-Smirnov test. D'Agostino and Stephens (1986) warn 

. . . for testing for normality. the Kolmogorov-Smirnov test is only a his- 
torical curiosity. It should never be used. It has poor power in com- 
parison to [specialized tests such as Shapiro-Wilk, D'Agostino-Pearson, 
Bowman-Shenton. and Anderson-Darling tests]. 

These top-performing tests fail to  distinguish themselves across a broad 
range of distributions and parameter values. Statistical software programs 
often list two or more test results. allowing the analyst to choose the one that 
will best support their research grants. 

There is another way, altogether different, for testing the fit of a distri- 
bution to  the data. This is detailed in the upcoming section on probability 
plotting. One problem with all of the analytical tests discussed thus far in- 
volves the large sample behavior. As the sample size gets large, the test can 
afford to be pickier about what is considered a departure from the hypothe- 
sized null distribution Fo. In short. your data might look normally distributed 
to you. for all practical purposes, but if it is not exactly normal. the goodness 
of fit test will eventually find this out. Probability plotting is one way to avoid 
this problem. 
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6.4 PROBABILITY PLOTTING 

A probability plot is a graphical way to show goodness of fit. Although 
it is more subjective than the analytical tests (e.g., Kolmogorov-Smirnov. 
Anderson-Darling, Shapiro-Wilk) , it has important advantages over them. 
First. it allows the practitioner to  see what observations of the data are in 
agreement (or disagreement) with the hypothesized distribution. Second. 
while no significance level is attached to the plotted points. the analytical 
tests can be misleading with large samples (this will be illustrated below). 
There is no such problem with large samples in probability plotting - the 
bigger the sample the better. 

The plot is based on transforming the data with the hypothesized distribu- 
tion. After all. if X I . .  . . . X ,  have distribution F ,  we know F ( X , ) .  . . . . F ( X , )  
are U(O.1).  Specifically. if we find a transformation with F that linearizes the 
data, we can find a linear relationship to plot. 

Example 6.9 Normal Distribution. If represents the CDF of the stan- 
dard normal distribution function, then the quantile for a normal distribution 
with parameters (p. 0') can be written as 

zp  = p + @ - 1 ( p ) 0 .  

The plot of xp versus @ - ' ( p )  is a straight line. If the line shows curvature. 
we know @-I was not the right inverse-distribution that transformed the 
percentile to the normal quantile. 

A vector consisting of 1000 generated variables from n/(O, 1) and 100 from 
N(0.1, 1) is tested for normality. For this case. we used the Cram&-Von hlises 
Test using the MATLAB procedure mtest ( z ,  a ) .  We input a vector z of data 
to test. and Q: represents the test level. The plot in Figure 6.4(a) shows the 
EDF of the 1100 observations versus the best fitting normal distribution. In 
this case. the Cramkr-Von LIises Test rejects the hypothesis that the data 
are normally distributed at level a = 0.001. But the data are not discernably 
non-normal for all practical purposes. The probability plot in Figure 6.4(b) 
is constructed with the MATLAB function 

probplot 

and confirms this conjecture. 
As the sample size increases, the goodness of fit tests grow increasingly 

sensitive to slight perturbations in the normality assumption. In fact, the 
Cram&-Von hIises test has correctly found the non-normality in the data 
that was generated by a normal mixture. 

>> [XI =randgauss (0,1,1000) ; 
>> [y] =randgauss (0 .  I ,  1,100) ; 
>> ~ z l = [ x , y l ;  
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>> [ggl=mtest(z, .001) 

>> probplot ( z )  

09r  
I 

o a t  

- 2 5  -2 - 1 5  - 1  -05 0 05 1 1 5  2 2 5  

-2 r , 
-31 

8 '  

4 1 ' "  
I 

-4 -3 -2 -1 0 1 2 3 4 

Fig. 6.7 (a) Plot of EDF vs. normal CDF, (b) normal probability plot. 

Example 6.10 Thirty observations were generated from a normal distribu- 
tion. The MATLAB function qqweib constructs a probability plot for Weibull 
data. The Weibull probability plot in Figure 6.8 shows a slight curvature 
which suggests the model is misfit. To linearize the Weibull CDF, if the CDF 
is expressed as F ( s )  = 1 - exp(-(z/y)O), then 

1 
0 

ln(z,) = - In(- ln(1 - p ) )  + ln(y).  

The plot of In(%,) versus In(- ln(1 - p ) )  is a straight line determined by the 
two parameters p-' and ln(-y). The MATLAB procedure qqweib also reports 
the the scale parameter scale and the shape parameter shape. estimated by 
the method of least-squares. 
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fig. 6.8 Weibull probability plot of 30 observations generated from a normal distri- 
bution. 

>> [xl=randgauss(10,1,30); 
>> [shape, scale] =qqweib (x) 

shape = 
13.2094 

scale  = 

9.9904 
>> 

Example 6.11 Quantile-Quantile Plots. For testing the equality of 
two distributions. the graphical analog to  the Smirnov test is the Quantile- 
Quantile Plot, or q-q plot. The MATLAB function qqplot ( 2 .  y, *) plots the 
empirical quantiles of the vector J: versus that of y. The third argument is 
optional and represents the plotting symbol to  use in the q-q plot. If the 
plotted points veer away from the 45" reference line. evidence suggests the 
data are generated by populations with different distributions. Although the 
q-q plot leads to subjective judgment, several aspects of the distributions can 
be compared graphically. For example. if the two distributions differ only by 
a location shift ( F ( z )  = G ( x  + 6)), the plot of points will be parallel to the 
reference line. 

Many practitioners use the q-q plot as a probability plot by replacing the 
second sample with the quantiles of the hypothesized distribution. Three 
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other MATLAB functions for probability plotting are listed below. but they 
use the q-q plot moniker. The argument symbol is optional in all three. 

qqnorm(x, symbol) Normal probability plot 
qqweib (x, symbol) Weibull probability plot 
qqgamma(x, symbol) Gamma probability plot 

In Figure 6.9, the q-q plots are displayed for the random generated data 
in the MATLAB code below. The standard qqplot hlATLAB outputs (scat- 
terplot and dotted line fit) are enhanced by dashed line y = z representing 
identity of two distributions. In each case, a distribution is plotted against 
N(100,102) data. The first case (a) represents n/(120,102) and the points 
appear parallel to  the reference line because the only difference between the 
two distributions is a shift in the mean. In (b) the second distribution is dis- 
tributed N(100.402). The only difference is in variance. and this is reflected 
in the slope change in the plot. In the cases (c) and (d) ,  the discrepancy 
is due to  the lack of distribution fit; the data in (c) are generated from the 
t-distribution with 1 degree of freedom, so the tail behavior is much different 
than that of the normal distribution. This is evident in the left and right end 
of the q-q plot. In (d),  the data are distributed gamma, and the illustrated 
difference between the two samples is more clear. 

>> x=rand-nor(100,10,30,1); 
>> yl=rand-nor(l20,10,30,1) ; qqplot(x,yl) 
>> y2=rand_nor (100,40,30,1) ; qqplot (x , y2) 
>> y3=100+10*rand-t(1,30,1); qqplot(x,y3) 
>> y4=rand_gamma(200,2,30,1); qqplot(x,y4) 

6.5 RUNS TEST 

A chief concern in the application of statistics is to find and understand pat- 
terns in data apart from the randomness (noise) that obscures them. While 
humans are good at deciphering and interpreting patterns, we are much less 
able to  detect randomness. For example. if you ask any large group of peo- 
ple to  randomly choose an integer from one to ten, the numbers seven and 
four are chosen nearly half the time. while the endpoints (one. ten) are rarely 
chosen. Someone trying to  think of a random number in that range imagines 
something toward the middle, but not exactly in the middle. Anything else 
just doesn‘t look “random” to us. 

In this section we use statistics to  look for randomness in a simple string 
of dichotomous data. In many examples. the runs test will not be the most 
efficient statistical tool available. but the runs test is intuitive and easier 
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Fig. 6 9 Data from , t r ( l O O .  10') are plotted against data from (a) N(120. lo2) .  (b) 
N(lO0. 402). (c) tl and (d) ~ a m m a ( 2 0 0 . 2 ) .  The standard qqplot SIATLAB outputs 
(scatterplot and dotted line fit) are enhanced by dashed line y = 5 representing identity 
of two distributions. 
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to interpret than more computational tests. Suppose items from the sample 
X I .  X2 ,  . . . , X ,  could be classified as type 1 or type 2 .  If the sample is random, 
the 1's and 2's are well mixed, and any clustering or pattern in 1's and 2's is 
violating the hypothesis of randomness. To decide whether or not the pattern 
is random, we consider the statistic R. defined as the number of homogenous 
runs in a sequence of ones and twos. In other words R represents the number 
of times the symbols change in the sequence (including the first one). For 
example, R = 5 in this sequence of n = 11: 

1 2  2 2 1 1  2 2 1 1  1. 

Obviously if there were only two runs in that sequence, we could see the 
pattern where the symbols are separated right and left. On the other hand if 
R = 11. the symbols are intermingling in a non-random way. If R is too large, 
the sequence is showing anti-correlation, a repulsion of same symbols. and 
zig-zag behavior. If R is too small, the sample is suggesting trends, clustering 
and groupings in the order of the dichotomous symbols. If the null hypothesis 
claims that the pattern of randomness exists, then if R is either too big or 
too small, the alternative hypothesis of an existing trend is supported. 

Assume that a dichotomous sequence has n1 ones and n2 twos. nl +n2 = n. 
If R is the number of subsequent runs, then if the hypothesis of randomness 
is true (sequence zs m a d e  by random selectzon of 1 ' s  and 2's f r o m  the set 
contaznzng nl 1's and n2 2's). then 

for r = 2 . 3 , .  . . . n. Here is a hint for solving this: first note that the number 
of ways to put n objects into r groups wzth no  cell bezng empty  is (:It). 

The null hypothesis is that the sequence is random. and alternatives could 
be one-sided and two sided. Also, under the hypotheses of randomness the 
symbols 1 and 2 are interchangeable and without loss of generality we assume 
that n1 5 1 2 2 .  The first three central moments for R (under the hypothesis of 
randomness) are. 
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and whenever n1 > 15 and n2 > 15 the normal distribution can be used to to 
approximate lower and upper quantiles. Asymptotically, when n1 -+ 3cj and 
E 5 n1/(n1 + 7 2 2 )  I 1 - E (for some 0 < E < 1). 

The hypothesis of randomness is rejected at level cy if the number of runs 
is either too small (smaller than some g ( a .  121.722)) or too large (larger than 
some G ( a ,  n1, n2)). Thus there is no statistical evidence to  reject Ho if 

g (a .n l .nz)  < R < G(a,nl ,n2) .  

Based on the normal approximation. critical values are 

g(Q. 121.722) % L ~ R  - Z,OR - 0.51 

G(0.  nl .  722) [ ~ L R  + Z,OR + 0.51 

For the two-sided rejection region, one should calculate critical values with 
z , / ~  instead of z,. One-sided critical regions, again based on the normal ap- 
proximation. are values of R for which 

while the two-sided critical region can be expressed as 

When the ratio n1 /n2 is small. the normal approximation becomes unreliable. 
If the exact test is still too cumbersome for calculation. a better approximation 
is given by 

P(R I r )  !== I1-z(L%- - T + 2,  T - 1 )  = I Z ( T  - 1, s - T + a), 
where I Z ( u .  b )  is the incomplete beta function (see Chapter 2 )  and 

and N = 
( n  - 1)(2nln2 - n )  n1n2 

n(n - 1) 
2 = 1 -  

721(n1 - 1) + m(n2 - 1)' 

Critical values are then approximated by g(cy. 7 2 1 %  n2) M Lg*J and G ( a ,  721. n2) M 
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1 + LG*J. where g* and G* are solutions to 

11--5(N - g* + 2.g* - 1) = 

I,(G* - 1. N - G* + 3) = a. 

Example 6.12 The tourism officials in Santa Cruz worried about global 
worming and El Niiio effect, compared daily temperatures (7/1/2003 - 7/21/2003) 
with averages of corresponding daily temperatures in 1993-2002. If the tem- 
perature in year 2003 is above the same day average in 1993-2002, then symbol 
A is recorded, if it is below, the symbol B is recorded. The following sequence 
of 21 letters was obtained: 

AAABBAAIAABAABAIAAABBBB 

We wish to test the hypothesis of random direction of deviation from the 
average temperature against the alternative of non-randomness at level cy = 
5%. The MATLAB procedure for computing the test is runs-test. 

>> cruz = [I 1 1  2 2 1 1  1 1  2 1 1  2 1 1  1 1  2 2 2 21; 
>> [problow, probup, nruns, expectedruns] = runs-test(cruz) 

runones = 4 
runtwos = 4 
trun = 8 
nl = 13 
n2 = 8 
n = 21 
problow = 0.1278 
probup = 0.0420 
nruns = 8 
expectedruns = 10.9048 

If observed number of runs is LESS than expected, problow is 

P ( R  = 2) + . . . + P ( R  = T L ~ U ~ S )  

and probup is 

P ( R  = n - nruns+ 2) + . . .  + P ( R  = n). 

Alternatively, if nruns is LARGER than expected. then problow is 

P ( R  = 2) + .  . . + P(R = n - nruns+ 2) 

and probup is 

P ( R = n r ~ n s ) + . . . + P ( R = n )  . 

In this case. the number of runs (8) was less than expected (10.9048), and the 
probability of seeing 8 or fewer runs in a random scattering is 0.1278. But this 
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Fig. 6.10 Probability distribution of runs under Ho. 

is a two-sided test. This LIATLAB test implies we should use P ( R  2 n-n2+2) 
= P ( R  2 15) = 0.0420 as the “other tail” to  include in the critical region 
(which would make the p-value equal to 0.1698). But using P ( R  2 15) is 
slightly misleading, because there is no symmetry in the null distribution of 
R; instead. we suggest using 2*problow = 0.2556 as the critical value for a 
two-sided test. 

Example 6.13 The following are 30 time lapses. measured in minutes. be- 
tween eruptions of Old Faithful geyser in Yellowstone National Park. In the 
LIATLAB code below. forruns stores 2 if the temperature is below aver- 
age, otherwise stores 1. The expected number of runs (15.9333) is larger 
than what was observed (13). and the p-value for the two-sided runs test is 
2*0.1678=0.3396. 

>> oldfaithful = [68 63 66 63 6 1  44 60 62 7 1  62 62 55 62 67 73 . . .  

>> mean(oldfaithfu1) 

>> forruns = (oldfaithful - 64.1667 > 0) + 1 

72 55 67 68 65 60 6 1  7 1  60 68 67 72 69 65 661; 

ans = 64.1667 

forruns = 
2 1 2 1 1 1 1 1 2 1 
1 1 1 2 2 2 1 2 2 2 
1 1 2 1 2 2 2 2 2 2 

>> [problow, probup, nruns, expectedrunsl = runs-test(forruns) 



106 GOODNESS OF FIT 

runones = 6 
runtwos = 7 
trun = 13 
nl = 14 
n2 = 16 
n = 30 
problow = 0.1804 
probup = 0.1678 
nruns = 13 
expectedruns = 15.9333 

Before we finish with the runs test, we are compelled to make note of its 
limitations. After its inception by Mood (1940). the runs test was used as 
a cure-all nonparametric procedure for a variety of problems, including two- 
sample comparisons. However, it is inferior to more modern tests we will 
discuss in Chapter 7. More recently, Mogul1 (1994) showed an anomaly of the 
one-sample runs test: it is unable to reject the null hypothesis for series of 
data with run length of two. 

6.6 META ANALYSIS 

hleta analysis is concerned with combining the inference from several studies 
performed under similar conditions and experimental design. From each study 
an “effect size” is derived before the effects are combined and their variability 
assessed. However, for optimal meta analysis, the analyst needs substantial 
information about the experiment such as sample sizes. values of the test 
st,atistics, the sampling scheme and the test design. Such information is often 
not provided in the published work. In many cases, only the p-values of 
particular studies are available to be combined. 

hleta analysis based on p-values only is often called nonparametric or om- 
nibus meta analysis because the combined inference dose not depend on the 
form of data, test statistics, or distributions of the test statistics. There are 
many situations in which such combination of t,ests is needed. For example. 
one might be interested in 

(i) multiple t tests in testing equality of two treatments versus one sided 
alternative. Such tests often arise in function testing and estimation: 
fMRI, DNA comparison; etc: 

(ii) multiple F tests for equality of several treatment means. The test 
may not involve the same treatments and parametric meta analysis may 
not be appropriate; or 

(iii) multiple x2  tests for testing the independence in contingency tables 
(see Chapter 9) .  The table counts may not be given or the tables could 
be of different size (the same factor of interest could be given at different 
levels). 
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Most of the methods for combining the tests on basis of their p-values use 
the facts that. (1) under Ho and assunling the test statistics have a continuous 
distribution, the p-values are uniform and ( 2 )  if G is a monotone CDF and 
U N U ( O . l ) .  then G-l(U) has distribution G. A nice overview can be found 
in Folks (1984) and the monograph by Hedges and Olkin (1985). 

Tippet-Wilkinson Method. If the p-values from n studies, ~ 1 . ~ 2 . .  . . . p ,  
are ordered in increasing order, p l  n , p 2  n , .  . . .p, n ,  then. for a given k .  1 5 
k 5 n .  the k-th smallest p-value, pk ,. is distributed Be(k.  n - k + 1) and 

p = P ( X i p k n ) .  X - B e ( k , n - k + l )  

Beta random variables are related to  the F distribution via 

for V N Be(&. 3) and TV - F(23.20). Thus, the combined significance level 
p is 

where X N F(2(n - k + 1 ) . 2 k ) .  This single p represents a measure of the 
uniformity of p l .  . . . . p n  and can be thought as a combined p-value of all n 
tests. The nonparametric nature of this procedure is unmistakable. This 
method was proposed by Tippet (1931) with k = 1 and k = n, and later 
generalized by Wilkinson (1951) for arbitrary k between 1 and n. For k = 1, 
the test of level Q rejects Ho if p l  5 1 - (1 - a)'',. 

Fisher's Inverse x 2  Method. hlaybe the most popular method of combin- 
ing the p-values is Fisher's inverse x 2  method (Fisher. 1932). Under Ho. the 
random variable -2logp, has x 2  distribution with 2 degrees of freedom, so 
that C ,  xi, is distributed as x 2  with C2 k,  degrees of freedom. The combined 
p-value is 

This test is. in fact. based on the product of all p-values due to the fact that 

- 2 C l o g p t  = -2lOgIII-'%. 
1 2 
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Averaging pValues by Inverse Normals. The following method for 
combiningp-values is based on the fact that  if Z1,Z2.. . . .Z, are i.i.d. N(0,l). 
then (2, + 22 + .  . . + Z , ) / f i  is distributed N(0. l), as well. Let @-' denote 
the inverse function to the standard normal CDF @, and let ~ 1 . ~ 2 . .  . . . p ,  be 
the p-values to be averaged. Then the averaged p-value is 

where Z N N(0,l). This procedure can be extended by using weighted sums: 

There are several more approaches in combining the p-values. Good (1955) 
suggested use of weighted product 

- 2  c logp, = -2 log n p ; z  > 

2 2 

but the distributional theory behind this statistic is complex. Mudholkar and 
George (1979) suggest transforming the p-values into logits, that is, logit(p) = 
log(p/(l - p ) ) .  The combined p-value is 

As an alternative, Lancaster (1961) proposes a method based on inverse 
gamma distributions. 

Example 6.14 This example is adapted from a presentation by Jessica Utts 
from University of California, Davis. Two scientists. Professors A and B. 
each have a theory they would like to  demonstrate. Each plans to  run a fixed 
number of Bernoulli trials and then test Ho : p = 0.25 verses H I  : p > 0.25. 

Professor A has access to large numbers of students each semester to use 
as subjects. He runs the first experiment with 100 subjects. and there are 
33 successes ( p  = 0.04). Knowing the importance of replication. Professor A 
then runs an additional experiment with 100 subjects. He finds 36 successes 

Professor B only teaches small classes. Each quarter, she runs an experi- 
ment on her students to  test her theory. Results of her ten studies are given 
in the table below. 

At first glance professor A's theory has much stronger support. After all, 
the p-values are 0.04 and 0.009. None of the ten experiments of professor 

( p  = 0.009). 
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B was found significant. However, if the results of the experiment for each 
professor are aggregated, Professor B actually demonstrated a higher level of 
success than Professor A. with 71 out of 200 as opposed to 69 out of 200 
successful trials. The p-values for the combined trials are 0.0017 for Professor 
A and 0.0006 for Professor B. 

1 n I # of successes I p-value I 
10 
15 
17 
25 
30 
40 
18 
10 
15 
20 

~ 

4 
6 
6 
8 
10 
13 
7 
5 
5 
7 

0.22 
0.15 
0.23 
0.17 
0.20 
0.18 
0.14 
0.08 
0.31 
0.21 

Now suppose that reports of the studies have been incomplete and only 
p-values are supplied. Nonparametric meta analysis performed on 10 studies 
of Professor B reveals an overall omnibus test significant. The MATLAB code 
for Fisher's and inverse-normal methods are below; the combined p-values for 
Professor B are 0.0235 and 0.021. 

>> pvals = [0.22, 0.15, 0.23, 0.17, 0.20, 0.18, 0.14, 0.08, 0.31, 0.211; 
>> fisherstat = - 2 * sum( log(pva1s)) 
fisherstat = 

34.4016 
>> I-chi2cdf (f isherstat, 2*10) 

ans = 

0.0235 
>> 1 - normcdf( sum(norminv(1-pvals))/sqrt(length(pvals)) ) 

ans = 

0.0021 

6.7 EXERCISES 

6.1. Derive the exact distribution of the Kolmogorov test statistic D, for the 
case n = 1. 

6.2. Go the KIST link below to download 31 measurements of polished win- 
dow strength data for a glass airplane window. In reliability tests such 
as this one. researchers rely on parametric distributions to character- 
ize the observed lifetimes. but the normal distribution is not commonly 
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used. Does this data  follow any well-known distribution? Use probabil- 
ity plotting to make your point. 

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4291.htm 

6.3. Go to  the NIST link below to download 100 measurements of the speed 
of light in air. This classic experiment was carried out by a U.S. Naval 
Academy teacher Albert Michelson is 1879. Do the data appear to  be 
normally distributed? Use three tests (Kolmogorov. Anderson-Darling, 
Shapiro-Wilk) and compare answers. 

http://www.itl.nist.gov/div898/strd/univ/data/Michelso.dat 

6.4. Do those little peanut bags handed out during airline flights actually 
contain as many peanuts as they claim? From a box of peanut bags 
that have 14g label weights, fifteen bags are sampled and weighed: 16.4. 
14.4, 15.5, 14.7. 15.6, 15.2, 15.2, 15.2, 15.3. 15.4, 14.6, 15.6, 14.7. 15.9, 
13.9. Are the data approximately normal so that a t-test has validity? 

6.5. Generate a sample So of size m = 47 from the population with normal 
N(3 .1)  distribution. Test the hypothesis that  the sample is standard 
normal HO : F = FO = N ( 0 , l )  (not a t  1-1 = 3) versus the alternative 
H I  : F < Fo. You will need to  use DL in the test. Repeat this testing 
procedure (with new samples. of course) 1000 times. What proportion 
of p-values exceeded 5%? 

6.6. Generate two samples of sizes m = 30 and m = 40 from U(O. l ) .  Square 
the observations in the second sample. What is the theoretical distri- 
bution of the squared uniforms? Next, "forget" that  you squared the 
second sample and test by Smirnov test equality of the distributions. 
Repeat this testing procedure (with new samples, of course) 1000 times. 
What proportion of p-values exceeded 5%? 

6.7. In MATLAB. generate two data sets of size n = 10.000: the first from 
N(O.1) and the second from the t distribution with 5 degrees of free- 
dom. These are your two samples to be tested for normality. Recall the 
asymptotic properties of order statistics from Chapter 5 and find the 
approximate distribution of X13000j. Standardize it appropriately (here 
p = 0.3. and p = norminv(0.3) = -0.5244. and find the two-sided 
p-values for the goodness-of-fit test of the normal distribution. If the 
testing is repeated 10 times. how many times will you reject the hy- 
pothesis of normality for the second. t distributed sequence? What if 
the degrees of freedom in the t sequence increase from 5 to  10; to  40? 
Comment. 

6.8. For two samples of size m = 2 and n = 4, find the exact distribution 
of the Smirnov test statistics for the test of Ho : F ( z )  5 G(z) versus 
Hi : F ( x )  > G ( x ) .  
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6.9. Let X I .  X2% . . . . X,, be a sample from a population with distribution Fx 
and Y1, Y2, . . . . Ynz be a sample from distribution F y  . If we are interested 
in testing HO : FX = Fy one possibility is to  use the runs test in the 
following way. Combine the two samples and let Z1. Z 2 ,  . . . . Znl+nz 
denote the respective order statistics. Let dichotomous variables 1 and 
2 signify if Z is from the first or the second sample. Generate 50 U(O.1) 
numbers and 50 N(0.1) numbers. Concatenate and sort them. Keep 
track of each number's source by assigning 1 if the number came from 
the uniform distribution and 2 otherwise. Test the hypothesis that the 
distributions are the same. 

6.10. Combine the p-values for Professor B from the meta-analysis example 
using the Tippet-Wilkinson method with the smallest p-value and Lan- 
caster's Llet hod. 

6.11. Derive the exact distribution of the number of runs for n = 4 when there 
are nl = n2 = 2 observations of ones and twos. Base your derivation on 
the exhausting all (i) possible outcomes. 

6.12. The link below connects you to  the Dow-Jones Industrial Average (DJIA) 
closing values from 1900 to  1993. First column contains the date (yym- 
mdd). second column contains the value. Use the runs test to see if there 
is a non-random pattern in the increases and decreases in the sequence 
of closing values. Consult 

http://lib.stat.cmu.edu/datasets/djdcOO93 

6.13. Recall Exercise 5.1. Repeat the simulation and make a comparison 
between the two populations using q q p l o t .  Because the sample range 
has a beta Be(49.2). distribution. this should be verified with a straight 
line in the plot. 

6.14. The table below displays the accuracy of meteorological forecasts for 
the city of Marietta. Georgia. Results are supplied for the month of 
February. 2005. If the forecast differed for the real temperature for 
more than 3°F.  the symbol 1 was assigned. If the forecast was in error 
limits < 3°F. the symbol 2 was assigned. Is it possible to  claim that 
correct and wrong forecasts group at random? 

2 2 2 2 2 2 2 2 2 2 2 1 1 1  
1 1 2 2 1 1 2 2 2 2 2 1 2 2  

6.15. Previous records have indicated that the total points of Olympic dives 
are normally distributed. Here are the records for Men 10-meter Plat- 
form Prelzmznary in 2004. Test the normality of the point distribution. 
For a computational exercise, generate 1000 sets of 33 normal obser- 
vations with the same mean and variance as the diving point data. 
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Use the Smirnov test to see how often the p-value corresponding to 
the test of equal distributions exceeds 0.05. Comment on your results. 

Rank 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

Name Country Points Lag 

HELM, Mathew 
DESPATIE, Alexandre 
TIAN, Liang 
WATERFIELD. Peter 
PACHECO, Rommel 
HU, Jia 
NEWBERY, Robert 
DOBROSKOK, Dmitry 
MEYER. Heiko 
URAN-SALAZAR, Juan G. 
TAYLOR, Leon 
KALEC. Christopher 
GALPERIN, Gleb 
DELL’UOMO, Francesco 
ZAKHAROV, Anton 
CHOE. Hyong Gil 
PAK. Yong Ryong 
ADAM, Tony 
BRYAN, Nickson 
MAZZUCCHI, Massimiliano 
VOLODKOV. Roman 
GAVRIILIDIS, Ioannis 
GARCIA. Caesar 
DURAN. Cassius 
GUERRA-OLIVA, Jose Antonio 
TRAKAS, Sotirios 
VARLAMOV. Aliaksandr 
FORNARIS. ALVAREZ Erick 
PRANDI. Kyle 
hIAMONTOV. Andrei 
DELALOYE. Jean Romain 
PARISI, Hugo 
HAJNAL, Andras 

AUS 
CAN 
CHN 
GBR 
MEX 
CHN 
AUS 
RUS 
GER 
COL 
GBR 
CAN 
RUS 
ITA 
UKR 
PRK 
PRK 
GER 
MAS 
ITA 
UKR 
GRE 
USA 
BRA 
CUB 
GRE 
BLR 
CUB 
USA 
BLR 
SUI 
BRA 
HUN 

513.06 
500.55 12.51 
481.47 31.59 
474.03 39.03 
463.47 49.59 
463.44 49.62 
461.91 51.15 
445.68 67.38 
440.85 72.21 
439.77 73.29 
433.38 79.68 
429.72 83.34 
427.68 85.38 
426.12 86.94 
420.3 92.76 
419.58 93.48 
414.33 98.73 
411.3 101.76 
407.13 105.93 
405.18 107.88 
403.59 109.47 
395.34 117.72 
388.77 124.29 
387.75 125.31 
375.87 137.19 
361.56 151.5 
361.41 151.65 
351.75 161.31 
346.53 166.53 
338.55 174.51 
326.82 186.24 
325.08 187.98 
305.79 207.27 

6.16. Consider the Cram& von Mises test statistic with $(x) = 1. With a 
sample of n = 1, derive the test statistic distribution and show that it 
is maximized at X = 112. 

6.17. Generate two samples S1 and S2. of sizes m = 30 and m = 40 from 
the uniform distribution. Square the observations in the second sam- 
ple. Llrhat is the theoretical distribution of the squared uniforms? Next. 
“forget” that you squared the second sample and test equality of the dis- 
tributions. Repeat this testing procedure (with new samples, of course) 
1000 times. PVhat proportion of p-values exceeded 5%? 
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6.18. Recall the Gumbel distribution (or extreme value dzstrzbution) from 
Chapter 5. Linearize the CDF of the Gumbel distribution to  show how 
a probability plot could be constructed. 
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7 
Rank Tests 

Each of us has been doing statistics all his life. in the sense that  each of 
us has been busily reaching conclusions based on empirical observations 
ever since birth. 

William Kruskal 

All those old basic statistical procedures ~ the f-test. the correlation coeffi- 
cient, the analysis of variance (ANOVA) ~ depend strongly on the assumption 
that the sampled data (or the sufficient statistics) are distributed according to 
a well-known distribution. Hardly the fodder for a nonparametrics text book. 
But for every classical test, there is a nonparametric alternative that does the 
same job with fewer assumptions made of the data.  Even if the assumptions 
from a parametric model are modest and relatively non-constraining. they 
will undoubtedly be false in the most pure sense. Life. along with your ex- 
perimental data. are too complicated to  fit perfectly into a framework of i.i.d. 
errors and exact normal distributions. 

Xlathematicians have been researching ranks and order statistics since ages 
ago. but it wasn’t until the 1940s that the idea of rank tests gained prominence 
in the statistics literature. Hotelling and Pabst (1936) wrote one of the first 
papers on the subject. focusing on rank correlations. 

There are nonparametric procedures for one sample. for comparing two 
or more samples. matched samples. bivariate correlation. and more. The 
key to evaluating data in a nonparametric framework is to  compare obser- 
vations based on their ranks  within the sample rather than entrusting the 

115 
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Fig. 7.1 
fessor Emeritus Donald Ransom Whitney 

Frank \Vileoxon (1892-1965). Henry Berthold Slann (1905-2000). and Pro- 

actual data measurements to  your analytical verdicts. The following table 
shows non-parametric counterparts to  the well known parametric procedures 
(WSiRT/WSuRT stands for Wilcoxon Signed/Sum Rank Test). 

I I PARAMETRIC NON-PARALlETRIC I 
Pearson coefficient of correlation 
One sample t-test for the location 

paired test t test 
two sample t test 

ANOVA 
Block Design ANOVA 

Spearman coefficient of correlation 
sign test, WSiRT 
sign test, WSiRT 

WSurT, hlann-Whitney 
Kruskal-Wallis Test 

Friedman Test 

To be fair. it should be said that many of these nonparametric procedures 
come with their own set of assumptions. We will see. in fact. that  some of 
them are rather obtrusive on an experimental design. Others are much less 
so. Keep this in mind when a nonparametric test is touted as "assumption 
free". Nothing in life is free. 

In addition to  properties of ranks and basic sign test, in this chapter we 
will present the following nonparametric procedures: 

0 Spearman Coefficient: Two-sample correlation statistic 

0 Wilcoxon Test: One-sample median test (also see Sign Test) .  

0 Wilcoxon Sum Rank Test: Two-sample test of distributions. 

0 Mann-Whitney Test: Two-sample test of medians. 
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7.1 PROPERTIES OF RANKS 

Let X I .  X2. . . . ~ X ,  be a sample from a population with continuous CDF F x .  
The nonparametric procedures are based on how observations within the sam- 
ple are r a n k e d .  whether in terms of a parameter p or another sample. The 
ranks connected with the sample X I .  X2. . . . , X ,  denoted as 

. (XI),  r ( X 2 ) .  . . . . r(X,).  

are defined as 

Equivalently. ranks can be defined via the order statist ics of the sample, 
r(X,, ,)  = i. or 

d Since X I ;  . . . X ,  is a random sample, it is true that X I ,  . . . . X ,  = X,, : . . . X T n  
where 7r1 . . . . T ,  is a permutation of 1.2:  . . . : n and = denotes equality in dis- 
tribution. Consequently. P(r (X , )  = j )  = l/n, 1 5 j 5 n. i.e.; ranks in 
a n  i . i .d.  sample are distributed as  discrete u n i f o r m  r a n d o m  variables. Cor- 
responding to  the data ~ i ,  let Ri = r ( X , ) ,  the rank of the random variable 
Xi. 

From Chapt,er 2 )  t,he properties of integer sums lead to the following prop- 
erties for ranks: 

d 

where 

1 
IE(X,R,) = E(IE(R,X,)IR, = k )  = E(E(kXk. ,)) = - C i E ( X , . , , ) .  

n 
2 = 1  
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In the case of ties. it is customary to  average the tied rank values. 
LIATLAB procedure rank does just that:  

The 

>> ranks([3 1 4  1 5  9 2 6 5 3 5 8 91) 
ans = 
Columns 1 through 7 
4.5000 1.5000 6.0000 1.5000 8.0000 12.5000 3.0000 

Columns 8 through 13 
10.0000 8.0000 4.5000 8.0000 11.0000 12.5000 

Property (iv) can be used to  find the correlation between observations and 
their ranks. Such correlation depends on the sample size and the underlying 
distribution. For example, for X N U ( 0 .  l) ,  IE(X,R,) = (an + 1)/6. which 
gives @ov(X,, R,) = (n - l ) / l 2  and @orr(X,. R,) = J ( n  - l ) / ( n  + 1). 

With two samples. comparisons between populations can be made in a 
nonparametric way by comparing ranks for the combined ordered samples. 
Rank statistics that are made up of sums of indicator variables comparing 
items from one sample with those of the other are called h e a r  rank statzstzcs. 

7.2 SIGN TEST 

Suppose we are interested in testing the hypothesis HO that  a population with 
continuous CDF has a median mo against one of the alternatives HI : m > mo3 
H I  : m < mo or H I  : m # mo. Designate the sign + when X ,  > mo (i.e.. when 
the difference X ,  - mo is positive). and the sign - otherwise. For continuous 
distributions, the case X ,  = m (a tie) is theoretically impossible, although in 
practice ties are often possible, and this feature can be accommodated. For 
now. we assume the ideal situation in which the ties are not present. 

Assumptions: Actually, no assumptions are necessary for the sign test 
other than the data are at least ordinal 

If mo is the median, i.e., if Ho is true, then by definition of the median, 
P ( X ,  > mo) = P ( X ,  < mo) = 1/2. If we let T be the total number of + 
signs. that is, 

n 

T = C I ( X ,  > mo). 
L = l  

then T N Bin(n, 1/2).  
Let the level of test. a.  be specified. When the alternative is H I  : m > mo, 

the critical values of T are integers larger than or equal to  t,, which is defined 
as the smallest integer for which 
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Likewise. if the alternative is H I  : m < r n o ,  the critical values of T are integers 
smaller than or equal to  t h ,  which is defined as the largest integer for which 

If the alternative hypothesis is two-sided (HI : m # mo), the critical values 
of T are integers smaller than or equal to tL,2 and integers larger than or equal 
to t,12, which are defined via 

If the value T is observed. then in testing against alternative HI : m > mo. 
large values of T serve as evidence against Ho and the p-value is 

Wheii testing against the alternative HI : m < mo: small values of T are 
critical and the p-value is 

T 

p = c ( 3 2 - " .  
L=O 

When the hypothesis is the two-sided. take T' = min{T. n - T }  and calculate 
pvalue as 

T' 

P = 2c ( ; ) 2 - " .  
i=O 

7.2.1 Paired Samples 

Consider now the case in which two samples are paired: 

{(Xl, Yl)?.  ' .  . (Xn. Y")}. 

Suppose we are interested in finding out whether the median of the population 
differences is 0. In this case we let T = C:=l I ( X z  > x), which is the total 
number of strictly positive differences. 
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For two population means it is true that the hypothesis of equality of means 
is equivalent to the hypothesis that  the mean of the population differences is 
equal to  zero. This is not always true for the test of medians. That is. if 
D = X - Y .  then it is quite possible that m D  # mx - my. With the sign 
test we are not testing the equalzty of two medians, but whether the medzan 
of t h e  dtfference is 0 .  

Under Ho: equal populatzon medzans.  E(T) = C P ( X ,  > y Z )  = n/2 and 
Var(T) = n . V a r ( l ( X  > Y ) )  = n/4. With large enough n, T is approximately 
normal. so for the statistical test of H I :  t h e  medaans are n o t  equal, we would 
reject HO if T is far enough away from n/2: that  is, 

Example 7.1 According to The Rothstein Catalog on Disaster Recovery. 
the median number of violent crimes per state dropped from the year 1999 
to 2000. Of 50 states, if X ,  is number of violent crimes in state i in 1999 
and Y, is the number for 2000. the median of sample differences is X ,  - Y,. 
This number decreased in 38 out of 50 states in one year. With T = 38 and 
n = 50. we find zo = 3.67. which has a p-value of 0.00012 for the one-sided 
test (medians decreased over the year) or ,00024 for the two-sided test. 

Example 7.2 Let X1 and X2 be independent random variables distributed 
as Poisson with parameters A1 and A2. We would like to test the hypothesis 
HO : A1 = A 2  (= A). If HO is true. 

If we observe X1 and X2 and if X I  + X2 = n then testing HO is exactly the 
sign test. with T = XI. Indeed. 

For instance, if X1 = 10 and X 2  = 20 are observed. then the p-value for the 
two-sided alternative H I  : A1 # A2 is 2 = 2 . 0.0494 = 0.0987. 30 

(”) (i) 

Example 7.3 Hogmanay Celebration’ Roger van Gompel and Shona Fal- 
coner at the University of Dundee conducted an experiment to  examine the 

IHogmanay is the Scottish New Year. celebrated on 31st December every year. The night 
involves a celebratory drink or two, fireworks and kissing complete strangers (not necessarily 
in that order). 
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drinking patterns of Members of the Scottish Parliament over the festive hol- 
iday season. 

Being elected to  the Scottish Parliament is likely to have created in mem- 
bers a sense of stereotypical conformity so that they appear to fit in with the 
traditional ways of Scotland. pleasing the tabloid newspapers and ensuring 
popular support. One stereotype of the Scottish people is that  they drink a 
lot of whisky. and that they enjoy celebrating both Christmas and Hogmanay. 
However. it is possible that members of parliment tend to drink more whisky 
at one of these times compared to the other. and an investigation into this 
was carried out. 

The measure used to investigate any such bias was the number of units 
of single malt scotch whisky (“drams“) consumed over two 48-hour periods: 
Christmas Eve/Christmas Day and Hogmanay/New Year‘s Day. The hypoth- 
esis is that Members of the Scottish Parliament drink a significantly different 
amount of whisky over Christmas than over Hogmanay (either consistently 
more or consistently less). The following data were collected. 

1 hISP i 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1  

Drams at  Christmas 2 3 3 2 4 0 3 6 2 I Dramsat  Hogmanay 1 1  3 1 1 5 I 6 I 4 1 7 ~ 5 I 9 1 0 I 
I AISP 1 1  10 1 11 I 12 1 13 I 14 1 15 I 16 1 17 1 18 1 

Drams at Christmas 2 5 4 3 6 0 3 3 0 i Drams at Hogmanay 1 1  4 15 1 6 1 8 9 1 0 6 1 5 1 12 

The AIATLAB function sign-test1 lists five summary statistics from the 
data for the sign test. The first is a p-value based on randomly assigning a 
’+’ or ‘-‘ to  tied values (see next subsection). and the second is the p-value 
based on the normal approximation, where ties are counted as half. n is the 
number of non-tied observations. plus are the number of plusses in y - 2 .  and 
t ie is the number of tied observations. 

>> x=[2 3 3 2 4 0 3 6 2 2 5 4 3 6 0 3 3 01; 
>> y=[5 1 5  6 4 7 5 9 0 4 15 6 8 9 0 6 5 121; 
>> [p i  p2 n plus t i e ]  = sign-testl(x’ , y ’ )  

p l  = 

0.0021 

p2 = 

0.0030 

n =  
16 
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plus = 

z 

tie = 

L 

7.2.2 Treatments of Ties 

Tied data present numerous problems in derivations of nonparametric meth- 
ods, and are frequently encountered in real-world data. Even when observa- 
tions are generated from a continuous distribution. due to limited precision on 
measurement and application. ties may appear. To deal with ties. ATATLAB 
does one of three things via the third input in s ign - t e s t l :  

R Randomly assigns *+’ or ‘ - *  to tied values 

C Uses least favorable assignrnent in terms of Ho 

I Ignores tied values in test statistic computation 

The preferable way to deal with ties is the first option (to randomize). An- 
other equivalent way to  deal with ties is to add a slight bit of “noise” to  the 
data. That is, complete the sign test after modifying D by adding a small 
enough random variable that will not affect the ranking of the differences: i.e.. 
0, = D, + E , ,  where E ,  - N(O.O.0001). Using the second or third options in 
s ign- tes t1  will lead to  biased or misleading results. in general. 

7.3 SPEARMAN COEFFICIENT OF RANK CORRELATION 

Charles Edward Spearman (Figure 7.2) was a late bloomer, academically. 
He received his Ph.D. at the age of 48. after serving as an officer in the 
British army for 15 years. He is most famous in the field of psychology. where 
he theorized that “general intelligence” was a function of a comprehensive 
mental competence rather than a collection of multi-faceted mental abilities. 
His theories eventually led to the development of factor analysis. 

Spearman (1904) proposed the rank correlation coefficient long before 
statistics became a scientific discipline. For bivariate data. an observation 
has two coupled components ( X .  Y) that  may or maj not be related to  each 
other. Let p = @orr(X,Y) represent the unknown correlation between the 
two components. In a sample of n. let R1.. . . . R, denote the ranks for the 
first component X and Sl. . . . . S, denote the ranks for Y .  For example, if 
2 1  = 2 ,  is the largest value from 21, ..., 2 ,  and y1 = y1 is the smallest 
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Fig. 7.2 
1983) 

Charles Edward Spearman (1863-1945) and hlaurice George Kendall (1907 

value from y1, ..., yn,  then ( ~ 1 %  s1) = ( n ,  1). Corresponding to Pearson's (para- 
metric) coefficient of correlation, the Spearman coefficient of correlation is 
defined as 

This expression can be simplified. From (7.1). R = S = (n  + 1)/2,  and 
C ( R ,  - I?)' = C(S, - S)2 = nVar(R,) = n(n2 - 1)/12.  Define D as the 
difference between ranks, i.e.. D, = R, - S,. With R = 9. we can see that 

and 

n n n n 

= x ( R ,  - R)' + x ( S ,  - S)2 - 2 x ( R ,  - R)(S ,  - 3).  
a = l  z= 1 z = l  ,=l 

that is. 

By dividing both sides of the equation with C:=l (R, - R)2  . CG1 (S, - s)2 = 
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x:=l((R, - R)’ = n(n2 - 1)/12, we obtain 

Consistent with Pearson‘s coefficient of correlation (the standard para- 
metric measure of covariance), the Spearman coefficient of correlation ranges 
between -1 and 1. If there is perfect agreement, that  is, all the differences 
are 0, then j = 1. The scenario that maximizes C D :  occurs when ranks are 
perfectly opposite: T,  = n - s, + 1. 

If the sample is large enough, the Spearman statistic can be approximated 
using the normal distribution. It was shown that if n > 10, 

Assumptions: Actually. no assumptions are necessary for testing p 
other than the data are at least ordinal. 

Example 7.4 Stichler, Richey. and Mandel (1953) list tread wear for tires 
(see table below). each tire measured by two methods based on (a) weight loss 
and (b) groove wear. In 51ATLAB. the function 

spear (x , y) 

computes the Spearman coefficient. For this example, j = 0.9265. Note that 
if we opt for the parametric measure of correlation. the Pearson coefficient is 
0.948. 

Weight Groove 

45.9 35.7 
37.5 31.1 
31.0 24.0 
30.9 25.9 
30.4 23.1 
20.4 20.9 
20.9 19.9 
13.7 11.5 

Weight Groove 

41.9 39.2 
33.4 28.1 
30.5 28.7 
31.9 23.3 
27.3 23.7 
24.5 16.1 
18.9 15.2 
11.4 11.2 

Ties in the data: The statistics in (7.1) and (7.2) are not designed for 
paired data that include tied measurements. If ties exist in the data. a simple 
adjustment should be made. Define u’ = c u(uz - 1) /12  and c’ = C c ( v 2  - 
l ) / l 2  where the u ‘s  and v’s are the ranks for X and Y adjusted (e.g. averaged) 
for ties. Then. 

n(n’ - 1) - 6 El”=, 0% - 6(u’ + u’) p‘ = 
{ [n(n’ - 1) - 12u’] [n(n’ - 1) - 12v’]}1/2 
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and it holds that,  for large n, 

z = ($ - p ) J n 7 i  - N ( 0 ,  I ) .  

7.3.1 Kendall’s Tau 

Kendall (1938) derived an alternative measure of bivariate dependence by 
finding out how many pairs in the sample are “concordant”. which means the 
signs between X and Y agree in the pairs. That is, out of (i) pairs such as 
( X z , y 2 )  and (X, .?) .  we compare the sign of ( X ,  - Y ; )  to that of ( X ,  - ?). 
Pairs for which one sign is plus and the other is minus are “discordant”. 

The Kendall’s r statistic is defined as 

n n  

r =  2 s ~  . S, = c c sign{r, -- r J ) .  
a = 1  3 = z ~ 1  

n(n - 1) 

where r z s  are defined via ranks of the second sample corresponding to  the 
ordered ranks of the first sample. ( 1 . 2 . .  . . . n}.  that  is, 

( r: r: : : :  rn ) 
In this notation CZ,  0; from the Spearman‘s coefficient of correlation be- 
comes C:=l(r,-i)2. In terms of the number of concordant (n?)  and discordant 
(ng = ( y )  - n,) pairs. 

and in the case of ties. use 

Example 7.5 Trends in Indiana’s water use from 1986 to 1996 were reported 
by Arvin and Spaeth (1997) for Indiana Department of Natural Resources. 
About 95% of the surface water taken annually is accounted for by two cat- 
egories: surface water withdrawal and ground-water withdrawal. Kendall’s 
tau statistic showed no apparent trend in total surface water withdrawal over 
time (p-value M 0.59). but ground-water withdrawal increased slightly over 
the 10 year span (p-value M 0.13). 

>> x=(1986:1996); 
>> yl=[2.96,3.00,3.12,3.22,3.21,2.96,2.89,3.04,2.99,3.08,3.121 ; 
>> y2=[0.175,0.173,0.197,0.182,0.176,0.205,0.188,0.186,0 . ~ 0 2 , . . .  

0.208,0.2131 ; 
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>> yl-rank=ranks(yl) ; y2_rank=ranks(y2) ; 
>> n=length(x); S1=0; S2=0; 
>> for i=l:n-1 

for j=i+l :n 
Sl=Sl+sign(yl-rank(i) -yl-rank(j)) ; 
S2=S2+sign(y2_rank(i)-y2_rank(j)); 

end 
end 

>> ktaul=2*S1/ (n* (n-1) ) 

ktaul = 

-0,0909 

>> ktau2=2*S2/ (n* (n-I)) 

ktau2 = 
-0.6364 

With large sample size n, we can use the following z-statistic as a normal 
approximat ion: 

This can be used to test the null hypothesis of zero correlation between the 
populations. Kendall's tau is natural measure of the relationship between X 
and Y .  M'e can describe it as an odds-ratio by noting that 

where C is the event that any pair in the population is concordant. and 
D is the event any pair is discordant. Spearman's coefficient, on the other 
hand. cannot be explained this way. For example. in a population with r = 
1/3, any two sets of observations are twice as likely to  be concordant than 
discordant. On the other hand, computations for r grow as O(n2) .  compared 
to the Spearman coefficient, that grows as O(n1nn)  

7.4 WILCOXON SIGNED RANK TEST 

Recall that the sign test can be used to  test differences in medians for two 
independent samples. A major shortcoming of the sign test is that  only the 
sign of D, = X ,  - mo, or D, = X ,  - Y,. (depending if we have a one- or two- 
sample problem) contributes to the test statistics. Frank Wilcoxon suggested 
that,  in addition to  the sign. the absolute value of the discrepancy between 
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the pairs should matter as well, and it could increase the efficiency of the sign 
test. 

Suppose that. as in the sign test. we are interested in testing the hypothesis 
that a median of the unknown distribution is m o .  We make an important 
assumption of the data. 

Assumption: The differences D,, z = 1,. . . . n are symmetrically dis- 
tributed about 0 

This implies that positive and negative differences are equally likely. For this 
test, the absolute values of the differences (IDll. /&/, . . . . ID,l) are ranked. 
The idea is to use (IDll. IDzl.. . . , IDnl) as a set of weights for comparing the 
differences hetween (5’1. . . . . S,) . 

Under Ho (the median of distribution is mo). the expectation of the sum 
of positive differences should be equal to the expectation of the sum of the 
negative differences. Define 

n 

i=l 

where Sa = S(D, )  = I ( D ,  > 0). Thus T+ + T- = El”=, i = n(n + l ) / 2  and 

n 

T = Tf - T -  = 2 C r ( l D , / ) S ,  - n(n+ 1) /2 .  (7 .3 )  

Under Ho. (S1,. . . . S,) are i.i.d. Bernoulli random variables with p = 
l /2.  independent of the corresponding magnitudes. Thus, when Ho is true. 
IE(T+) = n ( n  + 1)/4 and Var(T+) = n(n + l)(2n + 1)/24. Quantiles for T+ 
are listed in Table 7.9. In MATLAB. the signed rank test based on T f  is 

wilcoxon-signed2. 

Large sample tests are typically based on a normal approxirriativrl of the test 
statistic. which is even more effective if there are ties in the data. 

Rule: For the W’ilcoxon signed-rank test. it is suggesied to  use T from 
(7 .3 )  instead of T+ in the case of large-sample approximation 

In this case, IE(T) = 0 and Var(T) = C,(R(lDzl)2) = n(n + 1)(2n + 1)/6 
under Ho. Normal quantiles 
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8 2  4 6 
9 4  6 9 
10 6 9 11 
11 8 11 14 
12 10 14 18 
13 13 18 22 
14 16 22 26 
15 16 20 26 
16 24 30 36 
17 28 35 42 
18 33 41 48 
19 38 47 54 
20 44 53 61 
21 50 59 68 
22 56 67 76 
23 63 74 84 

24 70 82 92 
25 77 90 101 
26 85 99 111 
27 94 108 120 
28 102 117 131 
29 111 127 141 
30 121 138 152 
31 131 148 164 
32 141 160 176 
33 152 171 188 
34 163 183 201 
35 175 196 214 
36 187 209 228 
37 199 222 242 
38 212 236 257 
39 225 250 272 

can be used to  evaluate p-values of the observed statistics T with respect to  
a particular alternative (see the m-file wilcoxon-signed) 

Example 7.6 Twelve sets of identical twins underwent psychological tests to  
measure the amount of aggressiveness in each person's personality. We are 
interested in comparing the twins to  each other to  see if the first born twin 
tends to be more aggressive than the other. The results are as follows, the 
higher score indicates more aggressiveness. 

first born X,:  86 71 77 68 91 72 77 91 70 71 88 87 
second twin Y,: 88 77 76 64 96 72 65 90 65 80 81 72 

The hypotheses are: Ho : the first twin does not tend to  be more aggressive 
than the other, that  is. IE(X,) 5 IE(Y,). and HI : the first twin tends to be more 
aggressive than the other. i.e., IE(X,) > IE(Y,). The Wilcoxon signed-rank test 
is appropriate if we assume that D, = X ,  - Y, are independent, symmetric, 
and have the same mean. Below is the output of wilcoxon-signed, where T 
statistics have been used. 

>> fb = [86 7 1  77 68 9 1  72 77 91  70 7 1  88 871; 
>> sb = [88 77 76 64 96 72 65 90 65 80 8 1  721; 
>> [tl, zl, p] = wilcoxon-signed(fb, sb, 1) 

tl = 17 %value of T 

z l  = 0.7565 %value of Z 
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p = 0.2382 %p-value of the test 

The following is the output of wilcoxon-signed2 where TI statistics have 
been used. The pvalues are identical. and there is insufficient evidence to 
conclude the first twin is more aggressive than the next. 

>> [t2, 22, pl = wilcoxon-signed2(fb, sb, 1) 

t2 =41.5000 %value of T^+ 

22 = 0.7565 

p =0.2382 

7.5 WILCOXON (TWO-SAMPLE) SUM RANK TEST 

The M-ilcoxon Sum Rank Test (WSuRT) is often used in place of a two sample 
t-test when the populations being compared are not normally distributed. It 
requires independent random samples of sizes n1 and nz. 

Assumption: Actually, no additional assumptions are needed for the 
Wilcoxon two-sample test. 

An example of the sort of data for which this test could be used is responses 
on a Likert scale (e.g., 1 = much worse. 2 = worse, 3 = no change. 4 = better, 
5 = much better). It would be inappropriate to  use the t-test for such data 
because it is only of an ordinal nature. The Wilcoxon rank sum test tells us 
more generally whether the groups are homogeneous or one group is "better' 
than the other. More generally, the basic null hypothesis of the Wileoxon sum 
rank test is that the two populations are equal. That is Ho : F x ( 2 )  = F y ( 2 ) .  
This test assumes that the shapes of the distributions are similar. 

Let X = X I . .  . . . X,, and Y = Yl, . . . , Y,, be two samples from popula- 
tions that we want to compare. The n = n1 + n2 ranks are assigned as they 
were in the sign test. The test statistic IV, is the sum of ranks (1 to n)  for X. 
For example. if X1 = 1. X2 = 13. X3 = 7 .  X4 = 9, and Y1 = 2 .  Y2 = 0. Y3 = 18. 
then the value of M', is 2 + 4 + 5 + 6 = 17. 

If the two populations have the same distribution then the sum of the 
ranks of the first sample and those in the second sample should be the same 
relative to their sample sizes. Our test statistic is 

n 

1vn = c i S , (X .  Y).  
Z = 1  

where S,(X.Y) is an indicator function defined as 1 if the z t h  ranked obser- 
vation is from the first sample and as 0 if the observation is from the second 
sample. If there are no ties. then under Ho, 
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The statistic W, achieves its minimum when the first sample is entirely smaller 
than the second. and its maximum when the opposite occurs: 

a = 1  z=n-nI + 1 

The exact distribution of W, is computed in a tedious but straightforward 
manner. The probabilities for W, are symmetric about the value of E(W,) = 
nl (n  + 1)/2.  

Example 7.7 Suppose nl = 2 . n ~  = 3 ,  and of course n = 5 .  There are 
(2”) = (:) = 10 distinguishable configurations of the vector (S1, ,572,. . . % ,573). 

The minimum of Wj is 3 and the maximum is 9. Table 7.10 gives the values 
for IV, in this example. along with the configurations of ones in the vector 
(S1, Sz.. . . ~ Ss) and the probability under Ho. Notice the symmetry in prob- 
abilities about E(W5). 

Table 7.10 Distribution of Ws when n1 = 2 and n2 = 3. 

I.Vs configuration probability 

3 ( 1 J )  1/10 
4 (1.3) 1/10 
5 (1.4). (2.3) 2/10 
6 (1.5). (2.4) 2/10 
7 (2.5). (3.4) 2/10 
8 (3 .5)  1/10 
9 (4.5) 1/10 

Let / ~ ~ ~ . , ~ ( m )  be the number of all arrangements of zeroes and ones in 
(SI(X,Y). . . . . Sn(X3 Y ) )  such that l4’, = Cy=l i S , ( X . Y )  = m. Then the 
probability distribution 

can be used to perform an exact test. Deriving this distribution is no trivial 
matter, mind you. When n is large, the calculation of exact distribution of 
W, is cumbersome. 
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The statistic W, in WSuRT is an example of a lineur rank Statistic (see 
section on Properties of Ranks) for which the normal approximation holds, 

) .  Wn"( 2 ' 12 
n,(n + 1) n1nz(n + 1) 

A better approximation is 

n: + n; + n1nz + n 
20n1nz(n + 1) , P(W, 5 w) R5 @(z) + d(z)(z3 - 3z) 

where 4(z) and a(.) are the PDF and CDF of a standard normal distribution 
and z = (w-lE(W) + 0 . 5 ) / d m .  This approximation is satisfactory for 
n1 > 5 and n2 > 5 if there are no ties. 

Ties in the Data: If ties are present, let t l : .  . . , tl, be the number of different 
observations among all the observations in the combined sample. The adjust- 
ment for ties is needed only in Var(W,), because E(Wn) does not change. 
The variance decreases to 

n1n*(n + 1) - 721122 C;&S -- ti) 
12 12n(n + 1)- 

Var(Wn) = (7.4) 

For a proof of (7.4) and more details, see Lehmann (1998). 

Example 7.8 Let the combined sample be { 2 j4/ 4 4 5 }, 
where the boxed numbers are observations from the firat sample. Then n = 7, 
n1 = 3. nz = 4, and the ranks are (1.5 1.5 3 5 5 5 7). The statistic 
w = 1.5 + 3 + 5 = 9.5 has mean IE(W,) = nl(n + l ) /2  = 12. To adjust 
the variance for the ties first note that there are k == 4 different groups of 
observations, with tl  = 2. tz = 1. t 3  = 3. and t4 = 1. With t ,  = 1, t: - t ,  = 0, 
only the values o f t ,  > 1 (genuine ties) contribute to the adjusting factor in 
the variance. In this case, 

3 . 4 .  8 3 . 4 .  ((8 - 2) + (27 - 3 ) )  
Var(W7) = - - = 8 -- 0.5357 =z 7.4643. 

12 1 2 . 7 . 8  

7.6 MANN-WHITNEY u TEST 

Like the Wilcoxon test above. the Xlann-Whitney test is applied to find dif- 
ferences in two populations. and does not assume tlhat the populations are 
normally distributed. However. if we extend the method to tests involving 
population means (instead of just E(D,,) = P(Y < X ) ) ,  we need an addi- 
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tional assumption. 

Assumption: The shapes of the two distributions are identical. 

This is satisfied if we have F x ( t )  = Fy(t+S) for some 6 E R. Let X I . .  . . , X,, 
and Y1, . . . , Yn2 represent two independent samples. Define D,, = I ( Y ,  < X,), 
i = 1 , .  . . , n1 and j = 1,. . . ,n2. The Mann-Whitney statistic for testing the 
equality of distributions for X and Y is the linear rank statistic 

i=l j=1 

It turns out that the test using U is equivalent to the test using W, in the 
last section. 

Equivalence of Mann-Whitney and Wilcoxon Sum Rank Test. Fix i 
and consider 

+ Dip2 ' (7.5) 

The sum in (7.5) is exactly the number of index values j for which Y,  < X, .  
Apparently, this sum is equal to the rank of the X, in the combined sample, 
r ( X , ) ,  minus the number of X s  which are 5 X, .  Denote the number of X s  
which are 5 X ,  by k,. Then, 

i=l i=l 

because kl + ka +. . . + k,, = 1 + 2 +. . . +nl. After all this, the Mann-Whitney 
( U )  statistic and the Wicoxon sum rank statistic (Wn) are equivalent. As a 
result, the Wilcoxon Sum rank test and Mann-Whitney test are often referred 
simply as the Wilcoxon-Mann- Whitney test. 

Example 7.9 Let the combined sample be { 12 13 18 28}, 
where boxed observations come from sample 1. The statistic U is 0 + 2 + 2  = 4. 
On the other hand. W, - 3 . 4 / 2  = (1  + 4.5 + 4.5) - 6 = 4. 

The MATLAB function wmw computes the Wilcoxon-Mann-Whitney test 
using the same arguments from tests listed above. In the example below; w is 
the sum of ranks for the first sample, and z is the standardized rank statistic 
for the case of ties. 

>> [w,z,pl=wmw([l 2 3 4 51, [2 4 2 11 13, 0) 
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w = 27 

z = -0.1057 

p = 0.8740 

7.7 TEST OF VARIANCES 

Compared to parametric tests of the mean, statistic,al tests on population 
variances based on the assumption of normal distributed populations are less 
robust. That is, the parametric tests for variances are known to perform quite 
poorly if the normal assumptions are wrong. 

Suppose we have two populations with CDFs F and G. and we collect 
random samples X I ,  .... X,, N F and Y1. ..., Y,, N G (the same set-up used 
in the Mann-Whitney test). This time, our null hypothesis is 

versus one of three alternative hypotheses ( H I ) :  ax2 # cry2, ax2  < oy2,  
ax2 > f l y 2 .  If Z and are the respective sample means, the test statistic is 
based on 

f i (z , )  = rank of (2 ,  - 3)’ among all n = n1 + n2 ,squared differences 
R(y,) = rank of (yz - g)2 among all n = n1 + n2 squared differences 

with test statistic 

T = CR(xi). 
i= 1 

Assumption: The measurement scale needs to be interval (at least). 

Ties in the Data: If there are ties in the data, it is 

where 

better to use 

and 

The critical region for the test corresponds to the direction of the alternative 
hypothesis. This is called the Conover test of eqzial variances, and tabled 
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quantiles for the null distribution of T are be found in Conover and Iman 
(1978). If we have larger samples (n1 2 10, n2 2 lo), the following normal 
approximation for T can be used: 

nl(n + 1)(2n + 1) 
6 

T -+ N ( ~ T , & ) ,  with p~ = , 

2 oT = nin2(n + 1)(2n + 1)(8n + 11) 
180 

For example, with an a-level test, if H I  : ax2 > oy2, we reject HO 
if zo = (T - ~ T ) / O T  > z a ,  where z ,  is the 1 - a quantile of the normal 
distribution. The test for three or more variances is discussed in Chapter 8, 
after the Kruskal-Wallis test for testing differences in three or more population 
medians. 

Use the MATLAB function SquaredRanksTest (x ,y ,p , s ide  , da t a )  for 
the test of two variances, where z and y are the samples, p is the sought- 
after quantile from the null distribution of T ,  s i d e  = 1 for the test of 
H1 : ax2 > oy2 (use p/2 for the two-sided test), s i d e  = -1 for the test of 
H1 : ax2 < o y 2  and s i d e  = 0 for the test of H1 : gx2 # ay2. The last 
argument, da t a ,  is optional; if you are using small samples, the procedure will 
look for the Excel file (squared ranks c r i t i c a l  values  .xl) containing the 
table values for a test with small samples. In the simple example below, the 
test statistic T = -1.5253 is inside the region the interval (-1.6449,1.6449) 
and we do not reject HO : ox2 = ay2 at level a = 0.10. 

T = l l l . 2 5  %T s t a t i s t i c  i n  case  of no t i e s  

T1=-1.5253 %T1 i s  t h e  z - s t a t i s t i c  i n  case  of t i e s  

dec=0 %do not  r e j e c t  HO a t  t h e  l e v e l  s p e c i f i e d  

t i e s = l  %1 i n d i c a t e s  t i e s  were found 

p=o. 1000 %set type  I e r r o r  ra te  

side=O %chosen a l t e r n a t i v e  hypothesis  

Tpl=-1.6449 %lower c r i t i c a l  va lue  

Tp2=1.6449 %upper c r i t i c a l  va lue  
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7.8 EXERCISES 

7.1. With the Spearman correlation statistic, show that when the ranks are 
opposite, f i  = -1. 

7.2. Diet A was given to  a group of 10 overweight boys between the ages of 
8 and 10. Diet B was given to  another independent group of 8 similar 
overweight boys. The weight loss is given in the table below. Using 
WMW test, test the hypothesis that the diets are of comparable ef- 
fectiveness against the two-sided alternative. Use a = 5% and normal 
approximat ion. 

2 3 - 1  4 6 0 1 4  6 ~ ~ ~ ~ k l ~  6 4 7 8 9 7 2 

7.3. A psychological study involved the rating of rats along a dominance- 
submissiveness continuum. In order to  determine the reliability of the 
ratings, the ranks given by two different observers were tabulated below. 
Are the ratings agreeable? Explain your answer. 

Rank Rank Rank Rank 
Animal observer A observer B Animal observer A observer B 

12 
2 
3 
1 
4 
5 
14 
11 

15 
1 
7 
4 
2 
3 
11 
10 

I 
J 
K 
L 
M 
N 
0 
P 

6 
9 
7 
10 
15 
8 
13 
16 

5 
9 
6 
12 
13 
8 
14 
16 

7.4. Two vinophiles. X and Y, were asked to  rank N = 8 tasted wines from 
best to worst (rank #l=highest, rank #8=lowest). Find the Spearman 
Coefficient of Correlation between the experts. If the sample size in- 
creased to N = 80 and we find f i  is ten times smaller than what you 
found above, what would the p-value be for the two-sided test of hy- 
pothesis? 

Wine brand 1 a b c d e f g h 

Expert X 1 2 3 4 5 6 7 8 
Expert Y 2 3 1 4 7 8 5 6 

7.5. Use the link below to see the results of an experiment on the effect of 
prior information on the time to  fuse random dot stereograms. One 
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group (NV) was given either no information or just verbal information 
about the shape of the embedded object. A second group (group VV) 
received both verbal information and visual information (e.g., a drawing 
of the object). Does the median time prove to be greater for the NV 
group? Compare your results to those from a two-sample t-test. 

http://lib.stat.cmu.edu/DASL/Datafiles/FusionTime.html 

7.6. Derive the exact distribution of the Mann-Whitney U statistic in the 
case that n1 = 4 and 722 = 2. 

7.7. A number of Vietnam combat veterans were discovered to have dan- 
gerously high levels of the dioxin 2,3,7,8-TCDD in blood and fat tissue 
as a result of their exposure to the defoliant Agent Orange. A study 
published in Chemosphere (Vol. 20, 1990) reported on the TCDD lev- 
els of 20 Massachusetts Vietnam veterans who were possibly exposed to 
Agent Orange. The amounts of TCDD (measured in parts per trillion) 
in blood plasma and fat tissue drawn from each veteran are shown in 
the table. Is there sufficient evidence of a difference between the distri- 

TCDD Levels in Plasma 1 TCDD Levels in Fat Tissue 

2.5 3.1 2.1 
3.5 3.1 1.8 
6.8 3.0 36.0 
4.7 6.9 3.3 
4.6 1.6 7.2 
1.8 20.0 2.0 

2.5 4.1 

4.9 5.9 4.4 
6.9 7.0 4.2 

10.0 5.5 41.0 
4.4 7.0 2.9 
4.6 1.4 7.7 
1.1 11.0 2.5 

2.3 2.5 

butions of TCDD levels in plasma and fat tissue for Vietnam veterans 
exposed to Agent Orange? 

7.8. For the two samples in Exercise 7.5, test for equal variances. 

7.9. The following two data sets are part of a larger data set from Scanlon, 
T.J.,  Luben, R.N.. Scanlon, F.L.. Singleton, N. (1993), "Is Friday the 
13th Bad For Your Health?," BMJ,  307. 1584-1586. The data analysis in 
this paper addresses the issues of how superstitions regarding Friday the 
13th affect human behavior. Scanlon. et al. collected data on shopping 
patterns and traffic accidents for Fridays the 6th and the 13th between 
October of 1989 and November of 1992. 

(i) The first data set is found on line at 

http://lib.stat.cmu.edu/DASL/Datafiles/Fridaythel3th.html 

The data set lists the number of shoppers in nine different supermarkets 
in southeast England. At the level Q = 10%. test the hypothesis that 
"Friday 13th" affects spending patterns among South Englanders. 
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1 1.65 1.73 
3 2.03 2.03 
5 1.05 0.95 
7 1.67 1.41 
9 1.56 1.63 

Year, Month # of accidents # of accidents ~ Sign 1 Hospital 
Friday 6th Friday 13th 

2 1 1.06 
4 1.25 1.4 
6 1.02 1.13 
8 1.86 1.73 
10 1.73 1.56 

1989, October 
1990, July 
1991, September 
1991, December 
1992. March 
1992, November 

9 
6 
11 
11 
3 
5 

13 
12 
14 
10 
4 
12 

+ 

SWTRHA hospital 

(ii) The second data set is the number of patients accepted in SWTRHA 
hospital on dates of Friday 6th and Friday 13th. At the level cy = lo%, 
test the hypothesis that the “Friday 13th” effect is present. 

7.10. Professor Inarb claims that 50% of his students in a large class achieve 
a final score 90 points or and higher. A suspicious student asks 17 
randomly selected students from Professor Inarb’s class and they report 
the following scores. 

80 81 87 94 79 78 89 90 92 88 81 79 82 79 77 89 90 

7.11. 

Test the hypothesis that the Professor Inarb‘s claim is not consistent 
with the evidence. i.e., that the 50%-tile (0.5-quantile, median) is not 
equal to 90. Use a = 0.05. 

Why does the moon look bigger on the horizon? Kaufman and Rock 
(1962) tested 10 subjects in an experimental room with moons on a 
horizon and straight above. The ratios of the perceived size of the 
horizon moon and the perceived size of the zenith moon were recorded 
for each person. Does the horizon moon seem bigger? 

Subject Zenith Horizon 1 Subject Zenith Horizon 

7.12. To compare the t-test with the WSuRT, set up the following simulation 
in MATLAB: (1) Generate n = 10 observations from N ( 0 , l ) ;  (2) For 
the test of Ho : p = 1 versus HI : p < 1. perform a t-test at cy = 0.05: 
(3) Run an analogous nonpararnetric test; (4) Repeat this simulation 
1000 times and compare the power of each test by counting the number 
of times Ho is rejected; (5) Repeat the entire experiment using a non- 
normal distribution and comment on your result. 
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Year, Month # Shoppers # Shoppers I Sign I Supermarket 
Friday 6th Friday 13th 

1990. July 
1991. September 
1991, December 
1992, March 
1992, November 
1990, July 
1991, September 
1991, December 
1992, March 
1992, November 
1990, July 
1991, September 
1991, December 
1992, March 
1992, November 
1990, July 
1991. September 
1991, December 
1992, March 
1992, November 
1990, July 
1991. September 
1991, December 
1992, March 
1992, November 
1990, July 
1991, September 
1991, December 
1992. March 
1992, November 
1990 July 
1991, September 
1991, December 
1992. March 
1992, November 
1990, July 
1991, September 
1991. December 
1992. March 
1992. November 
1990. July 
1991, September 
1991. December 
1992, March 
1992, November 

4942 
4895 
4805 
4570 
4506 
6754 
6704 
5871 
6026 
5676 
3685 
3799 
3563 
3673 
3558 
5751 
5367 
4949 
5298 
5199 
4141 
3674 
3707 
3633 
3688 
4266 
3954 
4028 
3689 
3920 
7138 
6568 
6514 
6115 
5325 
6502 
6416 
6422 
6748 
7023 
4083 
4107 
4168 
4174 
4079 

4882 
4736 
4784 
4603 
4629 
6998 
6707 
5662 
6162 
5665 
3848 
3680 
3554 
3676 
3613 
5993 
5320 
4960 
5467 
5092 
4389 
3660 
3822 
3730 
3615 
4532 
3964 
3926 
3692 
3853 
6836 
6363 
6555 
6412 
6099 
6648 
6398 
6503 
6716 
7057 
4277 
4334 
4050 
4198 
4105 

+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 

+ 
+ 

+ 

+ 
+ 
+ 
+ 

+ 
+ 

+ 

Epsom 

Guildford 

Dorking 

Chichester 

Horsham 

East Grinstead 

Lewisham 

Nine Elms 

Crystal Palace 
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8 
Designed Experiments 

Luck is the residue of design. 

Branch Rickey, former owner of the Brooklyn Dodgers (1881-1965) 

This chapter deals with the nonparametric statistical analysis of designed 
experiments. The classical parametric methods in analysis of variance, from 
one-way to multi-way tables, often suffer from a sensitivity to the effects of 
non-normal data. The nonparametric methods discussed here are much more 
robust. In most cases, they mimic their parametric counterparts but focus 
on analyzing ranks instead of response measurements in the experimental 
outcome. In this way, the chapter represents a continuation of the rank tests 
presented in the last chapter. 

We cover the Kruskal- Wallis t e s t  to compare three or more samples in 
an analysis of variance, the Fr iedman  t e s t  to  analyze two-way analysis of 
variance (ANOVA) in a "randomized block' design, and nonparametric tests 
of variances for three or more samples. 

8.1 KRUSKAL-WALLIS TEST 

The Kruskal-Wallis (KW) test is a logical extension of the Wilcoxon-Mann- 
Whitney test. It is a nonparametric test used to compare three or more 
samples. It is used to test the null hypothesis that all populations have iden- 
tical distribution functions against the alternative hypothesis that at  least two 

141 
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sample 1 
sample 2 

Fig. 8.1 William Henry Kruskal (1919 -); Wilson Allen Wallis (1912-1998) 

x11, x 1 2 ,  ‘ ‘ .  X1,nl 

XZl, x 2 2 ,  . . .  X2,nz 

of the samples differ only with respect to location (median), if at all. 
The KW test is the analogue to the F-test used in the one-way ANOVA. 

While analysis of variance tests depend on the assumption that all populations 
under comparison are independent and normally distributed, the Kruskal- 
Wallis test places no such restriction on the comparison. Suppose the data 
consist of k independent random samples with sample sizes n1, . . . , n k .  Let 
72 = 721 + . . .  + n k .  

Under the null hypothesis. we can claim that all of the k samples are from 
a common population. The expected sum of ranks for the sample i, E ( R , ) ,  
would be n, times the expected rank for a single observation. That is, n,(n + 
1)/2,  and the variance can be calculated as Var(R,) = n,(n + 1)(n - n,)/12. 
One way to  test HO is to calculate R, = Cyl, r(X, , )  - the total sum of ranks 
in sample 2 .  The statistic 

will be large if the samples differ, so the idea is to reject HO if (8.1) is “too 
large”. However, its distribution is a jumbled mess, even for small samples, 
so there is little use in pursuing a direct test. Alternatively we can use the 
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normal approximation 

where the x 2  statistic has only k - 1 degrees of freedom due to the fact that 
only k - 1 ranks are unique. 

Based on this idea, Kruskal and Wallis (1952) proposed the test statistic 

where 

If there are no ties in the data, (8.2) simplifies to 

They showed that this statistic has an approximate x2 distribution with k - 1 
degrees of freedom. 

The MATLAB routine 

krus  kal-wal l  i s 

implements the KW test using a vector to  represent the responses and another 
to  identify the population from which the response came. Suppose we have 
the following responses from three treatment groups: 

(1;3,4),  (3 ,4;5) ,  (4 ,4 ,4:6,5)  

be a sample from 3 populations. The MATLAB code for testing the equality 
of locations of the three populations computes a pvalue of 0.1428. 

>data = [ 1 3 4  3 4 5  4 4 4 6 5 1 ;  
>belong= [ l  1 1  2 2 2  3 3 3 3 3 1 ;  
> [H, p] = kruskal-walliscdata, belong) 

CH, pl = 
3.8923 0.1428 

Example 8.1 The following data are from a classic agricultural experiment 
measuring crop yield in four different plots. For simplicity. we identify the 
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1 
2 
3 
4 

treatment (plot) using the integers {1,2,3,4}. The third treatment mean mea- 
sures far above the rest, and the null hypothesis (the treatment means are 
equal) is rejected with a pvalue less than 0.0002. 

0 1.856 1.859 5.169 
1.856 0 3.570 3.363 
1.859 3.570 0 6.626 
5.169 3.363 6.626 0 

> data= [83 91 94 89 89 96 91 92 90 84 91 90 81 83 84 83 . . .  

> belong = [l 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 . . .  

>> [H, p] = kruskal-wallis(data, belong) 

88 91 89 101 100 91 93 96 95 94 81 78 82 81 77 79 81 801; 

3 3 3 3 3 3 3 3 4 4 4 4 4 4 41; 

H =  
20.3371 

1.4451e-004 
P =  

Krushl-Wallis Pairwise Comparisons. If the KW test detects treatment 
differences, we can determine if two particular treatment groups (say i and j )  
are different at level a if 

Example 8.2 We decided the four crop treatments were statistically differ- 
ent, and it would be natural to find out which ones seem better and which 
ones seem worse. In the table below, we compute the statistic 

s2 (n- 1-H') / n - k  ($+&) 
for every combination of 1 5 i # j 5 4, and compare it to  t30,0.975 = 2.042 

This shows that the third treatment is the best, but not significantly different 
from the first treatment, which is second best. Treatment 2, which is third best 
is not significantly different from Treatment 1, but is different from Treatment 
4 and Treatment 3. 



FRlEDMAN TEST 145 

2 

b 

Fig. 8.2 Milton Friedman (1912-2006) 

x21 x22 . . .  x2 k 

x b l  x b 2  . . .  Xb k 

8.2 FRIEDMAN TEST 

The Frzedman Test is a nonparametric alternative to the randomized block 
design (RBD) in regular AKOVA. It replaces the RBD when the assumptions 
of normality are in question or when variances are possibly different from 
population to population. This test uses the ranks of the data rather than 
their raw values to calculate the test statistic. Because the Friedman test does 
not make distribution assumptions, it is not as powerful as the standard test 
if the populations are indeed normal. 

Milton Friedman published the first results for this test, which was eventu- 
ally named after him. He received the Nobel Prize for Economics in 1976 and 
one of the listed breakthrough publications was his article “The Use of Ranks 
to Avoid the Assumption of Normality Implicit in the Analysis of Variance”. 
published in 1937. 

Recall that the RBD design requires repeated measures for each block 
at each level of treatment. Let X,, represent the experimental outcome of 
subject (or “block”) i with treatment j ,  where i = 1,. . . , b, and j = 1.. . . . k .  

Treatments I Blocks ~ 1 2 . . .  k 

I 1 I x11 x12 

To form the test statistic, we assign ranks { 1,2.  . . . , k }  to each row in the 
table of observations. Thus the expected rank of any observation under Ho is 
( k  + 1)/2. We next sum all the ranks by columns (by treatments) to obtain 
R, = x , = l ~ ( X , , ) ,  1 5 j 5 k .  If Ho is true, the expected value for R, is b 
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IE(R,) = b(k + 1)/2. The statistic 

k (R j -@p)  2 . 
j=1 

is an intuitive formula to reveal treatment differences. It has expectation 
bk(k2 - 1)/12 and variance k2b(b - l ) (k  - l ) (k  + 1)2/72. Once normalized to 

it has moments E(S) = k - 1 and Var(S) = 2(k  - l ) (b  - l ) / b  KZ 2(k - 1). 
which coincide with the first two moments of X E - ~ .  Higher moments of S also 
approximate well those of xipl when b is large. 

In the case of ties, a modification to S is needed. Let C = bk(k + 1)2/4 
and R* = x:=l C,=l T ( X % ~ ) ~ .  Then, 

k 

is also approximately distributed as xEPl. 
Although the Friedman statistic makes for a sensible, intuitive test, it 

turns out there is a better one to use. As an alternative to S (or S') ,  the test 
statistic 

(b - 1)s 
F =  

b(k  - 1) - s 
is approximately distributed as Fk-l,(b-l)(k-l), and tests based on this ap- 
proximation are generally superior to those based on chi-square tests that use 
S .  For details on the comparison between S and F ,  see Iman and Davenport 
(1980). 

Example 8.3 In an evaluation of vehicle performance. six professional drivers. 
(labelled I.II.III,IV,V.VI) evaluated three cars (A .  B. and C) in a random- 
ized order. Their grades concern only the performance of the vehicles and 
supposedly are not influenced by the vehicle brand name or similar exogenous 
information. Here are their rankings on the scale 1-10: 

Car I I 11 111 IV v VI 
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To use the MATLAB procedure 

friedman(data) ~ 

the first input vector represents blocks (drivers) and the second represents 
treatments (cars). 

> data = [7 8 9;  6 10 7;  6 8 8;  . .  
7 9 8;  7 10 9;  8 8 91; 

> [S,F,pS,pF] = friedman(data) 

S =  

F =  
8.2727 

11.0976 

0.0160 

0.0029 

ps = 

pF = 

% this p-value is more reliable 

Friedman Pairwise Comparisons. If the p-value is small enough to war- 
rant multiple comparisons of treatments, we consider two treatments i and j 
to  be different at level cy if 

bR* - C,"=, R: 
( b  - l ) ( k  - 1) ' 

IRi - RJ I > t ( b - l ) ( l c - l ) . l - a / 2  

Example 8.4 From Example 8.3, the three cars (A,B,C) are considered sig- 
nificantly different at test level cy = 0.01 (if we use the F-statistic). We can 
use the MATLAB procedure 

f riedman-pairwise-comparison(x, i , j ,a> 

to  make a pairwise comparison between treatment i and treatment j at level 
a. The output = 1 if the treatments i and j are different. otherwise it is 0. 
The Friedman pairwise comparison reveals that car A is rated significantly 
lower than both car B and car C,  but car B and car C are not considered to  
be different. 

An alternative test for k matched populations is the test by Quade (1966). 
which is an extension of the Wilcoxon signed-rank test. In general. the Quade 
test performs no better than Friedman's test, but slightly better in the case 
k = 3.  For that reason. we reference it but will not go over it in any detail. 
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8.3 VARIANCE TEST FOR SEVERAL POPULATIONS 

In the last chapter, the test for variances from two populations was achieved 
with the nonparametric Conover Test. In this section, the test is extended to 
three or more populations using a set-up similar to that of the Kruskal-Wallis 
test. For the hypotheses HO : k variances are equal versus H I  : some of the 
variances are different, let ni = the number of observations sampled from each 
population and Xij  is the j t h  observation from population i .  We denote the 
following: 

0 n = n l + . . . + n k  

~i = sample average for ith population 

R(zij)  = rank of (zij - Z i ) 2  among n items 

Then the test statistic is 

Under Ho, T has an approximate x2 distribution with k - 1 degrees of 
freedom, so we can test for equal variances at  level ct by rejecting HO if 
T > ~ : - ~ ( 1  - a ) .  Conover (1999) notes that the asymptotic relative effi- 
ciency, relative to the regular test for different variances is 0.76 (when the 
data are actually distributed normally). If the data are distributed as double- 
exponential, the A.R.E. is over 1.08. 

Example 8.5 For the crop data in the Example 8.1, we can apply the vari- 
ance test and obtain n = 34, TI = 3845, Tz = 4631, T3 = 4032, T4 = 1174.5, 

129,090 leads to the test statistic 
and T = 402.51. The variance term V, = C, C, R ( z , , ) ~  - 34(402.51)2) /33 = 

C?=l(T;/nj) - 34(402.51)' 
T =  = 4.5086. 

VT 

Using the approximation that T N xZ3 under the null hypothesis of equal 
variances, the p-value associated with this test is P(T > 4.5086) = 0.2115. 
There is no strong evidence to conclude the underlying variances for crop 
yields are significantly different. 
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Multiple Comparisons. If NO is rejected, we can determine which popula- 
tions have unequal variances using the following paired comparisons: 

where t n - k ( a )  is the cy quantile of the t distribution with n - k degrees of 
freedom. If there are no ties. T and VT are simple constants: T = (n+ 1)(2n+ 
1)/6 and VT = n(n + 1)(2n + l ) (8n + 11)/180. 

8.4 EXERCISES 

8.1. Show, that when ties are not present, the Kruskal-Wallis statistic H’ in 
(8.2) coincides with N in (8.3). 

8.2. Generate three samples of size 10 from an exponential distribution with 
X = 0.10. Perform both the F-test and the Kruskal-Wallis test to see 
if there are treatment differences in the three groups. Repeat this 1000 
times, recording the p-value for both tests. Compare the simulation re- 
sults by comparing the two histograms made from these pvalues. What 
do the results mean? 

8.3. The data set Hypnosis contains data from a study investigating whether 
hypnosis has the same effect on skin potential (measured in millivolts) 
for four emotions (Lehmann, p. 264). Eight subjects are asked to display 
fear, joy, sadness, and calmness under hypnosis. The data are recorded 
as one observation per subject for each emotion. 

1 fear 23.1 1 j o y  22.7 1 sadness 22.5 1 calmness 22.6 
2 fear 57.6 2 j o y  53.2 2 sadness 53.7 2 calmness 5 3 . 1  
3 fear 10.5 3 j o y  9.7 3 sadness 10.8 3 calmness 8 . 3  
4 fear 23.6 4 j o y  19.6 4 sadness 21.1  4 calmness 21.6 
5 fear 11.9 5 j o y  13.8 5 sadness 13.7 5 calmness 13.3 
6 fear 54.6 6 j o y  47.1 6 sadness 39.2 6 calmness 37.0 
7 fear 21.0 7 j o y  13.6 7 sadness 13.7 7 calmness 14.8 
8 fear 20.3 8 j o y  23.6 8 sadness 16.3 8 calmness 14.8 

8.4. The points-per-game statistics from the 1993 NBA season were analyzed 
for basketball players who went to college in four particular ACC schools: 
Duke, North Carolina. North Carolina State. and Georgia Tech. We 
want to find out if scoring is different for the players from different 
schools. Can this be analyzed with a parametric procedure? Why or 
why not? The classical F-test that assumes normality of the populations 
yields F = 0.41 and NO is not rejected. What about the nonparametric 
procedure? 
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100 
125 
150 
175 

Duke UNC 

21.8 21.9 21.7 21.7 21.6 21.7 
21.7 21.4 21.5 21.4 
21.9 21.8 21.8 21.8 21.6 21.5 
21.9 21.7 21.8 21.4 

NCSU GT 

7.5 5.5 
8.7 6.2 
7.1 13.0 
18.2 9.7 

12.9 
5.9 
1.9 

16.9 7.9 
4.5 7.8 
10.5 14.5 
4.4 6.1 
4.6 4.0 
18.7 14.0 
8.7 
15.8 

8.5. Some varieties of nematodes (roundworms that live in the soil and are 
frequently so small they are invisible to the naked eye) feed on the roots 
of lawn grasses and crops such as strawberries and tomatoes. This pest; 
which is particularly troublesome in warm climates, can be treated by 
the application of nematocides. However, because of size of the worms, 
it is difficult to measure the effectiveness of these pesticides directly. To 
compare four nematocides, the yields of equal-size plots of one variety of 
tomatoes were collected. The data (yields in pounds per plot) are shown 
in the table. Use a nonparametric test to find out which nematocides 
are different. 

Nematocide A Nematocide B Nematocide C Nematocide D 

18.6 18.7 19.4 19.0 
18.4 19.0 18.9 18.8 
18.4 18.9 19.5 18.6 
18.5 18.5 19.1 18.7 
17.9 18.5 

8.6. An experiment was run to determine whether four specific firing tem- 
peratures affect the density of a certain type of brick. The experiment 
led to the following data. Does the firing temperature affect the density 
of the bricks? 

Temperature 1 Density 

8.7. A chemist wishes to test the effect of four chemical agents on the strength 
of a particular type of cloth. Because there might be variability from one 
bolt to another. the chemist decides to use a randomized block design, 
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1 
2 
3 
4 

with the bolts of cloth considered as blocks. She selects five bolts and 
applies all four chemicals in random order to  each bolt. The resulting 
tensile strengths follow. How do the effects of the chemical agents differ? 

73 68 74 71 67 
73 67 75 72 70 
75 68 78 73 68 
73 71 75 75 69 

Bolt Bolt Bolt Bolt Bolt 
Chemical No. 1 No. 2 No. 3 No. 4 No. 5 

8.8. The venerable auction house of Snootly & Snobs will soon be putting 
three fine 17th-and 18th-century violins, A, B, and C, up for bidding. A 
certain musical arts foundation. wishing to  determine which of these in- 
struments to  add to  its collection, arranges to  have them played by each 
of 10 concert violinists. The players are blindfolded, so that they can- 
not tell which violin is which; and each plays the violins in a randomly 
determined sequence (BCA, ACB, etc.) 

The violinists are not informed that the instruments are classic mas- 
terworks; all they know is that  they are playing three different violins. 
After each violin is played, the player rates the instrument on a 10-point 
scale of overall excellence (1 = lowest, 10 = highest). The players are 
told that they can also give fractional ratings, such as 6.2 or 4.5, if 
they wish. The results are shown in the table below. For the sake of 
consistency, the n = 10 players are listed as "subjects." 

Subject 
Violin 1 2 3 4 5 6 7 8 9 10 

9 9.5 5 7.5 9.5 7.5 8 7 8.5 6 
7 6.5 7 7.5 5 8 6 6.5 7 7 
6 8 4 6 7 6 . 5 6  4 6.5 3 

8.9. From Exercise 8.5, test to see if the underlying variances for the four 
plot yields are the same. Use a test level of cu = 0.05. 
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Categorical Data 

Statistically speaking, U.S. soldiers have less of a chance of dying from 
all causes in Iraq than citizens have of being murdered in California, 
which is roughly the same geographical size. California has more than 
2300 homicides each year, which means about 6.6 murders each day. 
Meanwhile, U.S. troops have been in Iraq for 160 days, which means 
they're incurring about 1.7 deaths, including illness and accidents each 
day.' 

Brit Hume, Fox News, August 2003. 

A categorical variable is a variable which is nominal or ordinal in scale. Ordinal 
variables have more information than nominal ones because their levels can 
be ordered. For example. an automobile could be categorized in an ordinal 
scale (compact, mid-size, large) or a nominal scale (Honda, Buick, Audi). 
Opposed t o  interval data,  which are quantitative, nominal data are qualztative, 
so comparisons between the variables cannot be described mathematically. 
Ordinal variables are more useful than nominal ones because they can possibly 
be ranked, yet they are not quite quantitative. Categorical data analysis is 
seemingly ubiquitous in statistical practice. and we encourage readers who 
are interested in a more comprehensive coverage to  consult monographs by 

'By not taking the total population of each group into account, Hume failed to note the 
relative risk of death (Section 9.2) to a soldier in Iraq was 65 times higher than the murder 
rate in California. 

153 
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Agresti (1996) and Simonoff (2003). 
At the turn of the 19th century, while probabilists in Russia, France and 

other parts of the world were hastening the development of statistical theory 
through probability, British academics made great methodological develop- 
ments in statistics through applications in the biological sciences. This was 
due in part from the gush of research following Charles Darwin’s publica- 
tion of The Origin of Species in 1859. Darwin‘s theories helped to catalyze 
research in the variations of traits within species, and this strongly affected 
the growth of applied statistics and biometrics. Soon after, Gregor Mendel‘s 
previous findings in genetics (from over a generation before Darwin) were 
“rediscovered” in light of these new theories of evolution. 

Fig. 9.1 Charles Darwin (1843-1927), Gregor Mendel (1780-1880) 

When it comes to the development of statistical methods, two individu- 
als are dominant from this era: Karl Pearson and R. A. Fisher. Both were 
cantankerous researchers influenced by William S. Gosset, the man who de- 
rived the (Student’s) t distribution. Karl Pearson. in particular, contributed 
seminal results to  the study of categorical data. including the chi-square test 
of statistical significance (Pearson, 1900). Fisher used Xlendel‘s theories as a 
framework for the research of biological inheritance’. Both researchers were 
motivated by problems in heredity. and both played an interesting role in its 
promotion. 

Fisher. an upper-class British conservative and intellectual. theorized the 
decline of western civilization due to the diminished fertility of the upper 
classes. Pearson, his rival, was a staunch socialist, yet ironically advocated 
a “war on inferior races”, which he often associated with the working class. 
Pearson said, ”no degenerate and feeble stock will ever be converted into 

2Actually. Fisher showed statistically that hlendel’s data were probably fudged a little in 
order to support the theory for his new genetic model. See Section 9.2. 
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Fig. 9.2 Karl Pearson (1857-1936), William Sealy Gosset (a.k.a. Student) (1876- 
1937), and Ronald Fisher (1890-1962) 

healthy and sound stock by the accumulated effects of education, good laws 
and sanitary surroundings.” Although their research was undoubtedly bril- 
liant, racial bigotry strongly prevailed in western society during this colonial 
period, and scientists were hardly exceptional in this regard. 

9.1 CHI-SQUARE AND GOODNESS-OF-FIT 

Pearson’s chi-square statistic found immediate applications in biometry, ge- 
netics and other life sciences. It is introduced in the most rudimentary science 
courses. For instance, if you are a t  a party and you meet a college graduate 
of the social sciences, it’s likely one of the few things they remember about 
the required statistics class they suffered through in college is the term “chi- 
square“. 

To motivate the chi-square statistic, let XI. X2, . . . , X ,  be a sample from 
any distribution. As in Chapter 6. we would like to  test the goodness-of-fit 
hypothesis Ho : F x ( x )  = Fo(z). Let the domain of the distribution D = (a b)  
be split into T non-overlapping intervals. 11 = ( a ,  2 1 1 ,  1 2  = ( ~ 1 . 2 2 1  . . . 1, = 
( ~ ~ - 1 ,  b ) .  Such intervals have (theoretical) probabilities p l  = Fo(z1) - F , ( a ) ,  
pz  = Fo(22) - Fo(z1). . . . % p ,  = Fo(b) - Fo(Lc,-~).  under Ho. 

Let 121.722.. . . . n, be observed frequencies of intervals 11.12,. . . . 1,. In this 
notation, n1 is the number of elements of the sample X I , .  . . , X ,  that  falls 
into the interval 11. Of course, nl + . . . + n, = n because the intervals are 
a partition of the domain of the sample. The discrepancy between observed 
frequencies n2 and theoretical frequencies n p ,  is the rationale for forming the 
statistic 
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that has a chi-square (x’) distribution with r - 1 degrees of freedom. Large 
values of X 2  are critical for Ho. Alternative representations include 

where p z  = 12,172. 

In some experiments, the distribution under HO cannot be fully specified; 
for example, one might conjecture the data are generated from a normal distri- 
bution without knowing the exact values of p or u2 .  In this case, the unknown 
parameters are estimated using the sample. 

Suppose that k parameters are estimated in order to fully specify Fo. Then, 
the resulting statistic in (9.1) has a x 2  distribution with r - k - 1 degrees of 
freedom. A degree of freedom is lost with the estimation of a parameter. In 
fairness, if we estimated a parameter and then inserted it into the hypothesis 
without further acknowledgment, the hypothesis will undoubtedly fit the data 
at  least as well as any alternative hypothesis we could construct with a known 
parameter. So the lost degree of freedom represents a form of handicapping. 

There is no orthodoxy in selecting the categories or even the number of 
categories to use. If possible, make the categories approximately equal in 
probability. Practitioners may want to arrange interval selection so that all 
n p ,  > 1 and that at  least 80% of the np,’s exceed 5 .  The rule-of-thumb is: 
n 2 10, r 2 3 ,  n 2 / r  2 10, npz  2 0.25. 

As mentioned in Chapter 6, the chi-square test is not altogether efficient 
for testing known continuous distributions. especially compared to individ- 
ualized tests such as Shapiro-Wilk or Anderson-Darling. Its advantage is 
manifest with discrete data and special distributions that cannot be fit in a 
Kolmogorov-type statistical test. 

Example 9.1 Mendel’s Data. In 1865. hlendel discovered a basic genetic 
code by breeding green and yellow peas in an experiment. Because the yellow 
pea gene is dominant, the first generation hybrids all appeared yellow, but 
the second generation hybrids were about 75% yellow and 25% green. The 
green color reappears in the second generation because there is a 25% chance 
that two peas, both having a yellow and green gene. will contribute the green 
gene to the next hybrid seed. In another pea experiment3 that considered 
both color and texture traits. the outcomes from repeated experiments came 
out as in Table 9.11 

3See Section 16.1 for more detail on probability models in basic genetics. 
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Table 9.11 Mendel’s Data 

Type of Observed Expected 
Pea Number Number 

Smooth Yellow 315 313 
Wrinkled Yellow 101 104 
Smooth Green 108 104 

Wrinkled Green 32 35 

The statistical analysis shows a strong agreement with the hypothesized out- 
come with a p-value of 0.9166. While this, by itself. is not sufficient proof 
to consider foul play. Fisher noted this kind of result in a sequence of several 
experiments. His “meta-analysis” (see Chapter 6) revealed a p-value around 
0.000 13. 

>> 0=[315 101 108 321; 
>> th=[313 104 104 351 ; 
>> sum( (0-th) .-2 . /  t h  

ans = 
0.5103 

>> 1-chi2cdf ( 0.5103, 4 - 1) 

ans = 
0.9166 

Example 9.2 Horse-Kick Fatalities. During the latter part of the nine- 
teenth century, Prussian officials collected information on the hazards that 
horses posed to cavalry soldiers. A total of 10 cavalry corps were monitored 
over a period of 20 years. Recorded for each year and each corps was X ,  the 
number of fatalities due to  kicks. Table 9.12 shows the distribution of X for 
these 200 “corps-years“ . 

Altogether there were 122 fatalities (109(0) + 65 (1) + 2 2 ( 2 )  + 3(3) + 
l (4)) .  meaning that the observed fatality rate was 122/200 = 0.61 fatalities 
per corps-year. A Poisson model for X with a mean of p = .61 was proposed by 
von Bortkiewicz (1898). Table 9.12 shows the expected frequency correspond- 
ing to  IC = 0 , l . .  . . . etc.. assuming the Poisson model for X was correct. The 
agreement between the observed and the expected frequencies is remarkable. 
The MATLAB procedure below shows that the resulting X 2  statistic = 0.6104. 
If the Poisson distribution is correct. the statistic is distributed x2 with 3 de- 
grees of freedom, so the p-value is computed P(W > 0.6104) = 0.8940. 

>> 0=[109 65 22 3 11 ; 
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Table 9.12 Horse-kick fatalities data 

Observed Number Expected Number 
5 of Corps-Years of Corps-Years 

0 109 
1 65 
2 22 
3 3 
4 1 

108.7 
66.3 
20.2 

4.1 
0.7 

200 200 

>> th=[108.7 66.3 20.2 4.1 0.71; 
>> sum( (0-th).-2 . /  th 

ans = 0.6104 

>> l-chiZcdf( 0.6104, 5 - 1 - 1) 
ans  = 0.8940 

Example 9.3 Benford’s Law. Benford’s law (Benford, 1938; Hill, 1998) 
concerns relative frequencies of leading digits of various data sets, numerical 
tables, accounting data, etc. Benford’s law. also called the first digit  law. 
states that in numbers from many sources. the leading digit 1 occurs much 
more often than the others (namely about 30% of the time). Furthermore, the 
higher the digit, the less likely it is to occur as the leading digit of a number. 
This applies to figures related to the natural world or of social significance, be 
it numbers taken from electricity bills, newspaper articles, street addresses, 
stock prices, population numbers, death rates, areas or lengths of rivers or 
physical and mathematical constants. 

To be precise, Benford’s law states that the leading digit n, (n  = 1, . . . .9) 
occurs with probability P(n)  = loglo(n+ 1) -loglo(n), approximated to three 
digits in the table below. 

Digit n 1 2 3 4 5 6 7 8 9 

P ( n )  0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 

The table below lists the distribution of the leading digit for all 307 numbers 
appearing in a particular issue of Reader’s Digest. With p-value of 0.8719, the 
support for HO (The first digits in Reader’s Digest are distributed according 
to Benford‘s Law) is strong. 
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Digit 1 2 3 4 5 6 7 8 9  

count 103 57 38 23 20 21 17 15 13 

The agreement between the observed digit frequencies and Benford's distribu- 
tion is good. The MATLAB calculation shows that the resulting X 2  statistic 
is 3.8322. Under Ho. X 2  is distributed as xg and more extreme values of X 2  
are quite likely. The p-value is almost 90%. 

>> x = El03 57 38 23 20 21 17 15 131; 
>> e = 307*[0.301 0.176 0.125 0.097 0.079 . . .  

>> sum((x-e) .-2 . /  e )  
ans = 3.8322 

>> 1 - chi2cdf(3.8322, 8) 
ans = 0.8719 

0.067 0.058 0.051 0.0461; 

9.2 CONTINGENCY TABLES: TESTING FOR HOMOGENEITY AND 
INDEPENDENCE 

Suppose there are m populations (more specifically, m levels of factor A: 
(R1,. . . . R,) under consideration. Furthermore, each observation can be clas- 
sified in a different ways. according to  another factor B. which has k levels 
(C1,. . . , C k ) .  Let nZ3 be the number of all observations at the ith level of 
A and j t h  level of B. M:e seek to  find out if the populations (from A) and 
treatments (from B) are independent. If we treat the levels of A as population 
groups and the levels of B as treatment groups, there are 

3=1 

observations in population i, where i = 1.. . . , m. 
groups is represented 

Each of the treatment 

n 

7 2 3  = C%J, 
2=1 

times, and the total number of observations is 

721. + ' . . + nm, = n 

The following table summarizes the above description. 
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I I I I I  / I  I 

We are interested in testing independence of factors A and B ,  represented 
by their respective levels R1,. . . , Rm and C1,. . . , c k ,  on the basis of observed 
frequencies n,j . Recall the definition of independence of component random 
variables X and Y in the random vector (X, Y ) ,  

P(X = 2,, Y = yj) = P ( X  = 2, )  ’ P(Y = Yj) 

Assume that the random variable < is to be classified. Under the hypothesis 
of independence, the cell probabilities P(( E Ri n Cj) should be equal to the 
product of probabilities P(< E Ri) .P(< E Cj) .  Thus, to test the independence 
of factors A and B,  we should evaluate how different the sample counterparts 
of cell probabilities 

__ nv 
n.. 

are from the product of marginal probability estimators: 

n,. n.3 
n.. n.. 

or equivalently, how different the observed frequencies. nZ3. are from the ex- 
pected (under the hypothesis of independence) frequencies 

- . -  

The measure of discrepancy, defined as 

and under the assumption of independence, (9.2) has a x2 distribution with 
(rn - l ) ( k  - 1) degrees of freedom. Here is the rationale: the observed 
frequencies nt3 are distributed as multinomial Mn(n. . ;  0 1 1 , .  . . . Q,k), where 
e2:, = P(< E R, n c’). 
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The corresponding likelihood is L = nzl n,k=l(8,,)ntJ1 C,,? QZ3 = 1. 
The null hypothesis of independence states that  for any pair z , j 1  the cell 
probability is the product of marginal probabilities, QZ3 = 8, . 0 3 .  Under HO 
the likelihood becomes 

m n  

z = 1  3=1 2 3 

If the estimators of 0, and 8, are 0, = n, / n  and d 3  = n 3 / n  , respec- 
tively. then, under Ho. the observed frequency nZ3 should be compared to  its 
theoretical counterpart. 

As the nZ3 are binomially distributed] they can be approximated by the 
normal distribution. and the x 2  forms when they are squared. The statistic 
is based on (rn - 1) + ( k  - 1) estimated parameters, 8, . i = 1.. . . .m  - 1. 
and 8 ~ j = 1, . . . . k - 1. The remaining parameters are determined: Qm = 

1 - Ern-’ 2=1 8, . 8 = 1 - C:zi 8 ,. Thus, the chi-square statistic 

has rnk - 1 - ( m  - 1) - ( k  - 1) = (m - l ) ( k  - 1) degrees of freedom. 
Pearson first developed this test but mistakenly used rnlc - 1 degrees of 

freedom. It was Fisher (1922), who later deduced the correct degrees of free- 
dom. (m - l ) ( k  - 1). This probably did not help to mitigate the antagonism 
in their professional relationship! 

Example 9.4 Icelandic Dolphins. From Rasmussen and Miller (2004). 
groups of dolphins were observed off the coast in Iceland, and their frequency 
of observation was recorded along with the time of day and the perceived 
activity of the dolphins at that  time. Table 9.13 provides the data. To see if 
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the activity is independent of the time of day, the MATLAB procedure 

tablerxc (XI 

takes the input table X and computes the x2 statistic, its associated p-value, 
and a table of expected values under the assumption of independence. In this 
example, the activity and time of day appear to be dependent. 

Table 9.13 Observed Groups of Dolphins, Including Time of Day and Actzuity 

Time-of-Day Traveling Feeding Socializing 

Morning 6 28 38 
Noon 6 4 5 

Afternoon 14 0 9 
Evening 13 56 10 

chi2 = 

68.4646 

pvalue = 

8.4388e-013 

exp = 

14.8571 33.5238 23.6190 
3.0952 6.9841 4.9206 
4.7460 10.7090 7.5450 
16.3016 36.7831 25.9153 

Relative Risk. In simple 2 x 2 tables. the comparison of two proportions 
might be more important if those proportions veer toward zero or one. For 
example, a procedure that decreases production errors from 5% to 2% could 
be much more valuable than one that decreases errors in another process from 
45% to 42%. For example, if we revisit the example introduced at the start of 
the chapter, the rate of murder in California is compared to the death rate of 
U.S. military personnel in Iraq in 2003. The relative risk, in this case, is rather 
easy to understand (even to the writers at  Fox News). if overly simplified. 

Killed Not Killed Total 

California 6.6 37,999,993.4 38,000,000 
Iraq 1.7 149,998.3 150,000 

Total 8.3 38,149,981.7 
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Here we define the relatzwe risk as the risk of death in Iraq (for U.S. sol- 
diers) divided by the risk of murder for citizens of California. For example, 
LIcWilliams and Piotrowski (2005) determined the rate of 6.6 Californian 
homicide victims (out of 38.000,OOO at risk) per day. On the other hand, 
there were 1.7 average daily military related deaths in Iraq (with 150,000 
solders at risk). 

-1 1.7 6.6 -1 ( *” ) = ~ ( ) = 65.25. 
811 + 812 Q21 + Q22 150, 000 38,000, 000 

Fixed Marginal Totals. The categorical analysis above was developed 
based on assuming that each observation is t o  be classified according to  the 
stochastic nature of the two factors. It is actually common. however, to  have 
either row or column totals fixed. If row totals are fixed, for example. we are 
observing n3. observations distributed into k bins. and essentially comparing 
multinomial observations. In this case we are testing differences in the multi- 
nomial parameter sets. However, if we look at the experiment this way (where 
n; is fixed) the test statistic and rejection region remain the same. This is 
also true if both row and column totals are fixed. This is less common: for 
example, if m = k = 2, this is essentially Fisher’s exact test. 

9.3 FISHER EXACT T E S T  

Along with Pearson, R. A. Fisher contributed important new methods for 
analyzing categorical data. Pearson and Fisher both recognized that the sta- 
tistical methods of their time were not adequate for small categorized samples, 
but their disagreements are more well known. In 1922, Pearson, used his po- 
sition as editor of Bzometrzka to  attack Fisher’s use of the chi-squared test. 
Fisher attacked Pearson with equal fierceness. While at University College. 
Fisher continued to  criticize Pearson‘s ideas even after his passing. With 
Pearson’s son Egon also holding a chair there. the departmental politics were 
awkward, to say the least. 

Along with his original concept of maximum likelihood estimation, Fisher 
pioneered research in small sample analysis. including a simple categorical 
data  test that bears his name (Fzsher Exact Test). Fisher (1966) described a 
test based on the claims of a British woman who said she could taste a cup of 
tea, with milk added, and identify whether the milk or tea was added to the 
cup first. She was tested with eight cups, of which she knew four had the tea 
added first, and four had the milk added first. The results are listed below. 
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Lady’s Guess 

First Poured Tea Milk Total 

Tea 3 1 4 
Milk 1 3 4 

Total 4 4 

Both marginal totals are fixed at  four, so if X is the number of times the 
woman guessed tea was poured first when, in truth, tea was poured first, then 
X determines the whole table, and under the null hypothesis (that she is just 
guessing), X has a hypergeometric distribution with PMF 

To see this more easily, count the number of ways to choose x cups from the 
correct 4, and the remaining 4 - x cups from the incorrect 4 and divide by 
the total number of ways to choose 4 cups from the 8 total. The lady guessed 
correctly z = 3 times. In this case, because the only better guess is all four, 
the p-value is P ( X  = 3) + P ( X  = 4 )  = 0.229 + 0.014 = 0.243. Because the 
sample is so small, not much can be said of the experimental results. 

In general, the Fisher exact test is based on the null hypothesis that two 
factors, each with two factor levels, are independent, conditional on fixing 
marginal frequencies for both factors (e.g., the number of times tea was poured 
first and the number of times the lady guesses that tea was poured first). 

9.4 M C  NEMAR TEST 

Quinn McNernar’s expertise in statistics and psychometrics led to an influen- 
tial textbook titled Psychological Statistics. The McNemar test (McNemar. 
1947b) is a simple way to test margznal homogeneity in 2 x 2 tables. This is 
not a regular contingency table, so the usual analysis of contingency tables 
would not be applicable. 

Consider such a table that, for instance, summarizes agreement between 2 
evaluators choosing only two grades 0 and 1, so in the table below, a represents 
the number of times that both evaluators graded an outcome with 0. The 
marginal totals. unlike the Fisher Exact Test, are not fixed. 
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1 total 1 a f c  b + d  I a + b + c + d  I 

Marginal homogeneity (i.e., the graders give the same proportion of zeros 
and ones, on average) implies that  row totals should be close to  the corre- 
sponding column totals, or 

a + b  = a + c  

c + d  = b + d .  
(9.3) 

More formally, suppose that a matched pair of Bernoulli random variables 
(X, Y) is to be classified into a table, 

0 Qoo 001 Q O  . 1 1 1 810 811 1 81. 1 
in which Q,, = P(X = i.Y = j ) ,  8, = P(X = i) and 8, = P(Y = j ) ?  for 
i,j E (0, l}. The null hypothesis HO can be expressed as a hypothesis of 
symmetry 

Ho : 801 = P(X = 0.Y = 1) = P(X = l , Y  = 0) = 810. (9.4) 

but after adding BOO = P(X = 0.Y = 0) or 811 = P(X = l , Y  = 1) to the 
both sides in (9.4). we get HO in the form of marginal homogeneity, 

HO : 00. = P(X = 0) = P(Y = 0) = 8.0, or equivalently 

Ho : 81. = P(X = 1) = P ( Y  = 1) = 8.1 . 

As a and d on both sides of (9.3) cancel out, implying b = c. A sensible test 
statistic for testing Ho might depend on how much b and c differ. The values 
of a and d are called ties and do not contribute to the testing of Ho. 

When, b + c > 20. the McNemar statistic is calculated as 

which has a x2 distribution with 1 degree of freedom. Some authors rec- 
ommend a version of the McNemar test with a correction for discontinuity, 
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calculated as X 2  = (Ib - c/ - 1 ) 2 / ( b  + c), but there is no consensus among 
experts that this statistic is better. 

If b + c < 20, a simple statistics 

T = b  

can be used. If Ho is true, T N Bin(b + c, 1/2) and testing is as in the sign- 
test. In some sense, what the standard two-sample paired t-test is for normally 
distributed responses, the McNemar test is for paired binary responses. 

Example 9.5 A study by Johnson and Johnson (1972) involved 85 patients 
with Hodgkin’s disease. Hodgkin’s disease is a cancer of the lymphatic system; 
it is known also as a lymphoma. Each patient in the study had a sibling 
who did not have the disease. In 26 of these pairs, both individuals had a 
tonsillectomy (T). In 37 pairs, neither of the siblings had a tonsillectomy (N). 
In 15 pairs, only the individual with Hodgkin’s had a tonsillectomy and in 7 
pairs, only the non-Hodgkin’s disease sibling had a tonsillectomy. 

I I Sibling/T 1 Sibling/N / I  Total I 
1 Patient/T I 26 1 15 1 1  41 I 
1 Patient/N I 7 I 37 /I 44 I 

1 Total I 33 I 52 / I  85 1 

The pairs ( X i ,  y Z ) ,  i = 1, . . . , 85 represent siblings - one of which is a 
patient with Hodgkin’s disease ( X )  and the second without the disease (Y) .  
Each of the siblings is 
having a tonsillectomy. 

, ,  , ,  

also classified (as T = 1 or N = 0 )  with respect to 

I 1 Y = l  I Y=O 1 
/ X = l /  26 I 15 I 

The test we are interested in is based on HO : P ( X  = 1) = P(Y = l), i.e., 
that the probabilities of siblings having a tonsillectomy are the same with and 
without the disease. Because b + c > 20. the statistic of choice is 

The p-value is p = P(W 2 2.9091) = 0.0881, where W N xf. Under Ho,  
T = 15 is a realization of a binomial Bin(22,O.s) random variable and the p 
value is 2 . P ( T  2 15) = 2 .  P(T > 14) = 0.1338, that is, 
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>> 2 * (1-binocdf(l4, 22, 0.5)) 
ans = 

0.1338 

With such a high p-value, there is scant evidence to reject the null hypoth- 
esis of homogeneity of the two groups of patients with respect to having a 
tonsillectomy. 

9.5 COCHRAN'S TEST 

Cochran's (1950) test is essentially a randomized block design (RBD), as 
described in Chapter 8, but the responses are dichotomous. That is, each 
treatment-block combination receives a 0 or 1 response. 

If there are only two treatments. the experimental outcome is equivalent 
to  McNemar's test with marginal totals equaling the number of blocks. To 
see this, consider the last example as a collection of dichotomous outcomes: 
each of the 85 patients are initially classified into two blocks depending on 
whether the patient had or had not received a tonsillectomy. The response is 
0 if the patient's sibling did not have a tonsillectomy and 1 if they did. 

Example 9.6 Consider the software debugging data in Table 9.14. Here the 
software reviewers (A,B,C,D,E) represent five blocks, and the 27 bugs are 
considered to be treatments. Let the column totals be denoted {Cl.. . . , C5) 
and denote row totals as {Rl, . . .  . R27). We are essentially testing Ho : 
treatments (software bugs) have an equal chance of being discovered. versus 
Ha : some software bugs are more prevalent (or easily found) than others. the 
test statistic is 

where n = C C, = C R,. m = 5 (blocks) and k = 27 treatments (software 
bugs). Under Ho, TC has an approximate chi-square distribution with m - 1 
degrees of freedom. In this example, TC = 17.647, corresponding to a test 
p-value of 0.00145. 

9.6 MANTEL-HAENSZEL TEST 

Suppose that k independent classifications into a 2x2 table are observed. We 
could denote the ith such table by 
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0 0 1 0 1  

Table 9.14 
ham (1993) 

Five Reviewers Found 27 Issues in Software Example as in Gilb and Gra- 

1 1 1 1 1 0 0 1 0 0  
1 0 1 0 1 0 0 1 0 0  
1 1 1 0 1 0 0 0 1 0  
1 0 1 1 1 1 1 1 0 1  
1 0 1 1 1 0 0 1 0 1  
1 0 1 1 1 1 0 0 0 0  
1 1 1 1 1 0 1 0 0 0  
1 1 1 1 1 1 0 1 1 1  
0 0 1 0 0 0 0 0 0 0  
1 0 1 0 0 0 0 0 0 0  
0 1 0 0 0 0 1 0 0 1  
1 0 0 1 1 1 0 0 0 0  
1 0 1 0 1 1 0 0 0 0  

Fig. 9.3 
Nathan Mantel (1919-2002) 

Quinn hicNemar (1900-1986). William Gemmell Cochran (1909-1980), and 

It is assumed that the marginal totals ( rE .  12% or just n,) are fixed in advance 
and that the sampling was carried out until such fixed marginal totals are 
satisfied. If each of the k tables represent an independent study of the same 
classifications, the Mantel-Haenszel Test essentially pools the studies together 
in a "meta-analysis" that combines all experimental outcomes into a single 



MANTEL-HAENSZEL TEST 169 

statistic. For more about non-parametric approaches to this kind of problem, 
see the section on meta-analysis in Chapter 6. 

For the ith table, p l ,  is the proportion of subjects from the first row falling 
in the first column, and likewise. p2, is the proportion of subjects from the 
2nd row falling in the first column. The hypothesis of interest here is if the 
population proportions p l ,  and p2, coincide over all k experiments. 

Suppose that in experiment i there are n, observations. All items can be 
categorized as type 1 (T,  of them) or type 2 (n,  - T ,  of them). If c, items 
are selected from the total of n, items, the probability that exactly 2, of the 
selected items are of the type 1 is 

(9.5) 

Likewise. all items can be categorized as type A (c, of them) or type B (n, - c, 
of them). If r ,  items are selected from the total of n, items, the probability 
that exactly 2,  of the selected are of the type A is 

Of course these two probabilities are equal, i.e, 

These are hypergeometric probabilities with mean and variance 

r, c, -. and r, . c, . (% - r,) . (n, - c,) 
1 2 2  n:(% - 1) 

c,=1 22 - c2=1 n, 

respectively. The k experiments are independent and the statistic 

k k u  

T =  (9.7) 

is approximately normal (if n, is large, the distributions of the 2,'s are close 
to binomial and thus the normal approximation holds. In addition, summing 
over Ic independent experiments makes the normal approximation more accu- 
rate.) Large values of /TI indicate that the proportions change across the k 
experiments. 

Example 9.7 The three 2 x 2 tables provide classification of people from 3 
Chinese cities, Zhengzhou. Taiyuan, and Nanchang with respect to smoking 
habits and incidence of lung cancer (Liu. 1992). 
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Z hengzhou Taiyuan Nanchang 

Cancer Diagnosis: yes no I total / I  yes no I total / I  yes no I total 

Smoker 182 156 338 60 99 159 104 193 
Non-Smoker 72 98 1 170 1 1  11 43 I 54 1 1  21 :i 1 57 

Total 254 254 I 508 1 1  71 142 I 213 1 1  125 125 I 250 

We can apply the Mantel-Haenszel Test to decide if the proportions of 
cancer incidence for smokers and non-smokers coincide for the three cities, i.e., 
HO : pli = p2i where pli is the proportion of incidence of cancer among smokers 
in the city i ,  andpzi is the proportion of incidence of cancer among nonsmokers 
in the city i, i = 1,2 ,3 .  We use the two-sided alternative, H1 : pli # p2i for 
some i E {1,2,3} and fix the type-I error rate at Q = 0.10. 

From the tables, Cixi = 182 + 60 + 104 = 346. Also, Cirici/ni  = 
338 . 254/508 + 159. 71/213 + 193. 125/250 = 169 + 53 + 96.5 = 318.5. TO 
compute T in (9.7)) 

338 .254 . 170. 254 
508’ ,507 

159 ‘ 71 .54  ‘ 142 - - 
+ 213’. 212 

r, c, (n, - T,) (n, - c,) 
nf (n, - 1) 

193.125.57 .125  
+ 2502 .249 
= 28.33333 + 9 + 11.04518 = 48.37851. 

Therefore. 

Because T is approximately N(0, l), the p-value (via MATLAB) is 

>> [st, p] = mantel-haenszel([l82 156; 72 98; 60 99; 11 43; 104 89; 21 361) 
st = 3.9537 
p = 7.6944e-005 

In this case, there is clear evidence that the differences in cancer rates is not 
constant across the three cities. 
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9.7 CENTRAL LIMIT THEOREM FOR MULTINOMIAL 
PROBABILITIES 

Let E l ,  E2. . . . . E, be events that have probabilities p l .  p2. . . . . p,: C ,  p ,  = 1. 
Suppose that in n independent trials the event E, appears n, times (n1 t. . . + 
n, = n).  Consider 

The vector @"I can be represented as 

where components @ J )  are given byp2-1/2[1(E,)-p,]. z = 1, . . . . r.  Vectors $ 3 )  

are i.i.d.. with E([L(")) = p,- '(E1(Et) - p , )  = 0, E(<,'")2 = (p,-')p,(l -p , )  = 

1 - P,. and E(<,'J)<jq = (PzPY)-"2(E1(Ez)l(EE) - ptpe) = -vm%, i # l .  

Result. When n + 3c), the random vector <(") is asymptotically normal with 
mean 0 and the covariance matrix. 

I 1 - P 1  -- . . .  -- -- 1 - P 2  . . .  -&z = . . .  c =  1 
-m -- ' . .  l - p T  

where I is the r x r identity matrix and z = (a fi , . . . .fi)'. The 
matrix C is singular. Indeed, Cz = z - ~ ( z ' z )  = 0. due to  z'z = 1. 

As a consequence. X = 0 is characteristic value of C corresponding to a 
characteristic vector z .  Because lC(")12 is a continuous function of <(n) ,  its 
limiting distribution is the same as 1CI2. where ICI2 is distributed as x2 with 
r - 1 degrees of freedom. 

This is more clear if we consider the following argument. Let E be an 
orthogonal matrix with the first row equal to (fi.. . . , &), and the rest 
being arbitrary, but subject to orthogonality of S. Let q = E<. Then Eq = 0 
and Cq = Eqq' = E(E<)(Z[)' = EE<<'Z' = ZTZ' = I - (Zz)(Ez)'. because 
'=I I = =-I - It follows that Zz = (1 .0 .0 . .  . . , 0 )  and (Zz)(Ez)' is a matrix with 
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element at the position (1,l) as the only nonzero element. Thus, 

0 0 0 . . .  lo 1 0  : : :  q 
c, = I -  (Zz)(%)’= 0 0 1 > 

. . .  
10 0 0 . . .  1 1  

and 71 = 0, w.p.1; 7 2 , .  . . ,7, are i.i.d. N ( 0 , l ) .  The orthogonal transforma- 
tion preserves the L2 norm, 

i = 2  

9.8 SIMPSON’S PARADOX 

Simpson’s Paradox is an example of changing the favor-ability of marginal 
proportions in a set of contingency tables due to aggregation of classes. In this 
case the manner of classification can be thought as a “lurking variable” causing 
seemingly paradoxical reversal of the inequalities in the marginal proportions 
when they are aggregated. Mathematically, there is no paradox - the set of 
vectors can not be ordered in the traditional fashion. 

As an example of Simpson’s Paradox, Radelet (1981) investigated the re- 
lationship between race and whether criminals (convicted of homicide) receive 
the death penalty (versus a lesser sentence) for regional Florida court cases 
during 1976-1977. Out of 326 defendants who were Caucasian or African- 
American, the table below shows that a higher percentage of Caucasian de- 
fendants (11.88%) received a death sentence than for African-American de- 
fendants (10.24%). 

1 Race of Defendant 1 Death Penalt,y I Lesser Sentence 1 

I 149 
Caucasian 

African-American 

I Total I 36 I 290 I 

What the table doesn’t show you is the real story behind these statistics. 
The next 2 x 2 x 2 table lists the death sentence frequencies categorized by 
the defendant’s race and the (murder) victim’s race. The table above is con- 
structed by aggregating over this new category. Once the full table is shown, 
we see the importance of the victim‘s race in death penalty decisions. African- 
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Americans were sentenced to  death more often if the victim was Caucasian 
(17.5% versus 12.6%) or African-American (5.8% to 0.0%). Why is this so? 
Because of the dramatic difference in marginal frequencies (i.e.. 9 Caucasians 
defendants with African-American victims versus 103 African-American de- 
fendants with African-American victims). When both marginal associations 
point to  a single conclusion (as in the table below) but that  conclusion is 
contradicted when aggregating over a category, this is Simpson’s para do^.^ 

I Race of Race of ~ Death I Lesser I 
Defendant Victim Penalty Sentence 

I Caucasian Caucasian 19 
African-American 

African-American Caucasian 52 
African-American 

9.9 EXERCISES 

9.1. Duke University has always been known for its great school spirit, es- 
pecially when it comes to Men’s basketball. One way that school en- 
thusiasm is shown is by donning Duke paraphernalia including shirts, 
hats, shorts and sweat-shirts. A class of Duke students explored pos- 
sible links between school spirit (measured by the number of students 
wearing paraphernalia) and some other attributes. It was hypothesized 
that males would wear Duke clothes more frequently than females. The 
data were collected on the Bryan Center walkway starting at 12:OO pm 
on ten different days. Each day 50 men and 50 women were tallied. Do 
the data bear out this claim? 

I 1 Duke Paraphernalia 1 No Duke Paraphernalia / I  Total 1 
1 Male I 131 I 369 / I  500 I 
1 Female 1 52 I 448 / I  500 I 

l l  loo0 I 1 Total 1 183 1 817 

9.2. Gene Siskel and Roger Ebert hosted the most famous movie review 
shows in history. Below are their respective judgments on 43 films that 
were released in 1995. Each critic gives his judgment with a “thumbs 

4Note that other covariate information about the defendant and victim. such as income or 
wealth. might have led to similar results 
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up” or “thumbs down.” Do they have the same likelihood of giving a 
movie a positive rating? 

Ebert’s Review 
Thumbs Up Thumbs Down 

Siskel’s Thumbs Up 18 6 
Review Thumbs Down 9 10 

Bickel, Hammel, and OConnell (1975) investigated whether there was 
any evidence of gender bias in graduate admissions at the University 
of California at Berkeley. The table below comes from their cross- 
classification of 4,526 applications to graduate programs in 1973 by 
gender (male or female), admission (whether or not the applicant was 
admitted to the program) and program (A, B, C, D, E or F). What does 
the data reveal? 

1 A: Admit I Male Female 1 1  B: Admit 1 Male 

Admitted 512 Admitted 353 
Rejected 313 ?: 1 1  Rejected I 207 

Female I 

l7 8 I 
I C: Admit I Male Female I 

Rejected 205 391 202 I Admitted 120 

I D: Admit I Male 

138 I EEFteedd I 279 244 Rejected 138 299 

Female I I E: Admit I Male 

131 1 1  Admitted I 53 

Female I 

1 F: Admit 1 Male Female 1 

Rejected 351 317 
Admitted 22 

When an epidemic of severe intestinal disease occurred among workers 
in a plant in South Bend, Indiana, doctors said that the illness resulted 
from infection with the amoeba Entamoeba histolytica5. There are actu- 
ally two races of these amoebas, large and small, and the large ones were 

5Source: J. E. Cohen (1973). Independence of Amoebas. In Statistics by Example: Weigh- 
ing Chances, edited by F. Mosteller, R.  s. Pieters, W. H. Kruskal, G. R. Rising, and R. F. 
Link, with the assistance of R. Carlson and M. Zelinka, p. 72.  Addison-Wesley: Reading, 
MA. 
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believed to be causing the disease. Doctors suspected that the presence 
of the small ones might help people resist infection by the large ones. 
To check on this, public health officials chose a random sample of 138 
apparently healthy workers and determined if they were infected with 
either the large or small amoebas. The table below gives the resulting 
data. Is the presence of the large race independent of the presence of 
the small one? 

Large Race 
Small Race ---- Present Absent Total 

Present 12 
Absent 35 68 

Total 47 91 I 138 

9.5. A study was designed to test whether or not aggression is a function 
of anonymity. The study was conducted as a field experiment on Hal- 
loween; 300 children were observed unobtrusively as they made their 
rounds. Of these 300 children, 173 wore masks that completely covered 
their faces. while 127 wore no masks. It was found that 101 children 
in the masked group displayed aggressive or antisocial behavior versus 
36 children in unmasked group. What conclusion can be drawn? State 
your conclusion in terminology of the problem. using cy = 0.01. 

9.6. Deathbed scenes in which a dying mother or father holds to life until 
after the long-absent son returns home and dies immediately after are 
all too familiar in movies. Do such things happen in everyday life? 
Are some people able to postpone their death until after an anticipated 
event takes place? It is believed that famous people do so with respect 
to  their birthdays to which they attach some importance. A study by 
David P. Phillips (in Tanur, 1972, pp. 52-65) seems to be consistent 
with the notion. Phillips obtained data6 on months of birth and death 
of 1251 famous Americans: the deaths were classified by the time period 
between the birth dates and death dates as shown in the table below. 
What do the data suggest? 

b e  f o  r e B i r t h  a f t e r 
6 5 4 3  2 1 M o n t h 1  2 3 4 5 

90 100 87 96 101 86 119 118 121 114 113 106 

6348 were people listed in Four Hundred Notable Amerzcans and 903 are listed as foremost 
families in three volumes of Who Was  Who  for the years 1951-60. 1943-50 and 1897-1942. 



176 CATEGORICAL DATA 

9.7. Using a calculator mimic the MATLAB results for X 2  from Benford's 
law example (from p. 158). Here are some theoretical frequencies rounded 
to 2 decimal places: 

92.41 54.06 29.75 24.31 15.72 14.06 

Use x 2  tables and compare X 2  with the critical x 2  quantile at o = 0.05. 

9.8. Assume that a contingency table has two rows and two columns with 
frequencies of a and b in the first row and frequencies of c and d in the 
second row. 

(a) Verify that the x 2  test statistic can be expressed as 

2 x =  ( U  + b + c + d)(ad - 
( a  + b) (c  + d ) ( b  + d ) ( a  + c) ' 

(b) Let fil = a / ( .  + c) and 6 2  = b / ( b  + d ) .  Show that the test statistic 

z =  4- a + b + c + d  
a + b  , where 17 = 

($1 - l j 2 )  - 0 

and 4 = 1 - p ,  coincides with x2 from (a). 

9.9. Generate a sample of size n = 216 from N ( 0 , l ) .  Select intervals by 
partitioning R at points -2.7, -2.2, -2, -1.7, -1.5, -1.2, -1, -0.8, 
-0.5; -0.3, 0, 0.2, 0.4, 0.9, 1, 1.4, 1.6, 1.9, 2, 2.5, and 2.8. Using a 
X2-test, confirm the normality of the sample. Repeat this procedure 
using sample contaminated by the Cauchy distribution in the following 
way: 0.95*normal-sample + 0.05*cauchy-sample. 

9.10. It is well known that when the arrival times of customers constitute 
a Poisson process with the rate A t ,  the inter-arrival times follow an 
exponential distribution with density f ( t )  = XePxt .  t 2 0,X > 0. It is 
often of interest to establish that the process is Poisson because many 
theoretical results are available for such processes, ubiquitous in the 
domain of Industrial Engineering. 

In the following example, n = 109 inter-arrival times of an arrival process 
were recorded, averaged (Z = 2.5) and categorized into time intervals as 
follows: 

Frequency I 34 20 16 15 9 7 8 
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White 
Black 

Hispanic 
Asian 

Test the hypothesis that the process described with the above inter- 
arrival times is Poisson, at  level a = 0.05. You must first estimate X 
from the data. 

9.11. In a long study of heart disease, the day of the week on which 63 seem- 
These men had no history of ingly healthy men died was recorded. 

disease and died suddenly. 

Day of Week 1 Mon. Tues. Weds. Thurs. Fri. Sat. Sun. 

30 35 19 
11 6 9 
3 9 6 
9 3 8 

No. of Deaths 1 22 7 6 13 5 4  6 

(i) Test the hypothesis that these men were just as likely to die on 
one day as on any other. Use Q = 0.05. (ii) Explain in words what 
constitutes Type I1 error in the above testing. 

9.12. Write a MATLAB function mcnemar.m. If b + c 2 20. use the x 2  ap- 
proximation. If b + c < 20 use exact binomial p-values. You will need 
chi2cdf and bincdf. Use your program to solve exercise 9.4. 

9.13. Doucet et al. (1999) compared applications to different primary care 
programs at Tulane University. The “Medicine/Pediatrics” program 
students are trained in both primary care specialties. The results for 
148 survey responses, in the table below, are broken down by race. Does 
ethnicity seem to be a factor in program choice? 

I I Medical School Applicants I 
1 Ethnicity I Medicine Pediatrics Medicine/Pediatrics 1 

9.14. The Donner party is the name given to a group of emigrants, includ- 
ing the families of George Donner and his brother Jacob, who became 
trapped in the Sierra Nevada mountains during the winter of 1846-47. 
Nearly half of the party died. The experience has become legendary as 
one of the most spectacular episodes in the record of Western migration 
in the United States. In total, of the 89 men, women and children in 
the Donner party. 48 survived, 41 died. The following table are gives 
the numbers of males/famales according their survival status: 

1 Male Female 

Died 32 9 
Survived 1 23 25 
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Test the hypothesis that in the population of consisting of members of 
Donner’s Party the gender and survival status were independent. Use 
a = 0.05. The following table are gives the numbers of males/famales 
who survived according to their age (children/adults). Test the hy- 
pothesis that in the population of consisting of surviving members of 
Donner’s Party the gender and age were independent. Use cy = 0.05. 

1 Adult Children 

16 
Female 15 

Fig. 9.4 
with their adoptive mother Mary Brunner. 

Surviving daughters of George Donner. Georgia (4 y.0.) and Eliza (3 y.0.) 

Interesting facts (not needed for the solution): 

Two-thirds of the women survived: two-thirds of the men died. 

Four girls aged three and under died; two survived. No girls between the ages of 4 
and 16 died. 

Four boys aged three and under died: none survived. Six boys between the ages of 
4 and 16 died. 

All the adult males who survived the entrapment (Breen. Eddy. Foster, Keseberg) 
were fathers. 

All the bachelors (single males over age 21) who were trapped in the Sierra died. 

Jean-Baptiste Trudeau and Noah James survived the entrapment, but were only 

about 16 years old and are not considered bachelors. 

9.15. West of Tokyo lies a large alluvial plain, dotted by a network of farming 
villages. Matui (1968) analyzed the position of the 911 houses making 
up one of those villages. The area studied was a rectangle, 3 km by 4 
km. A grid was superimposed over a map of the village. dividing its 
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12 square kilometers into 1200 plots, each 100 meters on a side. The 
number of houses on each of those plots was recorded in a 30 by 40 
matrix of data. Test the hypothesis that  the distribution of number of 
houses per plot is Poisson. Use cy = 0.05. 

Frequency I 584 398 168 35 9 6 

Hznt: Assume that parameter X = 0.76 (approximately the ratio 911/1200). 
Find theoretical frequencies first. For example, the theoretical frequency for 
Number = 2 is n p z  = 1200 x 0.76’/2! x exp{-0.76) = 162.0745. while the 
observed frequency is 168. Subtract an additional degree of freedom because 
X is estimated from the data. 

Fig. 9.5 
number of houses: (b) Histogram of number of houses per plot. 

(a) LIatrix of 1200 plots (30 x 40). Lighter color corresponds to  higher 

9.16. A poll was conducted to determine if perceptions of the hazards of smok- 
ing were dependent on whether or not the person smoked. One hundred 
people were randomly selected and surveyed. The results are given be- 
low. 

I e r y  Somewhat Not 
Dangerous Dangerous Dangerous Dangerous 

~ [code 01 ~ [code 11 1 [code 21 I [code 31 I 
I Smokers 1 11 (18.13) I 15 (15.19) 1 14 (9.80) 1 9 ( ) I 
1 Nonsmokers 1 26 (18.87) 1 16 ( ) I 6 ( ) I 3 (6.12) 1 
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(a) Test the hypothesis that smoking status does not affect perception 
of the dangers of smoking at Q = 0.05 (Five theoretical/expected fre- 
quencies are given in the parentheses). 

(b) Observed frequencies of perceptions of danger [codes] for smokers 
are 

[code 01 [code 11 [code 21 [code 31 

11 15 14 9 

Are the codes corning from a discrete uniform distribution (i.e., each 
code is equally likely)? Use a = 0.01. 
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I0  
Estimating Distribution 

Fun c ti o ns 

The harder you fight to hold on to specific assumptions, the more likely 
there’s gold in letting go of them. 

John Seely Brown. former Chief Scientist at Xerox Corporation 

10.1 INTRODUCTION 

Let X I ,  X z ,  . . . , X ,  be a sample from a population with continuous CDF F. In 
Chapter 3, we defined the empirical (cumulative) distribution function (EDF) 
based on a random sample as 

l n  

i=l  

F,(z) = - c 1(Xi 5 z). 

Because F,(z). for a fixed z. has a sampling distribution directly related to 
the binomial distribution, its properties are readily apparent and it is easy to  
work with as an estimating function. 

The EDF provides a sound estimator for the CDF, but not through any 
methodology that can be extended to general estimation problems in non- 
parametric statistics. For example. what if the sample is right truncated? Or 
censored? What if the sample observations are not independent or identically 
distributed? In standard statistical analysis, the method of maxzmum like- 
lihood provides a general methodology for achieving inference procedures on 
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unknown parameters. but in the nonparametric case, the unknown parameter 
is the function F ( z )  (or, equivalently, the survival function S(z) = 1 - F ( z ) ) .  
Essentially, there are an infinite number of parameters. In the next section we 
develop a general formula for estimating the distribution function for non-i.i.d. 
samples. Specifically, the Kaplan-Meier estimator is constructed to estimate 
F ( x )  when censoring is observed in the data. 

This theme continues in Chapter 11 where we introduce Denszty  Estzma- 
tzon as a practical alternative to estimating the CDF. Unlike the cumulative 
distribution, the density function provides a better visual summary of how 
the random variable is distributed. Corresponding to the EDF, the empzrzcal 
dens i t y  f unc t zon  is a discrete uniform probability distribution on the observed 
data, and its graph doesn’t explain much about the distribution of the data. 
The properties of the more refined density estimators in Chapter 11 are not so 
easily discerned, but it will give the researcher a smoother and visually more 
interesting estimator to  work with. 

In medical research, survival analysis is the study of lifetime distributions 
along with associated factors that affect survival rates. The time event might 
be an organism’s death, or perhaps the occurrence or recurrence of a disease 
or symptom. 

10.2 N 0 N PAR A M  ET  R I C M A X I  M U M L I K EL I H 00 D 

As a counterpart to the parametric likelihood. we define the nonparametric 
likelihood of the sample X I ,  . . . , X ,  as 

n 

L ( F )  = n (F(z2)  - F ( z , ) ) .  (10.1) 
2 = 1  

where F(z,)  is defined as P ( X  < z2). This framework was first introduced 
by Kiefer and Wolfowitz (1956). 

One serious problem with this definition is that L ( F )  = 0 if F is continu- 
ous, which we might assume about the data. In order for L to be positive, the 
argument ( F )  must put positive weight (or probability mass) on every one of 
the observations in the sample. Even if we know F is continuous. the non- 
parametric maximum likelihood estimator (NPMLE) must be non-continuous 
at the points of the data. 

For a reasonable class of estimators, we consider nondecreasing functions 
F that can have discrete and continuous components. Let p ,  = F(X, , )  - 
F(X,-1 ,), where F(X0  n) is defined to be 0. We know that p,  > 0 is required. 
or else L ( F )  = 0. We also know that p l  + . . . + p ,  = 1. because if the sum 
is less than one, there would be probability mass assigned outside the set 
21,  . . . , 2,. That would be impractical because if we reassigned that residual 
probability mass (say q = 1 - p l  - . . - p ,  > 0) to any one of the values z2, 
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the likelihood L ( F )  would increase in the term F ( z , )  - F(z,)  = p ,  + q .  So 
the NPMLE not only assigns probability mass to  every observation, but only 
to that set, hence the likelihood can be equivalently expressed as 

n 

which. under the constraint that Cp, = 1, is the multznomial likelihood. The 
NPMLE is easily computed as f i 2  = 1/72, i = 1, . . . , n. Note that this solution 
is quite intuitive ~ it places equal “importance” on all n of the observations, 
and it satisfies the constraint given above that Cp2 = 1. This essentially 
proves the following theorem. 

Theorem 10.1 Let XI, . . . X n  be a random sample generated from F .  For 
any distribution function Fo, the nonparametric likelihood L(F0) 5 L(Fn) ,  
so that the empirical distribution function is the nonparametric maximum 
likelihood estimator. 

10.3 KAPLAN-MEIER ESTIMATOR 

The nonparametric likelihood can be generalized to  all sorts of observed data 
sets beyond a simple i.i.d. sample. The most commonly observed phenomenon 
outside the i.i.d. case involves censoring. To describe censoring, we will con- 
sider X > 0, because most problems involving censoring consist of lifetime 
measurements (e.g., time until failure). 

(a) (b) 

Fig. 10.1 Edward Kaplan (1920-2006) and Paul bleier (1924-). 

Definition 10.1 Suppose X is a lifetime measurement. X is right censored 
at time t if we know the failure time occurred after time t ,  but the actual time 
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is unknown. X is  left censored at time t i f  we know the failure tame occurred 
before time t ,  but the actual time is unknown. 

Definition 10.2 Type-I censoring occurs when n items on test are stopped 
at a fixed time t o ,  at which time all surviving test items are taken off test and 
are right censored. 

Definition 10.3 Type-I1 censoring occurs when n items ( X I , .  . . , X n )  on 
test are stopped after a prefixed number of them (say, k 5 n)  have failed, 
leaving the remaining items to be right censored at the random time t = Xk:, .  

Type I censoring is a common problem in drug treatment experiments 
based on human trials; if a patient receiving an experimental drug is known 
to survive up to a time t but leaves the study (and humans are known to leave 
such clinical trials much more frequently than lab mice) the lifetime is right 
censored. 

Suppose we have a sample of possibly right-censored values. We will as- 
sume the random variables represent lifetimes (or “occurrence times“). The 
sample is summarized as { ( X , >  6,), i = 1. . . . . n} ,  where X ,  is a time mea- 
surement, and 6, equals l if the X ,  represents the lifetime, and equals 0 if X ,  
is a (right) censoring time. If 6, = 1, X ,  contributes dF(z , )  = F ( x , )  - F(z,) 
to the likelihood (as it does in the i.i.d. case). If 6, = 0, we know only that 
the lifetime surpassed time X , ,  so this event contributes 1 - F(x , )  to the 
likelihood. Then 

n 

L ( F )  = n (1 - F ( X , ) ) ’ - ~ ’  ( d F ( z , ) ) 6 z  . (10.2) 
t = 1  

The argument about the NPMLE has changed from (10.1). In this case, 
no probability mass need be assigned to a value X ,  for which 6, = 0, be- 
cause in that case, dF(X , )  does not appear in the likelihood. Furthermore. 
the accumulated probability mass of the NPMLE on the observed data does 
not necessarily sum to one, because if the largest value of X ,  is a censored 
observation, the term S ( X , )  = 1 - F ( X , )  will only be positive if probability 
mass is assigned to a point or interval to the right of X,.  

Let p ,  be the probability mass assigned to X ,  n. This new notation allows 
for positive probability mass (call it P,+~) that can be assigned to some arbi- 
trary point or interval after the last observation X ,  ,. Let d, be the censoring 
indicator associated with X ,  n.  Note that even though X1 are 
ordered. the set (&>.  . . ,in) is not necessarily so (8, is called a concornztant). 

If 8, = 1, the likelihood is clearly maximized by setting probability mass 
(say p , )  on X ,  ,. If 8, = 0, some mass will be assigned to the right of X ,  ,, 
which has interval probability p,+l + . . . + p,+l. The likelihood based on 

< . . . < X ,  
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censored data is expressed 

Instead of maximizing the likelihood in terms of (PI. .  . . , p n + l ) ,  it will prove 
to be much easier using the transformation 

Pz 
n+l . A, = 

C p  P,  

This is a convenient one-to-one mapping where 

n i l  2 - 1  2-1 

The likelihood simplifies to 

As a function of (A1,.  . . . A n + l ) .  L is maximized at it = & / ( n  - i + l ) ,  i = 
1. .  . . , n + 1. Equivalently, 

= n - li i + 1 ~ = 1  f - j ( l -n- j+ l  s j  ) .  
The NPMLE of the distribution function (denoted F K M ( z ) )  can be expressed 
as a sum in p,.  For example, at  the observed order statistics, we see that 
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This is the Kaplan-Mezer nonparametric estimator, developed by Kaplan 
and Meier (1958) for censored lifetime data analysis. It's been one of the 
most influential developments in the past century; their paper is the most cited 
paper in statistics (Stigler, 1994). E. L. Kaplan and Paul Meier never actually 
met during this time. but they both submitted their idea of the "product 
limit estimator" to the Journal of the Amerzcan Statzstzcal Assoczatzon at 
approximately the same time, so their joint results were amalgamated through 
letter correspondence. 

For non-censored observations, the Kaplan-Meier estimator is identical to 
the regular MLE. The difference occurs when there is a censored observation 
- then the Kaplan-Meier estimator takes the "weight" normally assigned to 
that observation and distributes it evenly among all observed values to the 
right of the observation. This is intuitive because we know that the true value 
of the censored observation must be somewhere to the right of the censored 
value, but we don't have any more information about what the exact value 
should be. 

The estimator is easily extended to sets of data that have potential tied 
values. If we define d3 = number of failures at x3, m3 = number of observations 
that had survived up to x;, then 

(10.4) 

Example 10.1 Muenchow (1986) tested whether male or female flowers (of 
Western White Clematis), were equally attractive to insects. The data in 
the Table 10.15 represent waiting times (in minutes), which includes censored 
data. In MATLAB, use the function 

KMcdfSM(x,y, j )  

where cc is a vector of event times, y is a vector of zeros (indicating censor) 
and ones (indicating failure), and j = 1 indicates the vector values ordered 
( j  = 0 means the data will be sorted first). 

Example 10.2 Data from Crowder et al. (1991) lists strength measurements 
(in coded units) for 48 pieces of weathered cord. Seven of the pieces of cord 
were damaged and yielded strength measurements that are considered right 
censored. That is, because the damaged cord was taken off test, we know 
only the lower limit of its strength. In the MATLAB code below. vector data 
represents the strength measurements, and the vector censor indicates (with 
a zero) if the corresponding observation in data is censored. 

>> data = [36.3,41.7,43.9,49.9,50.1,50.8,51.9,52.1,52.3,52.3,52.4,52.6, . . .  
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,J ..- .. 
,- ....... ............ .,* 

0.9 - 

Table 10.15 Waiting Times for Insects to Visit Flowers 

1 -  

0.8 

0.7 

0.6 

0 5  

~ ~~~~ 

Male Flowers Female Flowers 

1; 1 
~ 

...... , ....- 
- 

,.. . .. . . . --- --... 

1 

1 9 27 
1 9 27 
2 9 30 
2 11 31 
4 11 35 
4 14 36 
5 14 40 
5 14 43 
6 16 54 
6 16 61 
6 17 68 
7 17 69 
7 18 70 
8 19 83 
8 19 95 
8 19 102" 

104* 

~ 1 19 57 
, 2 23 59 
' 4 23 67 

4 26 71 
5 28 75 
6 29 75* 
7 29 78* 
7 29 81 
8 30 90* 
8 32 94* 
8 35 96 
9 35 96* 
14 37 100* 
15 39 102* 
18 43 105* 
18 56 

Fig. 10.2 Kaplan-Sleier estimator for Waiting Times (solid line for male flowers, 
dashed line for female flowers). 



Fig. 10.3 Kaplan-Meier estimator cord strength (in coded units). 

52.7,53.1,53.6,53.6,53.9,53.9,54 .1, 54.6,54.8,54.8,55.1,55.4,55.9, . . .  
56.0,56.1,56.5,56.9,57.1,57 .1, 57.3,57.7,57.8,58.1,58.9,59.0,59.1, . . .  
59.6,60.4,60.7,26.8,29.6,33.4,35.0,40.0,41.9,42.51; 

>> censor=[ones(i,41) ,zeros(l,7)1 ; 
>> [kmest,sortdat,sortcen]= kmcdfsm(data’,censor’,O); 
>> plot(sortdat,kmest,’k’); 

The table below shows how the Kaplan-Meier estimator is calculated using the 
formula in (10.4) for the first 16 measurements. which includes seven censored 
observations. Figure 10.3 shows the estimated survival function for the cord 
strength data. 
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1 - F K M ( x ~ )  m3 -4 Uncensored xJ m3 dJ - 
m3 

26.8 48 
29.6 47 
33.4 46 
35.0 45 

1 36.3 44 
40.0 43 

2 41.7 42 
41.9 41 
42.5 40 

3 43.9 39 
4 49.9 38 
5 50.1 37 
6 50.8 36 
7 51.9 35 
8 52.1 34 
9 52.3 33 

0 
0 
0 
0 
1 
0 
1 
0 
0 
1 
1 
1 
1 
1 
1 
2 

1.000 1.000 
1.000 1.000 
1.000 1 .ooo 
1.000 1 .ooo 
0.977 0.977 
1 .ooo 0.977 
0.976 0.954 
1.000 0.954 
1.000 0.954 
0.974 0.930 
0.974 0.905 
0.973 0.881 
0.972 0.856 
0.971 0.832 
0.971 0.807 
0.939 0.758 

Example 10.3 Consider observing the lifetime of a series system. Recall 
a series system is a system of k 2 1 components that fails at the time the 
first component fails. Suppose we observe n different systems that are each 
made of k, identical components ( i  = 1.. . . , n )  with lifetime distribution F .  
The lifetime data is denoted (XI.. . . .xn). Further suppose there is (random) 
right censoring, and S, = I ( x z  represents a lifetime measurement). How do 
we estimate F? 

If F ( z )  is continuous with derivative f(z), then the ith system's survival 
function is S ( X ) ~ %  and its corresponding likelihood is 

& ( F )  = k,  (1 - F ( x ) ) " - l  f(x). 

It's easier to express the full likelihood in terms of S ( x )  = 1 - F ( z ) :  

where 1 - 6 indicates censoring. 
To make the likelihood more easy to solve, let's examine the ordered sample 

y, = x, so we observe y1 < y2 < . . . < yn. Let ,&, and 8, represent the size of 
the series system and the censoring indicator for y,. Note that &, and 8, are 
concomitants of y,. 



The likelihood, now as a function of (yl ,  . . . , yn), is expressed 

a = l  

For estimating F nonparametrically, it is again clear that F (or S) will be a 
step-function with jumps occurring only at  points of observed system failure. 
With this in mind, let S, = S(y,) and a, = S,/S,-l. Then f ,  = S,-l - S, = 

fly=, a,( 1 - a%).  If we let rl = .& + . . . + in, the likelihood can be expressed 
simply (see Exercise 10.4) as 

a - 1  

i=l 

and the nonparametric MLE for S(z), in terms of the ordered system lifetimes, 
is 

i 

r=l 

Note the special case in which Ici = 1 for all i, we end up with the Kaplan- 
Meier estimator. 

10.4 CONFIDENCE INTERVAL FOR F 

Like all estimators, k ( x )  is only as good as its measurement of uncertainty. 
Confidence intervals can be constructed for F ( z )  just as they are for regular 
parameters, but a typical inference procedure refers to a pointwise confidence 
interval about F ( z )  where x is fixed. 

A simple, approximate 1 - a confidence interval can be constructed using 
a normal approximation 

F M  f zl-a/z+, 

where 6 p  is our estimate of the standard deviation of F(z ) .  If we have an 
i.i.d. sample, F = Fn, and a:, = F(z)[l - F ( x ) ] / n ,  so that 

6; = F,(z)[l- F,(x)]/n 

Recall that nF,(x) is distributed as binomial B i n ( n , F ( z ) ) ,  and an exact 
interval for F ( z )  can be constructed using the bounding procedure for the 
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binomial parameter p in Chapter 3. 
In the case of right censoring, a confidence interval can be based on the 

Kaplan-Meier estimator. but the variance of F ~ h f ( z )  does not have a sim- 
ple form. Greenwood’s formula (Greenwood, 1926), originally concocted for 
grouped data, can be applied to  construct a 1 - cr confidence interval for the 
survival function ( S  = 1 - F )  under right censoring: 

where 

It is important to  remember these are pointwise confidence intervals. based 
on fixed values o f t  in F ( t ) .  Simultaneous confidence bands are a more recent 
phenomenon and apply as a confidence statement for F across all values o f t  
for which 0 < F ( t )  < 1. Kair (1984) showed that the confidence bands by Hall 
and Wellner (1980) work well in various settings, even though they are based 
on large-sample approximations. An approximate 1 - cr confidence band for 
S ( t ) .  for values o f t  less than the largest observed failure time, is 

This interval is based on rough approximation for an infinite series, and a 
slightly better approximation can be obtained using numerical procedures 
suggested in Nair (1984). Along with the Kaplan-Meier estimator of the 
distribution of cord strength, Figure (10.3) also shows a 95% simultaneous 
confidence band. The pointwise confidence interval at t=50 units is (0.8121. 
0.9934). The confidence band. on the other hand, is (0.7078, 1.0000). Note 
that for small strength values, the band reflects a significant amount of un- 
certainty in F K M ( z ) .  See also the ICIATLAB procedure survBand. 

10.5 PLUG-IN PRINCIPLE 

With an i.i.d. sample. the EDF serves not only as an estimator for the underly- 
ing distribution of the data, but through the EDF, any particular parameter 
8 of the distribution can also be estimated. Suppose the parameter has a 
particular functional relationship with the distribution function F :  

0 = O(F).  
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Examples are easy to construct. The population mean, for example, can be 
expressed 

30 

p = p ( F )  = 1 xdF(x) 
--oo 

and variance is 

As Fn is the sample analog to F ,  so .Q(Fn) can serve as a sample-based 
estimator for 6. This is the idea of the plug-in principle .  The estimator for 
the population mean: 

Obviously, the plug-in principle is not necessary for simply estimating the 
mean, but it is reassuring to  see it produce a result that is consistent with 
standard estimating techniques. 

Example 10.4 The quantile xp can be expressed as a function of F :  xp = 
inf{x : s," d F ( z )  5 1 - p } .  The sample equivalent is the value gP = inf{z : 

s," dFn(z)  5 1 - p } .  If F is continuous, then we have xp = F - l ( p )  and 
Fn(eP) = p is solved uniquely. If F is discrete, eP is the smallest value of x 
for which 

n 

i=l 

or, equivalently, the smallest order statistic x,, for which i / n  5 p ,  i.e.. 
(z + l ) / n  > p .  For example, with the flower data in Table 10.15, the me- 
dian waiting times are easily estimated as the smallest values (x) for which 
FKAJ(X) 5 1/2,  which are 16 (for the male flowers) and 29 (for the female 
flowers). 

If the data are not i.i.d.. the NPMLE F can be plugged in for F in Q ( F ) .  
This is a key selling point to  the plug-in principle: it can be used to formulate 
estimators where we might have no set rule to estimate them. Depending on 
the sample, F might be the EDF or the Kaplan-Meier estimator. The plug-in 
technique is simple, and it will form a basis for estimating uncertainty using 
re-sampling techniques in Chapter 15. 

Example 10.5 To find the average cord strength from the censored data, for 
example. it would be imprudent to merely average the data, as the censored 
observations represent a lower bound on the data, hence the true mean will be 
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underestimated. By using the plug in principle, we will get a more accurate 
estimate; the code below estimates the mean cord strength as 54.1946 (see 
also the MATLAB m-file pluginmu. The sample mean, ignoring the censoring 
indicator, is 51.4438. 

>> [cdfy svdata svcensor 1 = kmcdfsm(vdata,vcensor, ipresorted) ; 
>> if min(svdata)>O; 

skm = 1-cdfy; %survival function 

svdata2 = [O svdata’l; 
svdata3 = [svdata’ svdata(end1l ; 
dx = svdata3 - svdata2; 
mu-hat = skml *dx’; 

cdfyl = CO, cdfy’l; 
cdfyi! = [cdfy’ 11; 
df = cdfy2 - cdfyl; 
svdatal = [svdata’, 01; 
mu-hat = svdatal *df’; 

skml = [l, skm’l ; 

else; 

end ; 
>> mu-hat 

ans = 

154.1946 

10.6 S E M I- PAR A M  ET R I C I N F E R E N C E 

The proportional hazards model for lifetime data relates two populations ac- 
cording to  a common underlying hazard rate. Suppose ro(t )  is a baseline 
hazard rate, where r ( t )  = f ( t ) / ( l  - F ( t ) ) .  In reliability theory, r ( t )  is called 
the failure rate. For some covariate z that is observed along with the life- 
time, the positive function of Q(z) describes how the level of 5 can change 
the failure rate (and thus the lifetime distribution): 

r ( t ;  z) = ro(t)Q(z).  

This is termed a semi-parametric model because ro(t)  is usually left un- 
specified (and thus a candidate for nonparametric estimation) where as Q(5) is 
a known positive function, at  least up to some possibly unknown parameters. 
Recall that the CDF is related to  the failure rate as 

r(u)du = R(u) = - In S(z). L 
where S(z) = 1 - F ( z )  is called the survivor function. R(t)  is called the 
cumulative failure rate in reliability and life testing. In this case, So(t) is the 
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baseline survivor function, and relates to the lifetime affected by Q(z) as 

S ( t ; z )  = S o ( t ) W  

The most commonly used proportional hazards model used in survival 
analysis is called the Cox Model (named after Sir David Cox), which has the 
form 

With this model, the (vector) parameter ,8 is left unspecified and must be 
estimated. Suppose the baseline hazard function of two different populations 
are related by proportional hazards as r l ( t )  = rO(t)X and rz(t) = ro(t)Q. Then 
if TI and Tz represent lifetimes from these two populations, 

The probability does not depend at all on the underlying baseline hazard (or 
survivor) function. With this convenient set-up. nonparametric estimation of 
S( t )  is possible through maximizing the nonparametric likelihood. Suppose n 
possibly right-censored observations ( 2 1 ,  . . . , z,) from F = 1 - S are observed. 
Let & represent the number of observations at risk just before time 2,. Then, 
if S,=l indicates the lifetime was observed at xi, 

In general. the likelihood must be solved numerically. For a thorough study 
of inference with a semi-parametric model. we suggest Statistical Models and 
Methods for Lifetime Data by Lawless. This area of research is paramount in 
survival analysis. 

Related to  the proportional hazard model, is the accelerated lafetime model 
used in engineering. In this case, the baseline survivor function So(t) can rep- 
resent the lifetime of a test product under usage conditions. In an accelerated 
life test, and additional stress is put on the test unit, such as high or low 
temperature, high voltage, high humidity, etc. This stress is characterized 
through the function @(z) and the survivor function of the stressed test item 
is 

S( t ;  z) = So(t@(.)). 

Accelerated life testing is an important tool in product development, especially 
for electronics manufacturers who produce gadgets that are expected to last 
several years on test. By increasing the voltage in a particular way, as one 
example, the lifetimes can be shortened to hours. The key is how much faith 
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the manufacturer has on the known acceleration function 9 ( z ) .  
In MATLAB, the Statistics Toolbox offers the routine coxphfit, which 

computes Cox proportional hazards estimator for input data, much in the 
same way the kmcdf sm computes the Kaplan-Meier estimator. 

10.7 EMPIRICAL PROCESSES 

If we express the sample as X,(w), . . . . Xn(w), we note that F,(z) is both a 
function of z and w E a. From this. the EDF can be treated as a random 
process. The Glivenko-Cantelli Theorem from Chapter 3 states that the EDF 
F,(z) converges to F ( z )  (i)  almost surely (as random variable, z fixed). and 
(ii) uniformly in z. (as a function of z with w fixed). This can be expressed 
as : 

Let W ( z )  be a standard Brownian motion process. It is defined as a 
stochastic process for which W(0)  = 0, W ( t )  N "(0, t ) ,  W ( t )  has independent 
increments, and the paths of W ( t )  are continuous. A Brownian Bridge is 
defined as B( t )  = W ( t )  - t W ( l ) ,  0 5 t 5 1. Both ends of a Brownian Bridge, 
B(0)  and B(l) ,  are tied to 0. and this property motivates the name. A 
Brownian motion W ( z )  has covariance function y( t ,  s) = t A s = rnin(t. s). 
This is because IE(N'(t)) = 0, Var(W(t)) = s, for s < t .  Cov(W(t), W ( s ) )  = 

@ov(W(s), (W(t)  - W ( s ) )  + W ( s ) )  and W has independent increments. 
Define the random process B,(z) = &(F,(z) - F ( z ) ) .  This process con- 

verges to a Brownian Bridge Process, B ( z ) ,  in the sense that all finite dimen- 
sional distributions of B,(z) (defined by a selection of 5 1 ,  . . . , 2,) converge to 
the corresponding finite dimensional distribution of a Brownian Bridge B ( z ) .  

Using this, one can show that a Brownian Bridge has mean zero and co- 
variance function y( t , s )  = t A s - t s .  If s < t .  y(s.t) = s(1 - t ) .  For s < t ,  
y(s , t )  = IE(W(s)-sW(l))(W(t)-tW(1)) = . . .  = s - s t .  BecausetheBrown- 
ian Bridge is a Gaussian process, it is uniquely determined by its second order 
properties. The covariance function y(t .  s) for the process &(F,(t) - F ( t ) )  
is: 
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Proof: 

11 IEy(t,s) = IE - C ( l ( X i  < t )  - F ( t )  - C ( l ( X ,  < s) - F ( s )  [(i i ).(A j 

1 
n 
1 
n 
1 
n 

= -IE(l(X1 < t )  - F( t ) ) ( l (X1 < s) - F ( s ) )  

-IE [1(X1 < t A s )  - F ( t ) l ( X l  < s )  - F ( s ) l ( X 1  < t )  + F ( t ) F ( s ) ]  = 

= - ( F ( t  As) - F ( t ) F ( s ) ) .  

This result is independent of F ,  as long as F is continuous, as the sample 
X I , .  . . X ,  could be transformed to uniform: Y1 = F ( X 1 ) ,  . . . , Y, = F(X,) .  
Let G,(t) be the empirical distribution based on Yl, . . . , Y,. For the uniform 
distribution the covariance is ~ ( t ,  s )  = tAs - t s ,  which is exactly the correlation 
function of the Brownian Bridge. This leads to  the following result: 

Theorem 10.2 The random process f i ( F , ( z )  - F ( z ) )  converges in distri- 
bution to the Brownian Bridge process. 

10.8 EMPIRICAL LIKELIHOOD 

In Chapter 3 we defined the likelihood ratio based on the likelihood function 
L(Q)  = n f(zi; Q ) ,  where X I , .  . . X, were i.i.d. with density function f(z;  0).  
The likelihood ratio function 

(10.5) 

allows us to construct efficient tests and confidence intervals for the parameter 
8. In this chapter we extend the likelihood ratio to nonparametric inference, 
although it is assumed that the research interest lies in some parameter 0 = 

0 ( F ) .  where F ( z )  is the unknown CDF. 
The likelihood ratio extends naturally to nonparametric estimation. If we 

focus on the nonparametric likelihood from the beginning of this chapter. from 
an i.i.d. sample of X I .  . . . X, generated from F ( z ) .  

n n 

i=l i=l 
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The likelihood ratio corresponding to this would be R ( F )  = L ( F ) / L ( F , ) .  
where F, is the empirical distribution function. R ( F )  is called the empzrzcal 
lakelzhood ratao. In terms of F ,  this ratio doesn’t directly help us creating 
confidence intervals. All we know is that for any CDF F ,  R ( F )  5 1 and 
reaches its maximum only for F = F,. This means we are considering only 
functions F that assign mass on the values X ,  = I,, a = 1,. . . .n. and R is 
reduced to function of n - 1 parameters R ( p 1 , .  . . , p n - l )  where p ,  = d F ( z , )  
and Cp, = 1. 

It is more helpful to think of the problem in terms of an unknown pa- 
rameter of interest 6 = 6 ( F ) .  Recall the plug-zn przncaple can be applied to 
estimate 6 with 8 = 6(Fn) .  For example, with p = J z d F ( z )  was merely the 
sample mean, i.e. J z d F , ( s )  = 2 .  We will focus on the mean as our first 
example to better understand the empirical likelihood. 

Confidence Interval for the Mean. Suppose we have an i.i.d. sample 
X I , .  . . . X ,  generated from an unknown distribution F ( z ) .  In the case p ( F )  = 

J s d F ( z ) ,  define the set C,(p) on p = (P I , .  . . ,p,) as 

The empirical likelihood associated with p maximizes L ( p )  over C,(p). The 
restriction Cp2s, = p is called the structural constraint. The empirical like- 
lihood ratio (ELR) is this empirical likelihood divided by the unconstrained 
NPMLE, which is just L ( l /n ,  . . . , l / n )  = n-n. If we can find a set of solutions 
to the empirical likelihood, Owen (1988) showed that 

is approximately distributed x: if p is correctly specified. so a nonparametric 
confidence interval for p can be formed using the values of -2  log R ( p ) .  

MATLAB software is available to help: e1m.m computes the empirical 
likelihood for a specific mean, allowing the user to iterate to make a curve 
for R ( p )  and. in the process. construct confidence intervals for p by solving 
R ( p )  = TO for specific values of ro. Computing R ( p )  is no simple matter; 
we can proceed with Lagrange multipliers to maximize Cpzz ,  subject to 
Cpz = 1 and C ln(np,) = ln(r0). The best numerical optimization methods 
are described in Chapter 2 of Owen (2001). 

Example 10.6 Recall Exercise 6.2. Fuller et al. (1994) examined polished 
window strength data to estimate the lifetime for a glass airplane window. 
The units are ksi (or 1,000 psi). The MATLAB code below constructs the 
empirical likelihood for the mean glass strength, which is plotted in Figure 
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10.4 (a).  In this case, a 90% confidence interval for p is constructed by using 
the value of TO so that -2ln7-0 < x2(0.90) = 2.7055, or TO > 0.2585. The 
confidence interval is computed as (28.78 ksi, 33.02 ksi). 

>> 

>> 
>> 

x = [18.83 20.8 21.657 23.03 23.23 24.05 24.321 25.5 25.52 25.8 . . .  
26.69 26.77 26.78 27.05 27.67 29.9 31.11 33.2 33.73 33.76 33.89 . . .  
34.76 35.75 35.91 36.98 37.08 37.09 39.58 44.045 45.29 45.381 1; 
n=size (x) ; i=i ; 
f o r  mu=min(x):O.l:max(x) 
R-mu=elm(x, mu,zeros(l,l), 100, le-7, le-9, 0 ) ;  
ELR-mu(i)=R-mu; Mu(i)=mu; i=i+l; 

end 

-1 

Fig. 10.4 
(for different samples). 

Empirical likelihood ratio as a function of (a) the mean and (b) the median 

Owen's extension of Wilk's theorem for parametric likelihood ratios is 
valid for other functions of F ,  including the variance, quantiles and more. 
To construct R for the median, we need only change the structural constraint 
from Cpizi  = ,LL to Cpi sign(zi - 2 0 . 5 0 )  = 0. 

Confidence Interval for the Median. In general, computing R(z )  is 
difficult. For the case of estimating a population quantile, however, the opti- 
mizing becomes rather easy. For example, suppose that n1 observations out 
of n are less than the population median 20.50 and n2 = n - n1 observations 
are greater than 20.50. Under the constraint 20 .50  = 20.50 ,  the nonparametric 
likelihood estimator assigns mass (2nl)- '  to each observation less than Z0.50 

and assigns mass (2nz ) - l  to each observation to  the right of 2 0 . 5 0 ,  leaving us 
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with 

Example 10.7 Figure 10.4(b). based on the MATLAB code below, shows the 
empirical likelihood for the median based on 30 randomly generated numbers 
from the exponential distribution (with p=l and 20.50 = - ln(0.5) = 0.6931). 
A 90% confidence interval for 20.50,  again based on TO > 0.2585. is (0.3035, 
0.9021). 

For general problems, computing the empirical likelihood is no easy matter. 
and to  really utilize the method fully, more advanced study is needed. This 
section provides a modest introduction to  let you know what is possible using 
the empirical likelihood. Students interested in further pursuing this method 
are recommended to  read Owen’s book. 

10.9 EXERCISES 

10.1. With an i.i.d. sample of n measurements. use the plug-in principle to 
derive an estimator for population variance. 

10.2. Twelve people were interviewed and asked how many years they stayed 
at their first job. Three people are still employed at their first job and 
have been there for 1.5. 3.0 and 6.2 years. The others reported the 
following data for years at first job: 0.4, 0.9, 1.1. 1.9. 2.0, 3.3, 5.3, 5.8. 
14.0. Using hand calculations. compute a noriparametric estimator for 
the distribution of T = time spent (in years) at first job. Verify your 
hand calculations using MATLAB. According to  your estimator, what 
is the estimated probability that a person stays at their job for less than 
four years? Construct a 95% confidence interval for this estimate. 

10.3. Using the estimator in Exercise 10.2. use the plug-in principle to com- 
pute the underlying mean number of years a person stays at their first 
job. Compare it to the faulty estimators based on using (a) only the 
noncensored items and (b) using the censored times but ignoring the 
censoring mechanism. 

10.4. Consider Example 10.3, where we observe series-system lifetimes of a 
series system. We observe n different systems that are each made of kE 
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identical components (i = 1, .  . . ,n) with lifetime distribution F .  The 
lifetime data is denoted ( 5 1 ,  . . . , z,) and are possibly right censored. 
Show that if we let rj = k j  +. . . +in, the likelihood can be expressed as 
(10.5) and solve for the nonparametric maximum likelihood estimator. 

10.5. Suppose we observe m different k-out-of-n systems and each system 
contains i.i.d. components (with distribution F ) ,  and the ith system 
contains ni components. Set up the nonparametric likelihood function 
for F based on the n system lifetimes (but do not solve the likelihood). 

10.6. Go to the link below to download survival times for 87 people with lupus 
nephritis. They were followed for 15+ or more years after an initial 
renal biopsy. The duration variable indicates how long the patient had 
the disease before the biopsy; construct the Kaplan-Meier estimator for 
survival, ignoring the duration variable. 

http://lib.stat.cmu.edu/datasets/lupus 

10.7. Recall Exercise 6.3 based on 100 measurements of the speed of light in 
air. Use empirical likelihood to construct a 90% confidence interval for 
the mean and median. 

http://www.itl.nist.gov/div898/strd/univ/data/Michelso.dat 

10.8. Suppose the empirical likelihood ratio for the mean was equal to R ( p )  
= p l ( 0  5 p 5 1) + (2 - p)1(1 5 p 5 2). Find a 95% confidence interval 
for p.  

10.9. The Receiver Operating Characteristic (ROC) curve is a statistical tool 
to compare diagnostic tests. Suppose we have a sample of measurements 
(scores) X I , .  . . , X ,  from a diseased population F ( z ) ,  and a sample of 
Yl, . . . , Y, from a healthy population G ( y ) .  The healthy population 
has lower scores, so an observation is categorized as being diseased if it 
exceeds a given threshold value, e.g., if X > c. Then the rate of false- 
positive results would be P(Y > c) .  The ROC curve is defined as the 
plot of R(p) = F(G- l (p ) ) .  The ROC estimator can be computed using 
the plug-in principle: 

= Fn(G;VP)). 

A common test to see if the diagnostic test is effective is to see if R ( p )  
remains well above 0.5 for 0 5 p 5 1. The Area Under the Curve (AUC) 
is defined as 

1 

AUC = .I R(p)dp. 
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Show that AUC = P ( X  5 Y )  and show that by using the plug-in 
principle, the sample estimator of the AUC is equivalent to  the Mann- 
Whitney two-sample test statistic. 
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Density Estimation 

George McFly: Lorraine, my density has brought me to you. 
Lorraine Baines: What? 
George McFly: Oh. what I meant to say was. .. 
Lorraine Baines: Wait a minute, don’t I know you from somewhere? 
George McFly: Yes. Yes. I’m George, George McFly. 
I’m your density. I mean ... your destiny. 

From the movie Back to the Future, 1985 

Probability density estimation goes hand in hand with nonparametric estima- 
tion of the cumulative distribution function discussed in Chapter 10. There. 
we noted that the density function provides a better visual summary of how 
the random variable is distributed across its support. Symmetry, skewness. 
disperseness and unimodality are just a few of the properties that  are ascer- 
tained when we visually scrutinize a probability density plot. 

Recall. for continuous i.i.d. data. the empzrzcal denszty f unc t zon  places 
probability mass 1/n on each of the observations. While the plot of the 
empirical dzstrzbutzon function (EDF) emulates the underlying distribution 
function. for continuous distributions the empirical density function takes 
no shape beside the changing frequency of discrete jumps of 1/n across the 
domain of the underlying distribution - see Figure 11.2(a). 

205 
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Fig. 11.1 Playfair’s 1786 bar chart of wheat prices in England 

11.1 HISTOGRAM 

The histogram provides a quick picture of the underlying density by weighting 
fixed intervals according the their relative frequency in the data. Pearson 
(1895) coined the term for this empirical plot of the data, but its history 
goes as far back as the 18th century. William Playfair (1786) is credited with 
the first appearance of a bar chart (see Figure 11.1) that plotted the price of 
wheat in England through the 17th and 18th centuries. 

In MATLAB, the procedure hist (x) will create a histogram with ten bins 
using the input vector x. Figure 11.2 shows (a) the empirical density function 
where vertical bars represent Dirac’s point masses at the observations, and 
(b) a 10-bin histogram for a set of 30 generated N(0,l) random variables. 
Obviously, by aggregating observations within the disjoint intervals, we get 
a better, smoother visual construction of the frequency distribution of the 
sample. 

>> x = rand_nor(O,l,30,1); 
>> hist(x) 
>> histfit(x,1000) 

The histogram represents a rudimentary smoothing operation that pro- 
vides the user a way of visualizing the true empirical density of the sample. 
Still, this simple plot is primitive, and depends on the subjective choices the 
user makes for bin widths and number of bins. With larger data sets, we 
can increase the number of bins while still keeping average bin frequency at a 
reasonable number. say 5 or more. If the underlying data are continuous, the 
histogram appears less discrete as the sample size (and number of bins) grow, 
but with smaller samples, the graph of binned frequency counts will not pick 
up the nuances of the underlying distribution. 
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Fig. 11.2 Empirical "density" (a) and histogram (b) for 30 normal N(0,l) variables. 

The MATLAB function h i s t f  it (x,n) plots a histogram with n bins along 
with the best fitting normal density curve. Figure 11.3 shows how the appear- 
ance of continuity changes as the histogram becomes more refined (with more 
bins of smaller bin width). Of course, we do not have such luxury with smaller 
or medium sized data sets; and are more likely left to ponder the question of 
underlying normality with a sample of size 30, as in Figure 11.2(b). 

>> x = rand_nor(O,1,5000,1); 
>> histfit(x,lO) 
>> histf it (x, 1000) 

If you have no scruples, the histogram provides for you many opportunities 
to mislead your audience, as you can make the distribution of the data appear 
differently by choosing your own bin widths centered at a set of points arbi- 
trarily left to your own choosing. If you are completely untrustworthy, you 
might even consider making bins of unequal length. That is sure to support 
a conjectured but otherwise unsupportable thesis with your data, and might 
jump-start a promising career for you in politics. 

11.2 KERNEL AND BANDWIDTH 

The idea of the density estimator is to spread out the weight of a single 
observation in a plot of the empirical density function. The histogram, then, 
is the picture of a density estimator that spreads the probability mass of each 
sample item uniformly throughout the interval (i.e.. bin) it is observed in. 
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Fig. 11.3 Histograms with normal fit of 5000 generated variables using (a) 10 bins 
and (b) 50 bins. 

Note that the observations are in no way expected to be uniformly spread out 
within any particular interval, so the mass is not spread equally around the 
observation unless it happens to fall exactly in the center of the interval. 

In this chapter, we focus on the kernel density estimator that more fairly 
spreads out the probability mass of each observation, not arbitrarily in a fixed 
interval, but smoothly around the observation, typically in a symmetric way. 
With a sample XI, . . . , X,, we write the density estimator 

(11.1) 

for X ,  = x,. i = 1,.  . . , n. The kernel function K represents how the probabil- 
ity mass is assigned, so for the histogram. it is just a constant in any particu- 
lar interval. The smoothing function h, is a positive sequence of bandwidths 
analogous to the bin width in a histogram. 

The kernel function K has five important properties - 

1. K ( x )  2 0 vx 
2 .  K ( x )  = K ( - x )  for IC > 0 
3. J K ( u ) d u  = 1 
4. JuK(u)du  = 0 
5 .  JuZK(u)du = 0: < m. 
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Fig. 11.4 
tions. 

(a) Normal, (b) Triangular, (c) Box, and (d) Epanechnickov kernel func- 

Figure 11.4 shows four basic kernel functions: 

1. Normal (or Gaussian) kernel K ( z )  = $(x), 

2. Triangular kernel K ( J : )  = C-"C - 1x1) 1(-c < z < c),  c > 0. 

3. Epanechnickov kernel (described below). 

4. Box kernel, K ( z )  = 1(-c  < J: < c)/(2c), c > 0. 

While K controls the shape. h, controls the spread of the kernel. The accuracy 
of a density estimator can be evaluated using the mean integrated squared 
error, defined as 

MISE = E ( / ( f ( z )  - f(~))~dz) 

= /Bias'(f(z))dz + Var(f(z))dz.  (11.2) s 
To find a density estimator that minimizes the MISE under the five mentioned 
constraints, we also will assume that f ( x )  is continuous (and twice differen- 
tiable), h, -+ 0 and nh, + cc as n 4 m. Under these conditions it can be 
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shown that 

Bias(f(x)) = &f”(x )  + O(h:) and 
2 

(11.3) 

where R(g) = J g(u)2du. 

We determine (and minimize) the MISE by our choice of h,. From the 
equations in (11.3), we see that there is a tradeoff. Choosing h, to reduce 
bias will increase the variance, and vice versa. The choice of bandwidth is 
important in the construction of f(x). If h is chosen to  be small, the subtle 
nuances in the main part of the density will be highlighted, but the tail of 
the distribution will be unseemly bumpy. If h is chosen large. the tails of the 
distribution are better handled, but we fail to see important characteristics 
in the middle quartiles of the data. 

By substituting in the bias and variance in the formula for (11.2), we 
minimize MISE with 

At this point, we can still choose K ( x )  and insert a “representative” density 
for f(x) to solve for the bandwidth. Epanechnickov (1969) showed that. upon 
substituting in f ( z )  = q5(x)? the kernel that minimizes MISE is 

The resulting bandwidth becomes h: FZ 1.068n-’/’, where 8 is the sample 
standard deviation. This choice relies on the approximation of 0 for f(x). 
Alternative approaches. including cross-validation, lead to slightly different 
answers. 

Adaptive kernels were derived to alleviate this problem. If we use a more 
general smoothing function tied to the density at x3. we could generalize the 
density estimator as 

(11.4) 

This is an advanced topic in density estimation, and we will not further pur- 
sue learning more about optimal estimators based on adaptive kernels here. 
We will also leave out details about estimator limit properties, and instead 
point out that if h, is a decreasing function of n, under some mild regularity 

conditions, lf(x) -f(x)I 5 0. For details and more advanced topics in density 
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fig. 11.5 Density estimation for sample of size n=7 using various kernels: (all) Nor- 
mal, (a) Box, (b) Triangle, (c) Epanechnikov. 

-1 
0 4  

0 35 

Fig. 11.6 Density estimation for sample of size n = 7 using various bandwidths. 

estimation, see Silverman (1986) and Efromovich (1999). 
The (univariate) density estimator from T\;I ATLAB. called 

ksdensity(data1. 

is illustrated in Figure 11.5 using a sample of seven observations. The default 
estimate is based on a normal kernel: to  use another kernel, just enter 'box', 
'triangle', or 'epanechnikov' (see code below). Figure 11.5 shows how the nor- 
mal kernel compares to  the (a) box. ( 2 )  triangle and (c) epanechnikov kernels. 
Figure 11.6 shows the density estimator using the same data based on the 
normal kernel. but using three different bandwidths. Note the optimal band- 
width (0.7449) can be found by allowing a third argument in the ksdensity 
output. 

>> datal=[11,12,12.2,12.3,13,13.7,18]; 
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>> data2=[50,21,25.5,40.0,41,47.6,39]; 
>> [fl,xl]=ksdensity(datal,’kernel’, ’box’); 
>> plot(xl,fl,’-k’) 
>> hold on 
>> [f2,~2,band]=ksdensity(datal) ; 
>> plot(x2,f2,’:kJ) 
>> band 

band = 
0.7449 

>> [fl,xl]=ksdensity(datal,’width’,2); 
>> plot(xl,fl, ’--k’) 
>> hold on 
>> [fl,xl]=ksdensity(datal,’width’,l); 
>> plot(xl,fl,’-k’) 
>> [fl,xll=ksdensity(datal, ’width’, .5) ; 
>> plot(xl,fl,’:k’) 

Censoring. The MATLAB function ksdensity also handles right-censored 
data by adding an optional vector designating censoring. Although we will 
not study the details about the way density estimators handle this problem. 
censored observations are treated in a way similar to nonparametric max- 
imum likelihood, with the weight assigned to the censored observation xc 
being distributed proportionally to non-censored observations xt 2 x, (see 
the Kaplan-Meier estimator in Chapter 10). General weighting can also be 
included in the density estimation for ksdensity with an optional vector of 
weights. 

Example 11.1 Radiation Measurements. In some situations, the exper- 
imenter might prefer to subjectively decide on a proper bandwidth instead 
of the objective choice of bandwidth that minimizes MISE. If outliers and 
subtle changes in the probability distribution are crucial in the model, a more 
jagged density estimator (with a smaller bandwidth) might be preferred to 
the optimal one. In Davies and Gather (1993), 2001 radiation measurements 
were taken from a balloon at a height of 100 feet. Outliers occur when the 
balloon rotates, causing the balloon‘s ropes to block direct radiation from 
the sun to the measuring device. Figure 11.7 shows two density estimates of 
the raw data. one based on a narrow bandwidth and the other more smooth 
density based on a bandwidth 10 times larger (0.01 to 0.1). Both densities 
are based upon a normal (Gaussian) kernel. While the more jagged estima- 
tor does show the mode and skew of the density as clearly as the smoother 
estimator, outliers are more easily discerned. 

>> T=load( ’balloondata.txt’); 
>> ~ 1 = ~ ( : , 1 ) ;  T2=T(:,2); 
>> [fl,xl]=ksdensity(Tl, ’width’, . O i l ;  
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Fig. 11.7 Density estimation for 2001 radiation measurements using bandwidths band 
= 0.5  and band=0.05. 

>> plot(xl,fl,’-k’) 
>> hold on 
>> [f2,~2]=ksdensity(TI, ’width’, .I) ; 
>> plot(x2,f2,’:k’) 

11.2.1 Bivariate Density Estimators 

To plot density estimators for bivariate data, a three-dimensional plot can be 
constructed using MATLAB function k d f f t 2 ,  noting that both x and y, the 
vectors designating plotting points for the density, must be of the same size. 

In Figure 11.8; (univariate) density estimates are plotted for the seven 
observations [ d a t a l ,  data21. In Figure 11.9, k d f f t 2  is used to produce 
a two-dimensional density plot for the seven bivariate observations (coupled 
together). 

11.3 EXERCISES 

11.1. Which of the following serve as kernel functions for a density estimator? 
Prove your assertion one way or the other. 

a. K ( z )  = I(-1 < J: < 1) /2 ;  

b. K ( z )  = l ( 0  < J: < 1). 
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I 

0 35 

Fig. 11.8 
estimator for second variable. 

(a) Univariate density estimator for first variable; (b) Univariate density 

c. K ( z )  = l /z,  

d. K ( z )  = $(2z + 1)(1 - 2z) 1(-i < z < i), 
e. K ( z )  = 0.75(1 - z2) 1(-1 < z < 1) 

11.2. With a data set of 12, 15, 16, 20, estimate p* = P(observation is less 
than 15) using a density estimator based on a normal (Gaussian) ker- 
nel with h, = m. Use hand calculations instead of the MATLAB 
function. 

11.3. Generate 12 observations from a mixture distribution, where half of the 
observations are from n/(O, 1) and the other half are from n/(1,0.64). 
Use the MATLAB function ksdensity to create a density estimator. 
Change bandwidth to see its effect on the estimator. Repeat this pro- 
cedure using 24 observations instead of 12. 

11.4. Suppose you have chosen kernel function K ( z )  and smoothing function 
h, to construct your density estimator, where -co < K ( z )  < co. What 
should you do if you encounter a right censored observation? For exam- 
ple. suppose the right-censored observation is ranked m lowest out of n, 
m s n - 1 .  

11.5. Recall Exercise 6.3 based on 100 measurements of the speed of light in 
air. In that chapter we tested the data for normality. Use the same 
data to construct a density estimator that you feel gives the best visual 
display of the information provided by the data. What parameters did 
you choose? The data can be downloaded from 

http://www.itl.nist.gov/div898/strd/univ/data/Michelso.dat 
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Fig. 11.9 Bivariate Density estimation for sample of size n = 7 using bandwidth = 

[2,21. 

11.6. Go back to  Exercise 10.6. where a link is provided to download right- 
censored survival times for 87 people with lupus nephritis. Construct a 
den&ity estimator for the survival, ignoring the duration variable. 

http://lib.stat.cmu.edu/datasets/lupus 
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12 
Beyond Linear 

Regress i o n 

Essentially, all models are wrong, but some models are useful. 

George Box, from Empirical Model-Building and Response Surfaces 

Statistical methods using linear regression are based on the assumptions 
that errors, and hence the regression responses, are normally distributed. 
Variable transformations increase the scope and applicability of linear regres- 
sion toward real applications. but many modeling problems cannot fit in the 
confines of these model assumptions. 

In some cases, the methods for linear regression are robust to minor vi- 
olations of these assumptions. This has been shown in diagnostic methods 
and simulation. In examples where the assumptions are more seriously vio- 
lated, however. estimation and prediction based on i he regression model are 
biased. Some reszduals (measured difference between the response and the 
model's estimate of the response) can be overly large in this case, and wield 
a large influence on the estimated model. The observations associated with 
large residuals are called outliers. which cause error variances to inflate and 
reduce the power of the inferences made. 

In other applications. parametric regression techniques are inadequate in 
capturing the true relationship between the response and the set of predictors. 
General "curve fitting" techniques for such data problems are introduced in 
the next chapter. where the model of the regression is unspecified and not 
necessarily linear. 

In this chapter, we look at simple alternatiyes to basic least-squares re- 

217 
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gression. These estimators are constructed to be less sensitive to the outliers 
that can affect regular regression estimators. Robust regression estimators are 
made specifically for this purpose. Nonparametric or rank regression relies 
more on the order relations in the paired data rather than the actual data 
measurements, and isotonic regression represents a nonparametric regression 
model with simple constraints built in, such as the response being monotone 
with respect to one or more inputs. Finally, we overview generalized linear 
models which although parametric, encompass some nonparametric methods, 
such as contingency tables, for example. 

12.1 LEAST SQUARES REGRESSION 

Before we introduce the less-familiar tools of nonparametric regression, we 
will first review basic linear regression that is taught in introductory statistics 
courses. Ordinary least-squares regression is synonymous with parametric re- 
gression only because of the way the errors in the model are treated. In the 
simple linear regression case, we observe n independent pairs ( X i ,  x), where 
the linear regression of Y on X is the conditional expectation IE(Y1X). A char- 
acterizing property of normally distributed X and Y is that the conditional 
expectation is linear, that is, IE(Y1X) = PO + PIX. 

errors xi(x - g ) 2  = Ci(Y, - [PO + P1Xi])2 with respect to the parameters 
Standard least squares regression estimates are based on minimizing squared 

and PO. The least squares solutions are 

C;=l(xi - X ) ( K  - Y )  
c;=l(Xz - X ) 2  

- (Xzyz - n X Y )  
En 2=1 X ? - n X 2  ' 

P1 = 

- 

a 0  = Y - p J  

(12.1) 

(12.2) 

This solution is familiar from elementary parametric regression. In fact. 
(&.a1) are the MLEs of (PO. P I )  in the case the errors are normally dis- 
tributed. But with the minimized least squares approach (treating the sum of 
squares as a "loss function"). no such assumptions were needed, so the model 
is essentially nonparametric. However, in ordinary regression. the distribu- 
tional properties of fro and p1 that are used in constructing tests of hypothesis 
and confidence intervals are pinned to assuming these errors are homogenous 
and normal. 
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12.2 RANK REGRESSION 

The truest nonparametric method for modeling bivariate data is Spearman's 
correlation coefficient which has no specified model (between X and Y) and 
no assumed distributions on the errors. Regression methods, by their nature. 
require additional model assumptions to relate a random variable X to Y 
via a function for the regression of JE(Y/X) .  The technique discussed here is 
nonparametric except for the chosen regression model; error distributions are 
left to be arbitrary. Here we assume the linear model 

y,  = Po + &Xi, 2 = 1,. . . , 12 

is appropriate and. using the squared errors as a loss function, we compute 
$0 and f i 1  as in (12.2) and (12.1) as the least-squares solution. 

Suppose we are interested in testing HO that the population slope is equal 
to against the three possible alternatives, HI : 01 > PIO, H I  : PI < PIO, 
H I  : /31 # @lo. Recall that in standard least-squares regression, the Pearson 
coefficient of linear correlation (6) between the X s  and Y s  is connected to .01 

via 

+Q,. &FGiF 
Jm' 

To test the hypothesis about the slope. first calculate U, = Y, -/3loX,, and 
find the Spearman coefficient of rank correlation j3 between the X,s and the 
U,s. For the case in which Plo = 0. this is no more than the standard Spear- 
man correlation statistic. In any case, under the assumption of independence, 
(b  - p ) m  - N(O.1) and the tests against alternatives H1 are 

Alternative p-value 

where 2 - N(O.1). The table represents a simple nonparametric regression 
test based only on Spearman's correlation statistic. 

Example 12.1 Active Learning. Kvam (2000) examined the effect of ac- 
tive learning methods on student retention by examining students of an in- 
troductory statistics course eight months after the course finished. For a class 
taught using an emphasis on active learning techniques, scores were compared 
to equivalent final exam scores. 

Exam 1 14 15 18 16 17 12 17 15 17 14 17 13 15 18 14 
Exam2 14 10 11 8 17 9 11 13 12 13 14 11 11 15 9 
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Scores for the first (z-axis) and second (y-axis) exam scores are plotted 
in Figure 12.l(a) for 15 active-learning students. In Figure 12.1(b), the solid 
line represents the computed Spearman correlation coefficient for X i  and Ui = 
Y ,  - @loxi with PI0 varying from -1 to  1. The dashed line is the pvalue 
corresponding to the test HI : p1 # @lo.  For the hypothesis Ho : P1 2 0 
versus H1 : p1 < 0, the p-value is about 0.12 (the p-value for the two-sided 
test, from the graph, is about 0.24). 

Note that at  plo = 0.498, 6 is zero, and at  /?lo = 0, j3 = 0.387. The pvalue 
is highest at  plo = 0.5 and less than 0.05 for all values of Plo less than - 0.332. 

>> n0=1000; 
>> S=load(’activelearning.txt’); 
>> tradl=S(:,l); trad2=S(:,2); 
>> acti=S(:,3); act2=S(:,4); 
>> trad= [tradl trad21 ; act= [actl act21 ; 
>> r=zeros (no, 1) ; p=zeros (no, 1) ; b=zeros(nO, 1) ; 

>> for i=l:nO 
b(i)=(i- (n0/2) /(n0/2) ; 
[rO z0 PO] =spear(actl, act2-b(i) *act11 ; 
r (i) =rO ; p (i)=pO ; 
end 

>> stairs(b,p,’:k’) 
>> hold on 
>> stairs(b,r,’-k’) 

12 14 16 18 
Test 1 

I 

-021 

-0.4 I 
-1 -0.5 0 0.5 1 

Slwe Parameter 

Fig. 12.1 (a) Plot of test #1 scores (during term) and test # 2  scores (8 months after). 
(b) Plot of Spearman correlation coefficient (solid) and corresponding p-value (dot ted)  
for nonparametric test of slope for -1 5 P ~ o  5 1. 
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12.2.1 

Among n bivariate observations. there are (z) different pairs ( X t , y Z )  and 
( X , , q ) , i # j .  Foreachpair(X,,Y,)and(X3.q),1<-i<j<-nwefindthe 
corresponding slope 

Sen-Theil Estimator of Regression Slope 

Y3 - Yz 
- x, - Xi' 

s . .  - 

Compared to  ordinary least-squares regression, a more robust estimator of the 
slope parameter is 

- 
p1 = median{&,. 1 <- i < j 5 n}. 

Corresponding to  the least-squares estimate, let 

60 = median{Y} - $Imedian{X}. 

Example 12.2 If we take n = 20 integers (1,. . . ,20} as our set of predictors 
X I .  . . . ~ Xzo, let Y be 2X + E where E is a standard normal variable. Next. we 
change both Y1 and Y ~ o  to be outliers with value 20 and compare the ordinary 
least squares regression with the more robust nonparainetric method in Figure 
12.2. 

-7 45, 

40 

35 \ 
30 ) 
251 

I 

15- 

10- 

5 -  

2o r 

~~ 

0 5 10 15 20 25 

Fig. 12.2 Regression: Least squares (dotted) and nonparametric (solid). 

12.3 ROBUST REGRESSION 

"Robust" estimators are ones that retain desired statistical properties even 
when the assumptions about the data are slightly off. Robust linear regres- 
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sion represents a modeling alternative to regular linear regression in the case 
the assumptions about the error distributions are potentially invalid. In the 
simple linear case, we observe n independent pairs ( X % ,  E), where the linear 
regression of Y on X is the conditional expectation IE(Y1X) = PO + P I X .  

For rank regression, the estimator of the regression slope is considered to 
be robust because no single observation (or small group of observations) will 
have an significant influence on estimated model; the regression slope picks 
out the median slope out of the (;) different pairings of data points. 

One way of measuring robustness is the regression’s breakdown point, which 
is the proportion of bad data needed to affect the regression adversely. For 
example, the sample mean has a breakdown point of 0, because a single obser- 
vation can change it by an arbitrary amount. On the other hand, the sample 
median has a breakdown point of 50 percent. Analogous to this, ordinary 
least squares regression has a breakdown point of 0, while some of the robust 
techniques mentioned here (e.g., least-trimmed squares) have a breakdown 
point of 50 percent. 

There is a big universe of robust estimation. We only briefly introduce 
some robust regression techniques here. and no formulations or derivations 
are given. A student who is interested in learning more should read an intro- 
ductory textbook on the subject, such as Robust Statwtics by Huber (1981). 

12.3.1 Least Absolute Residuals Regression 

By squaring the error as a measure of discrepancy, the least-squares regression 
is more influenced by outliers than a model based on. for example. absolute 
deviation errors: C,  lY, - 21, which is called Least Absolute Residuals Re- 
gression. By minimizing errors with a loss function that is more “forgiving” 
to large deviations, this method is less influenced by these outliers. In place 
of least-squares techniques, regression coefficients are found from linear pro- 
gramming. 

12.3.2 Huber Estimate 

The concept of robust regression is based on a more general class of estimates 
(30,bI) that minimize the function 

2 V ( Y ,  - R)  
CT 

2 = 1  

where u is a loss function and 0 is a scale factor. If $(x) = x2, we have regular 
least-squares regression, and if +(x) = 1x1, we have least absolute residuals 
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regression. A general loss function introduced by Huber (1975) is 

Depending on the chosen value of c > 0. G(z) uses squared-error loss for small 
errors, but the loss function flattens out for larger errors. 

12.3.3 Least Trimmed Squares Regression 

Least Trimmed Squares (LTS) is another robust regression technique proposed 
by Rousseeuw (1985) as a robust alternative to ordinary least squares regres- 
sion. Within the context of the linear model y, = P’x,, i = I, . . . . n, the LTS 
estimator is represented by the value of that minimizes Cz=l T,  n. Here. xt 
is a pxl vector and T ,  is the z t h  order statistic from the squared residuals 
T,  = (y, - P’X,)~ and h is a trimming constant (n /2  5 h 5 n)  chosen so that 
the largest n - h residuals do not affect the model estimate. Rousseeuw and 
Leroy (1987) showed that the LTS estimator has its highest level of robustness 
when h = [n/2] + [ ( p  + l ) / 2 ] .  While choosing h to be low leads to a more 
robust estimator, there is a tradeoff of robustness for efficiency. 

h 

12.3.4 Weighted Least Squares Regression 

For some data, one can improve model fit by including a scale factor (weight) 
in the deviation function. Weighted least squares minimizes 

n 

2 = 1  

where w, are weights that determine how much influence each response will 
have on the final regression. With the weights in the model, we estimate /3 in 
the linear model with 

9 = (x’wx)-l x ’ w y ,  

where X is the design matrix made up of the vectors zz, y is the response 
vector. and W is a diagonal matrix of the weights w1,. . . . w,. This can 
be especially helpful if the responses seem not to  have constant variances. 
Weights that counter the effect of heteroskedasticity, such as 
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work well if your data contain a lot of replicates; here m is the number of 
replicates at  yz. To compute this in MATLAB, the function l s c o v  computes 
least-squares estimates with known covariance; for example, the output of 

lscov(A,B,W) 

returns the weighted least squares solution to the linear system A X  = B with 
diagonal weight matrix X. 

12.3.5 Least Median Squares Regression 

The least median of squares (LMS) regression finds the line through the data 
that minimizes the median (rather than the mean) of the squares of the errors. 
While the LMS method is proven to be robust, it cannot be easily solved like 
a weighted least-squares problem. The solution must be solved by searching 
in the space of possible estimates generated from the data, which is usually 
too large to do analytically. Instead, randomly chosen subsets of the data are 
chosen so that an approximate solution can be computed without too much 
trouble. The MATLAB function 

lmsreg(y, X> 

computes the LMS for small or medium sized data sets. 

Example 12.3 Star Data. Data from Rousseeuw and Leroy (1987), p. 27, 
Table 3, are given in all panels of Figure 12.3 as a scatterplot of temperature 
versus light intensity for 47 stars. The first variable is the logarithm of 
the effective temperature at  the surface of the star (Te)  and the second one 
is the logarithm of its light intensity (LILO). In sequence, the four panels 
in Figure 12.3 show plots of the bivariate data with fitted regressions based 
on (a) Least Squares, (b) Least Absolute Residuals. (c) Huber Loss & Least 
Trimmed Squares, and (d) Least Median Squares. Observations far away from 
most of the other observations are called leverage points; in this example, only 
the Least Median Squares approach works well because of the effect of the 
leverage points. 

>> stars = load(’stars.txt’); n = size(stars,l); 
>> x = Cones(n,i) stars(:,2)1; y = stars(:,3); 
>> bols = X\y; [ignore,idx] = sort(stars(:,2)); 
>> plot(stars(:,2),stars(:,3),’o’,stars(idx,2), . . .  

X(idx,:)+bols,’-.’ ) 

legend(’Data’,’OLS’) 
>> % 
>> % Least Absolute Deviation 
>> blad = medianregress(stars(: ,2) ,stars(: , 3 ) ) ;  
>> plot(stars(:,2),stars(:,3),’oJ,stars(idx,2), . . .  

X(idx,:)*bols,’-.’,stars(idx,2),X(idx,:)*blad,’-.’) 
legend(’Data’,’OLS’,’LAD’); 
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Fig. 12.3 
Estimation and Least Trimmed Squares, (d) Least Median Squares. 

Star data with (a) OLS Regression, (b) Least Absolute Deviation. (c) Huber 

>> % 
>> % Huber Estimation 
>> k = 1.345; % tuning parameters in Huber's weight function 
>> wgtfun = O(e) (k*(abs(e)>k)-abs(e) .*(abs(e)>k)) ./abs(e)+l; 
>> % Huber's weight function 
>> wgt = rand(length(y),l); 
>> bO = lscov(X,y,wgt); 
>> res = y - X*bO; 
>> res = res/mad(res)/0.6745; % Standardized Residua1:s 
>> rn = 30; 
>> for i=l:m 

% Initial Weights 

% Raw Residuals 

wgt = wgtfun(res); 
% Compute the weighted estimate using these weights 
bhuber = lscov(X,y,wgt); 
if all((bhuber-bO)<.Ol*bO)% Stop with convergence 

else 
return; 

res = y - X+bhuber; 
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res = res/mad(res)/0.6745; 
end 

end 
>> plot(stars(:,2),stars(:,3),’o’,stars(idx,2),X(idx,:). 

*bols,’-.’, stars(idx,2),X(idx,:)*blad,’-x’, . . .  
stars(idx,2),X(idx,:)*bhuber,’-s’) 
legend(’Data’,’OLS’,’LAD’,’Huber’); 

>> % 
>> % Least Trimmed Squares 
>> blts = lts(stars(: , 2 ) , y ) ;  
>> plot(stars(:,2),stars(:,3),’oJ,stars(idx,2),X(idx,:). 

*bols,’-.’, stars(idx,2),X(idx,:)*blad,’-x’, . . .  
stars(idx,2),X(idx,:)*bhuber,’-s’, stars(idx,2), . . .  
X(idx,:)*blad,’-+’) 
legend(’Data’,’OLS’,’LAD’,’Huber’,’LTS’); 

>> % 
>> % Least Median Squares 
>> [LMSout,blms,Rsq]=LMSreg(y,stars(:,2)); 
>> plot(stars(:,2),stars(: ,3),’0’,stars(idx,Z),X(idx, : ) .  

*bols,’-.’,stars(idx,2),X(idx,:)*blad,’-x’,... 
stars(idx,2), X(idx,:)*bhuber,’-s’,stars(idx,2), . . .  
X(idx,:)+blad,’-+’, stars(idx,Z),X(idx,:)*blms,’-d’) 
legend(’Data’,’OLS’,’LAD’,’Huber’,’LTS’,’LMS’); 

Example 12.4 Anscombe’s Four Regressions. A celebrated example of 
the role of residual analysis and statistical graphics in statistical modeling 
was created by Anscombe (1973). He constructed four different data sets 
( X z .  x), i = 1.. . . ,11 that share the same descriptive statistics (X, Y,bo.  81, 
M S E ,  R2. F )  necessary to establish linear regression fit Y = bo + & X .  The 
following statistics are common for the four data sets: 

Sample size N 11 
Mean of X ( X  ) 9 
Mean of Y (Y ) 7.5 
Intercept 3 
Slope (A )  0.5 
Estimator of CT, (s) 1.2366 
Correlation T X , ~  0.816 

From inspection, one can ascertain that a linear model is appropriate for Data 
Set 1. but the scatter plots and residual analysis suggest that the Data Sets 
2-4 are not amenable to  linear modeling. Plotted with the data are the lines 
for least-square fit (dotted) and rank regression (solid line). See Exercise 12.1 
for further examination of the three regression archetypes. 
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X 
Y 

Data 
Set 1 

10 8 13 9 11 14 6 4 12 7 5  
8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 4.82 5.68 

X 
Y 

Data 
Set 2 

10 8 13 9 11 14 6 4 12 7 5  
9.14 8.14 8.74 8.77 9.26 8.10 6.13 3.10 9.13 7.26 4.74 

X 
Y 

12.4 ISOTONIC REGRESSION 

Data 
Set 3 

10 8 13 9 11 14 6 4 12 7 5  
7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 6.42 5.73 

In this section we consider bivariate data that satisfy an order or restriction 
in functional form. For example, if Y is known to be a decreasing function of 
X ,  a simple linear regression need only consider values of the slope parameter 
/31 < 0. If we have no linear model, however: there is nothing in the empirical 
bivariate model to  ensure such a constraint is satisfied. Isotonic regression 
considers a restricted class of estimators without the use of an explicit regres- 
sion model. 

Consider the dental study data in Table 12.16, which was used to illustrate 
isotonic regression by Robertson, Wright, and Dykstra (1988). The data are 
originally from a study of dental growth measurements of the distance (mm) 
from the center of the pituitary gland to the pterygoniaxillary fissure (referring 
to the bone in the lower jaw) for 11 girls between the age of 8 and 14. It 
is assumed that PF increases with age. so the regression of PF on age is 
nondecreasing. But it is also assumed that the relationship between PF and 
age is not necessarily linear. The means (or medians, for that matter) are 
not strictly increasing in the PF data. Least squares regression does yield an 
increasing function for PF: Y = 0.065X + 21.89. but the function is nearly 
flat and not altogether well-suited to the data. 

For an isotonic regression, we impose some order of the response as a 
function of the regressors. 

Definition 12.1 If the regressors have a simple order x1 5 . . .  5 x,, a 
function f is isotonic with respect to  x if f ( x 1 )  5; . . .  5 f ( x , ) .  For our 
purposes, isotonic wall be synonymous with mon,otonic. For same function g 
of X ,  we call the function g l ;  an  isotonic regression of g with weights w if and 

Y 

Data 
Set 4 

6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.50 5.56 7.91 6.89 
X 8  8 8 8 8 8 8 19 8 8 8 
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Fig. 12.4 Anscombe’s regressions: LS and Robust. 

only  if g* i s  i so ton ic  (i .e. ,  re tains  the  necessary order) and m i n i m i z e s  

n 

(12.3) 

in the  class of all isotonic  f u n c t i o n s  f 

12.4.1 Graphical Solution to Regression 

We can create a sim le graph to show how the isotonic regression can be 
solved. Let wk =  xi) and Gk = zizl g ( z i ) w ( x i ) .  In the example, 
the means are ordered, so f (xi) = pi and wi = ni, the number of observations 
at each age group. We let g be the set of PF means, and the plot of wk 
versus Gk, called the cumulat ive  s u m  diagram (CSD), shows that the empirical 

$ k 
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Table 12.16 Size of Pituitary Fissure for Subjects of Various Ages. 

Age 8 10 12 14 

PF 21.23.5,23 24.21.25 21.5,22,19 23.5.25 

Mean 22.50 23.33 20.83 24.25 
PAVA 22.22 22.22 22.22 24.25 

relationship between PF and age is not isotonic. 
Define G* to  be the greatest convex minorant (GCM) which represents the 

largest convex function that lies below the CSD. You can envision G* as a 
taut string tied to  the left most observation (Wl, GI) and pulled up and under 
the CSD, ending at the last observation. The example in Figure 12.5(a) shows 
that the GCM for the nine observations touches only four of them in forming 
a tight convex bowl around the data. 

25C 

200 

f ig .  12.5 
convex minorant for dental data. 

(a) Greatest convex minorant based on nine observations. (b) Greatest 

The GCM represents the isotonic regression. The reasoning follows below 
(and in the theorem that follows). Because G* is convex, it is left differentiable 
at W,. Let g*(z,) be the left-derivative of G* at W,. If the graph of the GCM 
is under the graph of CSD at W,, the slopes of the GCM to the left and right 
of W, remain the same, i.e., if G*(W,) < G,, then g*(z,+1) = g*(z,) .  This 
illustrates part of the intuition of the following theorem, which is not proven 
here (see Chapter 1 of Robertson, Wright, and Dykstra (1988)). 
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Theorem 12.1 For function f in (12.3), the left-hand derivative g* of the 
greatest convex minorant is the unique isotonic regression of g on f .  That is, 
if f is isotonic on X ,  then 

n 

Obviously, this graphing technique is going to be impractical for problems 
of any substantial size. The following algorithm provides an iterative way of 
solving for the isotonic regression using the idea of the GCM. 

12.4.2 Pool Adjacent Violators Algorithm 

In the CSD, we see that if g ( z i - 1 )  > g(zi)  for some i ,  then g is not isotonic. 
To construct an isotonic g * ,  take the first such pair and replace them with 
the weighted average 

Replace the weights  xi) and w(z2-1) with w(zi)  + w(z2-1 ) .  If this 
correction (replacing g with 3 )  makes the regression isotonic, we are finished. 
Otherwise, we repeat this process with until an isotonic is set. This is called 
the Pool Adjacent Violators Algorithm or PAVA. 

Example 12.5 In Table 12.16, there is a decrease in PF between ages 10 and 
12, which violates the assumption that pituitary fissure increases in age. Once 
we replace the PF averages by the average over both age groups (22.083), we 
still lack monotonicity because the PF average for girls of age 8 was 22.5. 
Consequently, these two categories, which now comprise three age groups, are 
averaged. The final averages are listed in the bottom row of Table 12.16 

12.5 GENERALIZED LINEAR MODELS 

Assume that n ( p  + 1)-tuples (yx. z12, xZ2,.  . . . x p z ) .  i = 1,. . . . n are observed. 
The values yz are responses and components of vectors z, = (zlz, X Z ~ ,  . . . . xp2) ’  
are predictors. As we discussed at the beginning of this chapter, the standard 
theory of linear regression considers the model 

Y = X p + E ,  (12.4) 
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where Y = (Yl . . .  ..Y,) is the response vector. X = (1, 51 x2 . .  . xP) is 
the design matrix (1, is a column vector of n l 's), and E is vector of errors 
consisting of n i.i.d normal N(0 ,a2)  random variables. The variance u2 is 
common for all yZs and independent of predictors ir the order of observation. 
The parameter ,!? is a vector of ( p  + 1) parameters in the linear relationship. 

Ey, = .',p = 3 0  + R121z + . . . /!3z1,2p,. 

Fig. 12.6 (a) Peter McCullagh and (b) John Nelder. 

The term generulzzed h e a r  model  (GLM) refers to  a large class of models. 
introduced by Nelder and Wedderburn (1972) and popularized by McCullagh 
and Nelder (1994), Figure 12.6 (a-b). In a canonical GLM. the response vari- 
able Y, is assumed to  follow an exponential family distribution with mean puz. 
which is assumed to  be a function of xi,!?. This dependence can be nonlin- 
ear, but the distribution of Y,  depends on covariates only through their linear 
combination, 7% = zi~3,  called a h e a r  predzctor. As in the linear regression. 
the epithet h e a r  refers to  being linear in parameters. not in the explanatory 
variables. Thus, for example. the linear combination 

Po + P1 51 + $2 z; + 43 log(z1 + 5 2 )  + 04 21 . 2 2 ,  

is a perfect linear predictor. What is generalized in model given in (12.4) by 
a GLM? 

The three main generalizations concern the distributions of responses, the 
dependence of response on linear predictor. and variance if the error. 

1. Although Y,s remain independent. their (common) distribution is gen- 
eralized. Instead of normal, their distribution is selected from the ex- 
ponential family of distributions (see Chapter 2 ) .  This family is quite 
versatile and includes normal, binomial. Poisson, negative binomial] and 
gamma as special cases. 
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2 .  In the linear model (12.4) the mean of Y,, pi = EYi was equal to zip. 
The mean pi in GLM depends on the predictor qi = x',p as 

(12.5) 

The function g is called the link function. For the model (12.4), the link 
is the identity function. 

3. The variance of Y ,  was constant (12.4). In GLM it may not be constant 
and could depend on the mean pi. 

Models and inference for categorical data, traditionally a non-parametric 
topic, are unified by a larger class of models which are parametric in nature 
and that are special cases of GLM. For example, in contingency tables. the 
cell counts N,, could be modeled by multinomial Mn(n,  {pz ,} )  distribution. 
The standard hypothesis in contingency tables is concerning the independence 
of row/column factors. This is equivalent to  testing HO : p,, = azp3 for some 
unknown a, and p, such that C, a, = C, p3 = 1. 

The expected cell count EN,, = np,,, so that under HO becomes EN,, = 
no$, , by taking the logarithm of both sides one obtains 

log ENij = log n + log ai + log pj 
= const + ai + b j ,  

for some parameters ai and b j .  Thus, the test of goodness of fit for this model 
linear and additive in parameters a and b, is equivalent to the test of the 
original independence hypothesis HO in the contingency table. More of such 
examples will be discussed in Chapter 18. 

12.5.1 GLM Algorithm 

The algorithms for fitting generalized linear models are robust and well es- 
tablished (see Nelder and Wedderburn (1972) and McCullagh and Nelder 
(1994)). The maximum likelihood estimates of ,!? can be obtained using iter- 
ative weighted least-squares (IWLS). 

(i) Given vector i i(k),  the initial value of the linear predictor @') is formed 
using the link function, and components of adjusted dependent variate 
(working response), z:'), can be formed as 

where the derivative is evaluated at the the available kth value. 
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(ii) The quadratic (working) weights, W2('), are defined so that 

where V is the variance function evaluated at the initial values. 

(iii) The working response z ( ~ )  is then regressed onto the covariates IC,, with 
weights W,(') to  produce new parameter estimates, g(lC+'). This vector 
is then used to  form new estimates 

7(k+1)  = X / f i ( k + l )  and f i (k++1)  = --I A(k+l )  
9 (7 1 

We repeat iterations until changes become sufficiently small. Starting 
values are obtained directly from the data. using f i ( O )  = y; with occa- 
sional refinements in some cases (for example, to  avoid evaluating log 0 
when fitting a log-linear model with zero counts). 

By default, the scale parameter should be estimated by the m e a n  devaance. 
n-l Cr=l D(yz,p) .  from p. 44 in Chapter 3, in the case of the normal and 
gamma distributions. 

12.5.2 Links 

In the GLM the predictors for Y ,  are summarized as the linear predictor 
7% = zip. The link function is a monotone differentiable function g such that 
7, = g(pz) .  where pt = IEY,. We already mentioned that in the normal case 
p = 7 and the link is identity. g ( p )  = p .  

Example 12.6 For analyzing count data (e.g.. contingency tables). the Pois- 
son model is standardly assumed. As p > 0, the identity link is inappropriate 
because 7 could be negative. However. if p = eq. then the mean is always 
positive, and 7 = log(p) is an adequate link. 

A link is called natural if it is connecting 8 (the natural parameter in the 
exponential family of distributions) and p. In the Poisson case, 

p = X and 8 = logp. Accordingly, the log is the natural link for the Poisson 
distribution. 

Example 12.7 For the binomial distribution, 

f(y(7r) = (;)rry(l - 7r)n--Y 
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can be represented as 

The natural link 7 = log(x/(l - 7 ~ ) )  is called logit link. With the binomial 
distribution, several more links are commonly used. Examples are the probit 
link 77 = @-‘(n), where @ is a standard normal CDF, and the complementary 
log-log link with 77 = log{- log(1 - n)}. For these three links, the probability 
7r of interest is expressed as 7~ = eq/(l+eq), 7r = @(q) ,  and 7~ = l-exp{-eq}, 
respectively. 

When data y, from the exponential family are expressed in grouped form 
(from which an average is considered as the group response), then the distri- 
bution for Y, takes the form 

(12.6) 

The weights w, are equal to 1 if individual responses are considered, w, = n, 
if response y, is an average of n, responses, and w, = l/n, if the sum of n, 
individual responses is considered. 

The variance of Y, then takes the form 

12.5.3 Deviance Analysis in GLM 

In GLM, the goodness of fit of a proposed model can be assessed in several 
ways. The customary measure is dewzance statistics. For a data set with n 
observations, assume the dispersion q5 is known and equal to 1, and consider 
the two extreme models, the single parameter model stating EY, = f i  and 
the R parameter saturated model setting EY, = f i ,  = Y,. Most likely, the 
interesting model is between the two extremes. Suppose M is the interesting 
model with 1 < p < n parameters. 

If 8y = 8y(fiz.) are predictions of the model M and 8,“ = e$(g,) = yz are 
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the predictions of the saturated model. then the deviance of the model M is 

When the dispersion 4 is estimated and different than 1. the scaled deviance 
of the model M is defined as D L  = D~2.1/@. 

Example 12.8 For y, E ( 0 ,  l} in the binomial family, 

D = 22 { a z  log (;) + (n, - yz)log ("i)} nz - Yz 
1=1 

0 Deviance is minimized at saturated model S. Equivalently. the log- 
likelihood es = L(yly) is the maximal log-likelihood with the data y. 

0 The scaled deviance D L  is asymptotically distributed as xz-,. Signif- 

0 If a model K: with q parameters, is a subset of inodel M with p param- 

icant deviance represents the deviation from a good model fit. 

eters ( q  < p ) .  then 

Residuals are critical for assessing the model (recall four Anscombe's re- 
gressions on p. 226). In standard normal regression models. residuals are cal- 
culated simply as yz - f i t ,  but in the context of GLTvls. both predicted values 
and residuals are more ambiguous. For predictions. it is important to distin- 
guish the scale: (i) predictions on the scale of q = and (ii) predictions on 
the scale of the observed responses y, for which IEY, := g- ' (qz) .  

Regarding residuals. there are several approaches. Response reszduals are 
defined as rz = yz - g-' (7,) = yz - 8,. Also, the deviance residuals are defined 
as 

.P = sign(y, - Pz 1 Jdz,  
where d, are observation specific contributions to the deviance D.  

Deviance residuals are ANOVA-like decompositions. 

thus testably assessing the contribution of each observation to the model de- 
viance. In addition, the deviance residuals increase with y, - ,iiz and are 
distributed approximately as standard normals. irrespectively of the type of 
GLM. 
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Example 12.9 For yi E (0 , l )  in the binomial family, 

Another popular measure of goodness of fit of GLM is Pearson statistic 

The statistic X 2  also has a x2n-p  distribution. 

Example 12.10 Caesarean Birth Study. The data in this example come 
from Munich hospital (Fahrmeir and Tutz, 1996) and concern infection cases in 
births by CEesarean section. The response of interest is occurrence of infection. 
Three covariates, each at two levels were considered as important for the 
occurrence of infection: 

noplan - Whether the Czesarean section birth planned (0) or not (1); 

riskf ac - The presence of Risk factors for the mother, such as diabetes, 
overweight, previous Czesarean section birth, etc, where present = 1. not 
present = 0; 

antibio - Whether antibiotics were given (1) or not given (0) as a 
prophylaxis. 

Table 12.17 provides the counts. 

Table 12.17 Czesarean Section Birth Data 

Planned Not Planned 

Infec No Infec Infec No Infec 

Antibiotics 
Risk Fact Yes 1 17 11 87 
Risk Fact No 0 2 0 0 

Risk Fact Yes  28 30 23 3 
Risk Fact No 8 32 0 9 

No Antibiotics 

The MATLAB function glmf it, described in Appendix A, is instrumental 
in computing the solution in the example that follows. 
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infection = 11 11 0 0 28 23 8 01; 
total = 

proportion = infection./total; 
noplan = [O 1 0 1 0 1 0 11; 
riskfac = [l 1 0 0 1 1 0 01; 
antibio = [l I 1 1 0 0 0 01; 
[logitCoef2,dev] = glmfit(Cnop1an’ riskfact’ antibio’], . . . 

logitFit = glmval(logitCoef2,[noplan’ riskfact’ antibio’1,’logit’); 
plot(l:8, proportion,’ks’, 1:8, logitFit,’ko’); 

[18 98 2 0 58 26 40 91; 

[infection’ total’l,’binomial’,’logit’); 

>> 
>> 
>> 
>> 
>> 
>> 
>> 

>> 
>> 

The scaled deviance of this model is distributed as x 2 3 .  The number 
of degrees of freedom is equal to 8 (n)  vector i n f e c t i o n  minus 5 for the 
five estimated parameters. PO. PI. Pz. 0 3 ,  d. The deviance d e v = l l  is significant. 
yielding a pvalue of 1 - chi2cdf (1 1,3) =O . 01 17. The additive model (with 
no interactions) in MATLAB yields 

P ( i n f e c t i o n )  
= + p1 noplan + p2 r isk:fac + P3 a n t i b i o .  

log P(no  i n f e c t i o n )  

The estimators of (PO, PI. B,, ,!33) are, respectively, (-1.89.1.07,2.03, -3.25). 
The interpretation of the estimators is made more clear if we look at  the odds 
ratio 

. eolnoplan. ,ozriskfac, ~ ~ a n t i b i o  e - - P( inf ect ion) 
P(no infection) 

At the value a n t i b i o  = 1, the antibiotics have the odds ratio of infection/no 
infection. This increases by the factor exp(-3.25) == 0.0376, which is a de- 
crease of more than 25 times. Figure 12.7 shows the observed proportions 
of infections for 16 combinations of covariates (noplan, r i s k f  ac ,  a n t i b i o )  
marked by squares and model-predicted probabilities for the same combi- 
nations marked by circles. We will revisit this example in Chapter 18; see 
Example 18.5. 

12.6 EXERCISES 

12.1. Using robust regression. find the intercept and slope PO and for each 
of the four data sets of Anscombe (1973) from p. 226. Plot the ordinary 
least squares regression along with the rank regression estimator of slope. 
Contrast these with one of the other robust regression techniques. For 
which set does & differ the most from its LS counterpart = 0.5? 
Note that in the fourth set, 10 out of 11 X s  are equal. so one should use 
S,, = (5 - x ) / ( X j  -X ,+E)  to avoid dividing by 0. After finding & and 
81, are they different than ,& and bl? Is the hypothesis HO : /31 = 1/2  
rejected in a robust test against the alternative H 1  : < l / 2 .  for Data 
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0.81 

n 

0.31 

0.21 

, ,  - 
4 5 6 

Fig. 12.7 CEsarean Birth Infection observed proportions (squares) and model predic- 
tions (circles). The numbers 1-8 on the z-axis correspond to  following combinations 
of covariates (noplan, riskfac, antibio): (0,1,1), (1,1,1), (0,0,1), ( l , O , l ) ,  (0,1,0). 
( l , l , O ) ,  (O,O,O), and (1.0,O). 

Set 3? Note, here P ~ o  = 1/2. 

12.2. Using the PF data in Table 12.16, compute a median squares regression 
and compare it to  the simple linear regression curve. 

12.3. Using the PF data in Table 12.16, compute a nonparametric regression 
and test to see if P ~ o  = 0. 

12.4. Consider the Gamma(a, a / p )  distribution. This parametrization was 
selected so that IEy = /I. Identify Q and q5 as functions of cy and /I. 
Identify functions a, b and c. 

Hint: The density can be represented as 

QY 

P 
exp { --QIogp - - + a:log(a) + (a  - 1)logy - iog(r(a))  

12.5. The zero-truncated Poisson distribution is given by 

Show that f is a member of exponential family with canonical parameter 
log A. 
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12.6. Dalziel, Lagen and Thurston (1941) conducted an experiment to  assess 
the effect of small electrical currents on farm animals. with the eventual 
goal of understanding the effects of high-voltage powerlines on livestock. 
The experiment was carried out with seven cows, and six shock intensi- 
ties: 0. 1, 2. 3, 4, and 5 milliamps (note that shocks on the order of 15 
milliamps are painful for many humans). Each 'cow was given 30 shocks. 
five at each intensity. in random order. The entire experiment was then 
repeated, so each cow received a total of 60 shocks. For each shock 
the response, mouth movement, was either present or absent. The data 
as quoted give the total number of responses, out of 70 trials, at each 
shock level. We ignore cow differences and differences between blocks 
(experiments). 

Current Number of Number of Proportion of 
(milliamps) Responses Trials Responses 

0 0 70 0.000 
1 9 70 0.129 
2 21 70 0.300 
3 47 70 0.671 
4 60 70 0.857 
5 63 70 0.900 

Propose a GLM in which the probability of a response is modeled with 
a value of Current (in milliamps) as a covariate. 

12.7. Bliss (1935) provides a table showing the number of flour beetles killed 
after five hours exposure to  gaseous carbon disulphide at various concen- 
trations. Propose a logistic regression model with a Dose as a covariate. 

Table 12.18 Bliss Beetle Data 

Dose Number of Number 
(log,, CS2 r n g l - l )  Beetles Killed 

1.6907 
1.7242 
1.7552 
1.7842 
1.8113 
1.8369 
1.8610 
1.8839 

59 
60 
62 
56 
63 
59 
62 
60 

6 
13 
18 
28 
52 
53 
61 
60 

According to  your model, what is the probability that a beetle will be 
killed if a dose of gaseous carbon disulphide is set to 1.8? 
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Curve Fitting Techniques 

"The universe is not only queerer than we imagine, it is queerer than 
we can imagine'' 

J.B.S. Haldane (Haldane's Law) 

In this chapter, we will learn about a general class of nonparametric regres- 
sion techniques that fit a response curve to input predictors without making 
strong assumptions about error distributions. The estimators. called smooth- 
zng functions. actually can be smooth or bumpy as the user sees fit. The final 
regression function can be made to bring out from the data what is deemed 
to be important to the analyst. Plots of a smooth estimator will give the user 
a good sense of the overall trend between the input X and the response Y. 
However, interesting nuances of the data might be lost to the eye. Such details 
will be more apparent with less smoothing, but a potentially noisy and jagged 
curve plotted made to catch such details might hide the overall trend of the 
data. Because no linear form is assumed in the model, this nonparametric 
regression approach is also an important component (of nonlznear regresszon, 
which can also be parametric. 

Let (XI, Yl), . . . . (X, ,  Y,) be a set of n independent pairs of observations 
from the bivariate random variable (X. Y). Define the regression function 
m(z)  as IE(YIX = z). Let Y ,  = rn(X,) + E,, i = 1,. . . , n  when E,'S are 
errors with zero mean and constant variance. The estimators here are locally 

241 
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weighted with the form 

i=l 

The local weights a, can be assigned to Y, in a variety of ways. The 
straight line in Figure 13.1 is a linear regression of Y on X that represents an 
extremely smooth response curve. The curvey line fit in Figure 13.1 represents 
an estimator that uses more local observations to fit the data a t  any X ,  value. 
These two response curves represent the tradeoff we make when making a 
curve more or less smooth. The tradeoff is between bias and variance of the 
estimated curve. 

11 

10 - 

9 -  

8- 

7 -  

6 -  \ -  

5 -  t 
\ 

1 -  

"0 5 10 15 20 25 30 

Fig. 13.1 Linear Regression and local estimator fit to data. 

In the case of linear regression, the variance is estimated globally because 
it is assumed the unknown variance is constant over the range of the response. 
This makes for an optimal variance estimate. However. the linear model is 
often considered to be overly simplistic, so the true expected value of k ( z )  
might be far from the estimated regression, making the estimator biased. 
The local (jagged) fit, on the other hand. uses only responses at  the value X ,  
to estimate k ( X t ) ,  minimizing any potential bias. But by estimating m(x)  
locally. one does not pool the variance estimates. so the variance estimate at  
X is constructed using only responses at or close to X .  

This illustrates the general difference between smoothing functions: those 
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that estimate m(z)  using points only at z or close to  it have less bias and 
high variance. Estimators that use data from a large neighborhood of x will 
produce a good estimate of variance but risk greater bias. In the next sections, 
we feature two different ways of defining the local region (or neighborhood) of 
a design point. At an estimation point x. kernel estzmators use fixed intervals 
around x such as x f co for some co > 0. Nearest neighbor estzmators use the 
span produced by a fixed number of design points that are closest to  z. 

13.1 KERNEL ESTIMATORS 

Let K ( x )  be a real-valued function for assigning local weights to the linear 
estimator. that  is, 

If K ( u )  3: l( lul  5 1) then a fitted curve based on K ( y )  will estimate 
m(z)  using only design points within h units of .c. Usually it is assumed that 
S,K(z)dx = 1, so any bounded probability density could serve as a kernel. 
Unlike kernel functions used in density estimation, now K ( x )  also can take 
negative values, and in fact such unrestricted kernels are needed to  achieve 
optimal estimators in the asymptotic sense. An example is the beta kernel 
defined as 

1 
K ( x )  = (1-22)11(1x) 5 l),  - i = o . 1 , 2 . . .  

B(1/2. y + 1) 
(13.1) 

With the added parameter -1. the beta-kernel is remarkably flexible. For 
y = 0. the beta kernel becomes uniform. If y = 1 we get the Epanechikov 
kernel, y = 2 produces the biweight kernel, y = 3 the triweight, and so on 
(see Figure 11.4 on p. 209). For -1 large enough. the beta kernel is close the 
Gaussian kernel 

K ( x )  = 

with o2 = l / (2y + 3). which is the variance of densities from (13.1). For 
example. if y = 10. then s-, ( K ( z )  - a - ' d ( z / o ) )  dx = 0.00114, where o = 

1/Jm. Define a scaling coefficient h so that 

1 2 

(13.2) 

where h is the associated bandwzdth. By increasing h. the kernel function 
spreads weight away from its center, thus giving less weight to those data  
points close to  z and sharing the weight more equally with a larger group of 
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design points. A family of beta kernels and the Epanechikov kernel are given 
in Figure 13.2. 

0 351 

0 3 -  
1 

0 2 5 -  

0 2  

Fig. 13.2 (a) A family of symmetric beta kernels; (b) K ( z )  = 
sin(Jzl/JZ - 7~/4) .  

exp{--/zl/fi} 

13.1.1 Nadaraya-Watson Estimator 

Nadaraya (1964) and Watson (1964) independently published the earliest re- 
sults on for smoothing functions (but this is debateable), and the Nadaraya- 
Watson Estimator (NWE) of m(z)  is defined as 

(13.3) 

For IC fixed, the value 6 that minimizes 

n 

C(YL - 8)2Kh(Xi  - Z)> (13.4) 
i=l 

is of the form C,"=, a,K.  The Nadaraya-Watson estimator is the minimizer of 
(13.4) with a, = K h ( X ,  - x)/ Cr=l K h ( X ,  - x). 

Although several competing kernel-based estimators have been derived 
since. the NWE provided the basic framework for kernel estimators, including 
local polynomial fitting which is described later in this section. The MATLAB 
function 

mda-wat(x0, X, Y ,  bw) 
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Fig. 13.3 Nadaraya-14'atson Estimators for different values of bandwidth. 

computes the Nadaraya-Watson kernel estimate at  :c = x0. Here. ( X , Y )  are 
input data, and bw is the bandwidth. 

Example 13.1 Noisy pairs ( X i ,  yZ), i = 1, .  . . , 200 are generated in the fol- 
lowing way: 

>> x=sort(rand(1,200)); 
>> y=sort(rand(1,200)); 
>> y=sin(4*pi*y)+0,9*randn(1,200) ; 

Three bandwidths are selected h = 0.015,0.030, and 0.060. The three 
Nadaraya-Watson Estimators are shown in Figure 13.3. As expected, the es- 
timators constructed with the larger bandwidths appear smoother than those 
with smaller bandwidths. 

13.1.2 Gasser- M iiller Estimator. 

The Gasser-hliiller estimator proposed in 1979 uses areas of the kernel for the 
weights. Suppose X ,  are ordered, XI  5 X z . . .  5 X n .  Let Xo = --oo and 
Xn+l = cc and define midpoints sz = ( X ,  + X,+1)/2.  Then 

(13.5) 

The Gasser-hluller estimator is the minimizer of (13.4) with the weights ai = 

ss:-, K h ( U  - z)du. 
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13.1.3 Local Polynomial Estimator 

Both Nadaraya-Watson and Gasser-Miiller estimators are local constant fit 
estimators, that is, they minimize weighted squared error Cy=“=,(yi - Q)2wi for 
different values of weights wi. Assume that for z in a small neighborhood of 
x the function m ( z )  can well be approximated by a polynomial of order p : 

j=O 

where / 3 j  = m ( j ) ( x ) / j ! .  Instead of minimizing (13.4), the local polynomial 
(LP) estimator minimizes 

(13.6) 

over PI.  . . . , 0”. Assume, for a fixed x, p j ,  j = 0, . . . , p minimize (13.6). Then, 
riz(z) = Bo,  and an estimator of j t h  derivative of m is 

7i2(3)(z) = j ! & ,  j = 0,1, . . . , p .  (13.7) 

If p = 0, that is, if the polynomials are constants, the local polynomial esti- 
mator is Nadaraya-Watson. It is not clear that the estimator &(x) for general 
p is a locally weighted average of responses, (of the form C:=l a,Y,) as are 
the Nadaraya-Watson and Gasser-Muller estimators. The following repre- 
sentation of the LP estimator makes its calculation easy via the weighted 
least square problem. Consider the n x ( p  + 1) matrix depending on x and 
X ,  - x ,  i = 1, . . . ,  n. 

1 X I - x  ( X I  - z ) 2  . . .  ( X l  - x)” 
1 X z - x  ( X 2 - 2 ) 2  . . .  (X2 - XI” 

1 x, - x  ( X , - 2 ) 2  . . .  ( X , - x ) P  
. . .  . . .  . . .  . . .  x =  ( 

Define also the diagonal weight matrix W and response vector Y :  

Then the minimization problem can be written as (Y - X p ) ’ W ( Y  - X p ) .  The 
solution is well known: 6 = ( X ’ W X ) - l X ’ W  Y .  Thus, if (a1 a2 . . .a,) is 
the first row of matrix ( X ’ W X ) - l X ’ W ,  h ( x )  = a. Y = C,  a,Y,. This repre- 
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sentation (in matrix form) provides an efficient and elegant way to calculate 
the LP regression estimator. In MATLAB, use the function 

l p f i t ( x ,  y ,  p ,  h), 

where (2; y) is the input data, p is the order and h is the bandwidth. 
. . . a,) of s(X’WX)-lX’W is quite 

complicated. Yet, for p = 1 (the local linear estimator), the expression for 
h ( z )  simplifies to 

For general p ,  the first row (a1 a2 

where S, = 
implemented in MATLAB by the function 

~ ~ = l ( X ,  - x)JKh(X, - x), j = 0.1. and 2. This estimator is 

l o c - l i n .  m. 

13.2 NEAREST NEIGHBOR METHODS 

As an alternative to kernel estimators, nearest neighbor estimators define 
points local to X ,  not through a kernel bandwidth, which is a fixed strip 
along the x-axis, but instead on a set of points closest to X,.  For example, 
a neighborhood for x might be defined to be the closest k design points on 
either side of x, where k is a positive integer such that k 5 n/2. Nearest 
neighbor methods make sense if we have spaces with clustered design points 
followed by intervals with sparse design points. The nearest neighbor estima- 
tor will increase its span if the design points are spread out. There is added 
complexity, however, if the data includes repeated design points. for purposes 
of illustration, we will assume this is not the case in our examples. 

Nearest neighbor and kernel estimators produce similar results, in general. 
In terms of bias and variance. the nearest neighbor estimator described in 
this section performs well if the variance decreases more than the squared 
bias increases (see Altman, 1992). 

13.2.1 LOESS 

William Cleveland (1979), Figure 13.4(a), introduced a, curve fitting regression 
technique called LOWESS, which stands for locally weighted regression scatter 
plot smoothing. Its derivative, LOESS1, stands more generally for a local 
regression, but many researchers consider LOWESS and LOESS as synonyms. 

lTerm actually defined by geologists as deposits of fine soil that are highly susceptible to 
wind erosion. We will stick with our less silty mathematical definition in this chapter. 



248 CURVE FlTTlNG TECHNlQUES 

Fig. 13.4 (a) William S. Cleveland, Purdue University; (b) Geological Loess. 

Consider a multiple linear regression set up with a set of regressors X, = 
X, l . .  . .  ,X , I ,  to predict Y,, i = l , . .  . ,n .  If Y = !(XI, . . .  ,XI,) + E ,  where 
E N ~ l f ( 0 . 0 ~ ) .  Adjacency of the regressors is defined by a distance function 
d ( X . X * ) .  For k = 2 ,  if we are fitting a curve at ( X r l , X r z )  with 1 5 T 5 n. 
then for i = 1,. . . , n, 

Each data point influences the regression at ( X r l ,  Xr2) according to its 
distance to that point. In the LOESS method, this is done with a tri-cube 
weight function 

where only q of n points closest to X, are considered to be "in the neighbor- 
hood" of X,, and d, is the distance of the furthest X, that is in the neigh- 
borhood. Actually, many other weight functions can serve just as well as the 
tri-weight function: requirements for w, are discussed in Cleveland (1979). 

If q is large, the LOESS curve will be smoother but less sensitive to nuances 
in the data. As q decreases, the fit looks more like an interpolation of the data. 
and the curve is zig-zaggy. Usually, q is chosen so that 0.10 5 q/n 5 0.25. 
Within the window of observations in the neighborhood of X, we construct 
the LOESS curve Y(X) using either linear regression (called first order) or 
quadratic (second order). 

There are great advantages to this curve estimation scheme. LOESS does 
not require a specific function to fit the model to the data; only a smoothing 
parameter (a  = q/n) and local polynomial (first or second order) are required. 
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Given that complex functions can be modeled with such a simple precept, 
the LOESS procedure is popular for constructing a regression equation with 
cloudy, multidimensional data. 

On the other hand. LOESS requires a large data  set in order for the curve- 
fitting to  work well. Unlike least-squares regression (and, for that matter. 
many non-linear regression techniques). the LOESS curve does not give the 
user a simple math formula to  relate the regressors to the response. Because 
of this, one of the most valuable uses of LOESS is as an exploratory tool. It 
allows the practitioner to  visually check the relationship between a regressor 
and response no matter how complex or convoluted the data appear to be. 

In MATLAB. use the function 

loess (x, y ,newx, a, b) 

where x and y represent the bivariate data (vectors), newx is the vector of 
fitted points, a is the smoothing parameter (usually 0.10 or 0.25). and b is 
the order of polynomial (1 or 2). loess produces an output equal to  newx. 

Example 13.2 Consider the motorcycle accident data  found in Schmidt. 
Matter and Schuler (1981). The first column is time. measured in milliseconds, 
after a simulated impact of a motorcycle. The second column is the accelera- 
tion factor of the driver’s head (accel), measured in g (9.8m/s2). T’ ime versus 
accel is graphed in Figure 13.5. The MATLAB code below creates a LOESS 
curve to  model acceleration as a function of time (also in the figure). Note 
how the smoothing parameter influences the fit of the curve. 

>> load motorcycle.dat 
>> time = motorcycle( : ,I) ; 
>> accel = motorcycle ( : ,2) ; 
>> loess(time, accel, newx, 0.20, 1) ; 
>> plot(time, acce1,’o’); 
>> hold on 
>> plot(time, newx, ’ - ’ ) ;  

For regression with two regressors (x,y), use the MATLAB function: 

loess2(x,y,z,newx,newy,a,b) 

that  contains inputs (x,y,z) and creates a surface fit in (newx,newy). 

13.3 VARIANCE ESTIMATION 

In constructing confidence intervals for m(x) ,  the variance estimate based on 
the smooth linear regression (with pooled-variance estimate) will produce the 
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Fig. 13.5 
( c )  cy = 0.50, and (d) a = 0.80. 

Loess curve-fitting for Motorcycle Data using (a) cy = 0.05, (b) cy = 0.20, 

narrowest interval. But if the estimate is biased. the confidence interval will 
have poor coverage probability. An estimator of m(z)  based only on points 
near x will produce a poor estimate of variance, and as a result is apt to  
generate wide. uninformative intervals. 

One way to  avoid the worst pitfalls of these two extremes is to  detrend the 
data locally and use the estimated variance from the detrended data. Altman 
and Paulson (1993) use psuedo-residuals E7 = yz - (yZ+l + yz-1)/2 to  form a 
variance estimator 

n-1 

where a2 /a2  is distributed x2 with (n  - 2 ) / 2  degrees of freedom. Because 
both the kernel and nearest neighbor estimators have linear form in yz, a 
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Fig. 13.6 I. J. Schoenberg (1903-1990). 

100(1 - a)% confidence interval for m(t) can be approximated with 

where r = (n  - 2)/2. 

13.4 SPLINES 

spline ( s p h e )  n. 1. A flexible piece of wood, hard rubber, or metal 
used in drawing curves. 2. A wooden or metal strip; a slat. 

The American Heritage Dictionary 

Splines, in the mathematical sense, are concatenated piecewise polynomial 
functions that either interpolate or approximate the scatterplot generated 
by n observed pairs, ( X I .  Yl), . . . ~ ( X n ,  Yn). Isaac J. Schoenberg, the “father 
of splines,” was born in Galatz. Romania, on April 21, 1903, and died in 
Madison, Wisconsin, USA. on February 21. 1990. The more than 40 papers 
on splines written by Schoenberg after 1960 gave much impetus to the rapid 
development of the field. He wrote the first several in 1963, during a year’s 
leave in Princeton at the Institute for Advanced Study: the others are part of 
his prolific output as a member of the Llathematics Flesearch Center at the 
University of Wisconsin-Madison, which he joined in 1965. 
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13.4.1 interpolating Splines 

There are many varieties of splines. Although piecewise constant, linear, and 
quadratic splines easy to construct, cubic splines are most commonly used 
because they have a desirable extremal property. 

Denote the cubic spline function by m(z) .  Assume X I .  X z ,  . . . , X ,  are 
ordered and belong to  a finite interval [u, b].  We will call X I ,  X2 , .  . . , X ,  knots. 
On each interval [ X z - l , X z ] ,  i = 1 , 2 , .  . . , n  + 1.Xo = a.X,+1 = b. the spline 
m(z)  is a polynomial of degree less than or equal to 3. In addition, these 
polynomial pieces are connected in such a way that the second derivatives are 
continuous. That means that at  the knot points X, ,  a = 1, .  . . , n where the 
two polynomials from the neighboring intervals meet, the polynomials have 
common tangent and curvature. We say that such functions belong to C2[a, b ] ,  
the space of all functions on [a. b] with continuous second derivative. 

The cubic spline is called natural if the polynomial pieces on the intervals 
[a. X I ]  and [X,, b] are of degree 1. that is. linear. The following two properties 
distinguish natural cubic splines from other functions in C2[a. b] .  

Unique Interpolation. Given the n pairs, ( X I ,  Y I ) ,  . . . , (X,, Y,), with dis- 
tinct knots X i  there is a unique natural cubic spline m that interpolates the 
points. that is, m(Xi) = Y,. 

Extremal Property. Given n pairs, (XI, Yl),  . . . , (X,,  Y,), with distinct 
and ordered knots X i :  the natural cubic spline m(z)  that interpolates the 
points also minimizes the curvature on the interval [a, b ] ,  where a < X I  and 
X ,  < b. In other words, for any other function g E @’[a, b ] ,  

b 

lb(mrr(t))’dt 5 l (g”(t))’dt .  

Example 13.3 One can ‘+draw” the letter V using a simple spline. The 
bivariate set of points (Xz.yZ)  below lead the cubic spline to trace a shape 
reminiscent of the script letter V .  The result of MATLAB program is given in 
Figure 13.7. 

>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 

x = [I0 40 40 20 60 50 25 16 30 60 80 75 65 1001; 
y = [85 90 65 55 100 70 35 10 10 36 60 65 55 501; 
t=l:length(x) ; 
tt=linspace(t(l) ,t(end) ,250) ; 
xx=spline(t,x,tt); 
yy=spline(t,y,tt); 
plot(xx,yy,’-’,’linewidth’,2), hold on 
plot(x,y,’o’,’markersize’ ,6) 
axis(’equal’),axis(’off’) 
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Fig. 13.7 A cubic spline drawing of letter V .  

Example 13.4 In MATLAB, the function csapi  .m computes the cubic spline 
interpolant, and for the following z and y, 

>> x = (4*pi)*[O 1 rand(l,20)]; y = sin(x); 
>> cs = csapi(x,y); 
>> fnplt(cs); hold on, plot(x,y,’o’) 
>> legend(’cubic spline’,’data’), hold of f  

the interpolation is plotted in Figure 13.8(a), along with the data. A surface 
interpolation by 2-d splines is demonstrated by the following MATLAB code 
and Figure 13.8(b). 

>> x = -1:.2:1; y=-1:.25:1; Cxx, yy] = ndgrid(x,y); 
>> z = sin(lO*(xx.^2+yy.^2)); pp = csapi((x,y),z); 
>> fnplt(pp) 

There are important distinctions between spline regressions and regular poly- 
nomial regressions. The latter technique is applied to  regression curves where 
the practitioner can see an interpolating quadratic or cubic equation that lo- 
cally matches the relationship between the two variables being plotted. The 
Stone-Weierstrass theorem (Weierstrass, 1885) tells us that any continuous 
function in a closed interval can be approximated wejl by some polynomial. 
While a higher order polynomial will provide a closer fit at any particular 
point, the loss of parsimony is not the only potential problem of over fitting: 
unwanted oscillations can appear between data points. Spline functions avoid 
this pitfall. 
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Fig. 13.8 (a) Interpolating sine function; (b) Interpolating a surface. 

13.4.2 Smoothing Splines 

Smoothing splines, unlike interpolating splines, may not contain the points 
of a scatterplot, but are rather a form of nonparametric regression. Suppose 
we are given bivariate observations ( X i ,  X), i = 1,. . . , n. The continuously 
differentiable function riz on [a,  b] that minimizes the functional 

n .h 

a=l 
(13.8) 

is exactly a natural cubic spline. The cost functional in (13.8) has two parts: 
c,”=, (K - rn(X, ) )2  is minimized by an interpolating spline, and s, ( n ~ ” ( t ) ) ~ d t  
is minimized by a straight line. The parameter X trades off the importance 
of these two competing costs in (13.8). For small A, the minimizer is close to 
an interpolating spline. For X large, the minimizer is closer to a straight line. 

Although natural cubic smoothing splines do not appear to be related to 
kernel-type estimators, they can be similar in certain cases. For a value of z 
that is away from the boundary, if n is large and X small, let 

b 

where f is the density of the X ’ s ,  hi = [ X / ( n f ( X i ) ) ] ’ / 4  and the kernel K is 
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1 
2 

~ ( z )  = - exp{-izi/JZ) sin(izl/JZ -F x/4). (13.9) 

As an alternative to minimizing (13.8); the following version is often used: 

( 13.10) 

In this case, X = (1 - p ) / p .  Assume that h is an average spacing between the 
neighboring X ' s .  An automatic choice for p is 6(6 + h3) or X = h3/6. 

Smoothing Splines as Linear Estimators. The :spline estimator is linear 
in the observations, m = S ( X ) Y ,  for a smoothing matrix S(X). The Reinsch 
algorithm (Reinsch, 1967) efficiently calculates S as 

S(X) = ( I  + X Q R - ~ Q ' ) - ' ,  ( 13.1 I) 

where Q and R are structured matrices of dimensions n x (n - 2 )  and (n - 
2 )  x (n  - a ) ,  respectively: 

& =  

q12 

q22 q 2 3  

q32 q33 

P43 

. . .  
q n - 2  ,n- 1 

qn- 1 ,n- 1 

4 n . n - 1  

R =  

7-22 I-:!3 

7.4 3 

7-32 1-33 

qn - 2 ,n - 1 

qn- 1 .n- 1 

with entries 

and 

I-i3 = 2(hj-1 + h j ) ,  i = j  
i = j + l .  

The values hi are spacings between the Xi ' s ,  ix . ,  hi = Xi+l - X i .  i = 
1,. . . , n-1. For details about the Reinsch Algorithm, see Green and Silverman 
(1994). 



256 CURVE FlTTlNG TECHNlQUES 

13.4.3 

Let riZh(z) be the regression estimator of rn(z), obtained by using the set of 
n observations ( X I ,  Y l ) ,  . . . , ( X n , Y n ) ,  and parameter h. Note that for kernel- 
type estimators, h is the bandwidth, but for splines, h is X in (13.8). Define 
the avarage mean-square error of the estimator riZh as 

Selecting and Assessing the Regression Estimator 

Let fi(,p(z) be the estimator of rn(z). based on bandwidth parameter h, 
obtained by using all the observation pairs except the pair ( X , ,  E). Define the 
cross-validation score CV(h)  depending on the bandwith/trade-off parameter 
h as 

(13.12) 

Because the expected CV(h)  score is proportional to the A M S E ( h )  or. more 
precisely, 

E [CV(h)] M A M S E ( h )  + CT', 
where CT' is constant variance of errors 6 % .  the value of h that minimizes CV(h)  
is likely, on average, to produce the best estimators. 

For smoothing splines, and more generally. for linear smoothers m = 
S (  h ) y ,  the computationally demanding procedure in (13.12) can be simplified 
by 

1 - S,i(h) 
l n  y, - riZh(2)  

CV(h)  = - C i=l [ ( 13.13) 

where S,,(h) is the diagonal element in the smoother (13.11). When n is large, 
constructing the smoothing matrix S( h)  is computationally difficult. There 
are efficient algorithms (Hutchison and de Hoog. 1985) that calculate only 
needed diagonal elements S,, (h) .  for smoothing splines, with calculational 
cost of O(n) .  

Another simplification in finding the best smoother is the generalized cross- 
validation criterion, GCV. The denominator in (13.13) 1 - S,,(h) is replaced 
by overall average 1 -nP1 C,"=, S,,(h), or in terms of its trace, 1 -n- ' trS(h) .  
Thus 

( 13.14) 
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Example 13.5 Assume that riZ is a spline estimator and that X I . .  . . , A, are 
eigenvalues of matrix QR-lQ’ from (13.11). Then, 2rS(h) = xy=l(l+hX,)-l .  
The GCV criterion becomes 

nRSS( h)’ 
2 GCV(h)  = 

[n - C7=1 i T k ]  

13.4.4 Spline Inference 

Suppose that the estimator riz is a linear combination of the yZs, 

i= 1 

Then 

n 

IE(&(z)) = ~ a z ( z ) m ( X , ) .  and Var(riZ(z)) = a , ( z )  0‘. 

a= 1 c1 ’) 
Given z = X ,  we see that riZ is unbiased, that is, EriZ(X,) = m ( X , )  only if all 

On the other hand, variance is minimized if all a, are equal. This illus- 
trates, once again, the trade off between the estimator‘s bias and variance. 
The variance of the errors is supposed to be constant. In linear regression we 
estimated the variance as 

a, = 0, i # j .  

RSS 8’ = - 
n - p ’  

where p is the number of free parameters in the model. Here we have an 
analogous estimator, 

where RSS = CZ, [K - &(X,)]’ .  

13.5 SUMMARY 

This chapter has given a brief overview of both kernlel estimators and local 
smoothers. An example from Gasser et al. (1984) shows that choosing a 
smoothing method over a parametric regression model can make a crucial dif- 
ference in the conclusions of a data analysis. A parametric model by Preece 
and Baines (1978) was constructed for predicting the future height of a hu- 
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man based on measuring children’s heights at different stages of development. 
The parametric regression model they derived for was particularly compli- 
cated but provided a great improvement in estimating the human growth 
curve. Published six years later, the nonparametric regression by Gasser et 
al. (1984) brought out an important nuance of the growth data that could not 
be modeled with the Preece and Baines model (or any model that came be- 
fore it). A subtle growth spurt which seems to occur in children around seven 
years in age. Altman (1992) notes that such a growth spurt was discussed in 
past medical papers, but had “disappeared from the literature following the 
development of the parametric models which did not allow for it.” 

13.6 EXERCISES 

13.1. Describe how the LOESS curve can be equivalent to least-squares re- 
gression. 

13.2. Data set o j287 .da t  is the light curve of the blazar 05287. Blazars, 
also known as BL Lac Objects or BL Lacertaes, are bright, extragalac- 
tic, starlike objects that can vary rapidly in their luminosity. Rapid 
fluctuations of blazar brightness indicate that the energy producing re- 
gion is small. Blazars emit polarized light that is featureless on a light 
plot. Blazars are interpreted to be active galaxy nuclei, not so different 
from quasars. From this interpretation it follows that blazars are in the 
center of an otherwise normal galaxy, and are probably powered by a 
supermassive black hole. Use a local-polynomial estimator to analyze 
the data in oj287 . d a t  where column 1 is the julian time and column 2 
is the brightness. How does the fit compare for the three values of p in 
(0.1, a}? 

13.3. Consider the function 

1 - 2 + 2 2  - 2 3  0 < x < l  

2 < 2 < 3 . 
s ( 2 )  = -2(2 - 1) - 2 ( 2  - 1 ) 2  1 < 2 < 2  { -4 - 6 ( ~  - 2) - 2 ( 2  - 

Does s(z) define a smooth cubic spline on [0, 31 with knots 1, and 2? If 
so, plot the 3 polynomials on [0;3]. 

13.4. In MATLAB, open the data file ear thquake.  d a t  which contains water 
level records for a set of six wells in California. The measurements are 
made across time. Construct a LOESS smoother to  examine trends in 
the data. Where does LOESS succeed? Where does it fail to capture 
the trends in the data? 

13.5. Simulate a data set as follows: 
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-50 

x= r and(1,lOO); 
x = sort (x) ; 
JI = x.^2 + 0.1 * randn(l,100); 

- 

Fit an interpolating spline to the simulated data as shown in Figure 
13.5(a). The dotted line is y = 2'. 

- 0 2 1  *- 
I 1 -i5OOL- ' 
0 0 2  0 4  0 6  08 10 20 30 40 50 60 

-0 4 

(a) (b) 

Fig 13.9 
(Yz). i = 1.. . .82.  

(a) Square plus noise, (b) Motorcycle Data: Time ( X , )  and Acceleration 

13.6. Refer to the motorcycle data from Figure 13.5. Fit a spline to  the data. 
Variable time is the time in milliseconds and accel is the acceleration 
of a head measured in ( 9 ) .  See Figure 13.5 (b) as an example. 

13.7. Star S in the Big Dipper constellation (Ursa Major) has a regular vari- 
ation in its apparent magnitude': 

8 -100 -60 -20 20 60 100 140 
magnitude 8.37 9.40 11.39 10.84 8.53 7.89 8.37 

The magnitude is known to be periodic with period 240, so that the 
magnitude at 8 = -100 is the same as at  8 = 140. The m-spline y 
= csape(x,y, 'periodic') constructs a cubic spline whose first and 
second derivatives are the same at  the ends osf the interval. Use it to  

2L.  Campbell and L. Jacchia. The Story of Varzable Stars. The BlacKiston Co., Philadelphia, 
1941. 
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interpolate the data. Plot the data and the interpolating curve in the 
same figure. Estimate the magnitude at 8 = 0. 

13.8. Use the smoothing splines to analyze the data in oj287.dat that was 
described in Exercise 13.2. For your reference, the data and implemen- 
tation of spline smoothing are given in Figure 13.10. 

Fig. 13.10 Blazar 05287 luminosity 
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Wavelets 

It is error only, and not truth, that shrinks from inquiry. 

Thomm Paine (1737-1809) 

14.1 INTRODUCTION TO WAVELETS 

Wavelet-based procedures are now indispensable in many areas of modern 
statistics, for example in regression, density and function estimation, factor 
analysis, modeling and forecasting of time series, functional data analysis, 
data mining and classification. with ranges of application areas in science and 
engineering. Wavelets owe their initial popularity in statistics to shrznkage, a 
simple and yet powerful procedure efficient for many nonparametric statistical 
models. 

Wavelets are functions that satisfy certain requirements. The name wavelet 
comes from the requirement that they integrate to zero, "waving" above and 
below the x-axis. The diminutive in wavelet suggest its good localization. 
Other requirements are technical and needed mostly to ensure quick and easy 
calculation of the direct and inverse wavelet transform. 

compactly supported wavelets, wavelets with simple mathematical expres- 
sions, wavelets with short associated filters, etc. The simplest is the Haar 
wavelet, and we discuss it as an introductory example in the next section. 

There are many kinds of wavelets. One can choose between smooth wavelets, 

263 
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Examples of some wavelets (from Daubechies’ family) are given in Figure 
14.1. Note that scaling and wavelet functions in panels (a, b) in Figure 14.1 
(Daubechies 4) are supported on a short interval (of length 3) but are not 
smooth; the other family member, Daubechies 16 (panels (e. f )  in Figure 
14.1) is smooth, but its support is much larger. 

Like sines and cosines in Fourier analysis, wavelets are used as atoms in 
representing other functions. Once the wavelet (sometimes informally called 
the mother wavelet) $(x) is fixed. one can generate a family by its translations 
and dilations, {$( e), ( a ,  b )  E R+ xR}. It is convenient to take special values 
for a and b in defining the wavelet basis: a = 2-3 and b = k .  2 - 3 .  where k and 
j are integers. This choice of a and b is called cratacal samplang and generates 
a sparse basis. In addition. this choice naturally connects multiresolution 
analysis in discrete signal processing with the mathematics of wavelets. 

Wavelets, as building blocks in modeling. are localized well in both time 
and scale (frequency). Functions with rapid local changes (functions with dis- 
continuities, cusps, sharp spikes, etc.) can be well represented with a minimal 
number of wavelet coefficients. This parsimony does not, in general, hold for 
other standard orthonormal bases which may require many “compensating” 
coefficients to  describe discontinuity artifacts or local bursts. 

Heisenberg’s principle states that time-frequency models cannot be precise 
in the time and frequency domains simultaneously. Wavelets, of course, are 
subject to Heisenberg’s limitation, but can adaptively distribute the time- 
frequency precision depending on the nature of function they are approximat- 
ing. The economy of wavelet transforms can be attributed to this ability. 

The above already hints at  how the wavelets can be used in statistics. 
Large and noisy data sets can be easily and quickly transformed by a discrete 
wavelet transform (the counterpart of discrete Fourier transform). The data 
are coded by their wavelet coefficients. In addition, the descriptor -fast” in 
Fast Fourier transforms can, in most cases, be replaced by “faster“ for the 
wavelets. It is well known that the computational complexity of the fast 
Fourier transformation is O ( n  . log2(n)). For the fast wavelet transform the 
computational complexity goes down to O ( n ) .  This means that the complexity 
of algorithm (in terms either of number of operations, time, or memory) is 
proportional to the input size, n. 

Various data-processing procedures can now be done by processing the cor- 
responding wavelet coefficients. For instance, one can do function smoothing 
by shrinking the corresponding wavelet coefficients and then back-transforming 
the shrunken coefficients to the original domain (Figure 14.2). A simple 
shrinkage method, thresholding, and some thresholding policies are discussed 
later. 

An important feature of wavelet transforms is their whztenzng property. 
There is ample theoretical and empirical evidence that wavelet transforms re- 
duce the dependence in the original signal. For example, it is possible, for any 
given stationary dependence in the input signal. to construct a biorthogonal 



lNTRODUCTlON TO WAVELETS 265 

A 

0 6 1  

0 4 t  

-0 2 

- 3 - 2 - 1  o 1 2  3 4 

1 

4 I 0 

0 4; 

0 2 t  

- 0 2 ~  

-0 6 

L-, 
- 6 - 4 - 2  0 2 4 6 8 

Fig. 14.1 
and wavelets (right) corresponding to  (a. b) 4, (c. d) 8, and (e. f )  16 tap  filters. 

Wavelets from the Daubechies family. Depicted are scaling functions ( l e f t )  



266 WAVELETS 

Fig. 14.2 Wavelet-based data processing. 

wavelet basis such that the corresponding in the transform are uncorrelated 
(a wavelet counterpart of the so called Karhunen-Lokve transform). For a 
discussion and examples, see Walter and Shen (2001). 

We conclude this incomplete inventory of wavelet transform features by 
pointing out their sensitivity to self-similarity in data. The scaling regularities 
are distinctive features of self-similar data. Such regularities are clearly visible 
in the wavelet domain in the wavelet spectra, a wavelet counterpart of the 
Fourier spectra. More arguments can be provided: computational speed of 
the wavelet transform, easy incorporation of prior information about some 
features of the signal (smoothness, distribution of energy across scales), etc. 

Basics on wavelets can be found in many texts, monographs, and papers at 
many different levels of exposition. Student interested in the exposition that 
is beyond this chapter coverage should consult monographs by Daubechies 
(1992). Ogden (1997), and Vidakovic (1999). and Walter and Shen (2001), 
among others. 

14.2 H O W  DO T H E  WAVELETS WORK? 

14.2.1 The Haar Wavelet 

To explain how wavelets work, we start with an example. We choose the 
simplest and the oldest of all wavelets (we are tempted to say: grandmother 
of all wavelets!). the Haar wavelet, $(z). It is a step function taking values 
1 and -1. on intervals [0, i) and [i. l), respectively. The graphs of the Haar 
wavelet and some of its dilations/translations are given in Figure 14.4. 

The Haar wavelet has been known for almost 100 years and is used in 
various mat hematical fields. Any continuous function can be approximated 
uniformly by Haar functions, even though the “decomposing atom” is discon- 
tinuous. 

Dilations and translations of the function $. 
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Fig. 14.3 
(c) Ingrid Daubechies, Professor at Princeton 

(a) Jean Baptiste Joseph Fourier 1768-1830. Alfred Haar 1885-1933. and 

1 ! 0.0 0 2  0 4  06 0 8  1 0  

X 

i l  
! 

Fig. 14.4 
and translations of Haar wavelet on [0.1]. 

(a) Haar wavelet ~ ( z )  = l ( 0  5 z < f ) -  l(f <. z 5 1); (b) Some dilations 
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where Z = {. . . , -2, - 1 , O ,  1 ,2 , .  . . } is set of all integers, define an orthogonal 
basis of L2(R) (the space of all square integrable functions). This means that 
any function from L2(R) may be represented as a (possibly infinite) linear 
combination of these basis functions. 

The orthogonality of $I9k’s is easy to check. It is apparent that 

(14.1) 

whenever j = j’ and k = k’ are not satisfied simultaneously. If j # j’ 
(say j’ < j ) ,  then nonzero values of the wavelet $ j t p  are contained in the 
set where the wavelet $ j k  is constant. That makes integral in (14.1) equal 
to zero: If j = j’, but k # k’, then at  least one factor in the product 
$ j / k j  . q J k  is zero. Thus the functions $ij are mutually orthogonal. The con- 
stant that makes this orthogonal system orthonormal is 2jI2. The functions 

The family {$jk, j E Z, k E Z} defines an orthonormal basis for IL2. Alter- 
natively we will consider orthonormal bases of the form { 4 ~ , k :  $ j k , j  > L ,  k E 
Z}, where q!~ is called the scaling function associated with the wavelet basis 
$jk, and 4jk(z) = 2j/’4(2jx - k ) .  The set of functions { 4 L . k , k  E Z} spans 
the same subspace as { $ j k , j  < L,lc E Z}. For the Haar wavelet basis the 
scaling function is simple. It is an indicator of the interval [0,1), that is, 

$10, $11, $20, $21, $22, $23 are depicted in Figure 14.403). 

$(z) = l ( 0  5 Ic < 1). 

The data analyst is mainly interested in wavelet representations of functions 
generated by data sets. Discrete wavelet transforms map the data from the 
time domain (the original or input data, signal vector) to the wavelet domain. 
The result is a vector of the same size. Wavelet transforms are linear and they 
can be defined by matrices of dimension n x n when they are applied to inputs 
of size n. Depending on a boundary condition, such matrices can be either 
orthogonal or “close” to orthogonal. A wavelet matrix W is close to orthogonal 
when the orthogonality is violated by non-periodic handling of boundaries 
resulting in a small. but non-zero value of the norm IIWW’ - 111, where I 
is the identity matrix. When the matrix is orthogonal, the corresponding 
transform can be thought is a rotation in R” space where the data vectors 
represent coordinates of points. For a fixed point. the coordinates in the new. 
rotated space comprise the discrete wavelet transformation of the original 
coordinates. 

Example 14.1 Let y = (1, 0. -3,2.1.0.1,2).  The associated function f is 
given in Fig. 14.5. The values f ( k )  = yk, k = 0,1 , .  . . ,7  are interpolated 
by a piecewise constant function. The following matrix equation gives the 
connection between y and the wavelet coefficients d ,  y = W’d. 
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I I 
i i 

0 1 2 3 4 5 5 7 8  

Fig. 14.5 A function interpolating y on [0.8). 

The solution is d = Wy. 

coo 
do0 
dl0 

d l  1 

dzo  
d2 1 

d22  

d23 

coo 
doo 
dl0 
di 1 

d20 
d z  1 
d22  

d23 

14.2) 
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Accordingly 

The solution is easy to verify. For example, when z E [O, l), 

1 1 1 1 1  
f(z) = Jz. - - Jz. 22/2 + 1 . 5  + Jz. Jz = 1 / 2 + 1 / 2  = 1 (= y 0 ) .  

2 f i  

The MATLAB m-file WavMat .m forms the wavelet matrix W ,  for a given 
wavelet base and dimension which is a power of 2 .  For example, W = WavMat (h , 
n ,  kO, s h i f t )  will calculate n x n wavelet matrix, corresponding to the filter 
h (connections between wavelets and filtering will be discussed in the follow- 
ing section), and kO and s h i f t  are given parameters. We will see that Haar 
wavelet corresponds to  a filter h = { 4 / 2 , 4 / 2 } .  Here is the above example 
in MATLAB: 

>> W = WavMat([sqrt(2)/2 sqrt(2)/21 ,2”3,3,2); 
>> W’ 
an5 = 

0.3536 0.3536 0.5000 0 0.7071 
0.3536 0.3536 0.5000 0 -0.7071 
0.3536 0.3536 -0.5000 0 0 
0.3536 0.3536 -0.5000 0 0 
0.3536 -0.3536 0 0.5000 0 
0.3536 -0.3536 0 0.5000 0 
0.3536 -0.3536 0 -0.5000 0 
0.3536 -0.3536 0 -0.5000 0 

>> dat=[I 0 -3 2 1 0 1 21; 
>> wt = W * dat’; wt’ 

ans = 
1.4142 -1.4142 1.0000 -1.0000 0.7071 

>> data = W’ * w t ;  data’ 
ans = 

1.0000 0.0000 -3.0000 2.0000 1.0000 

0 0 
0 0 

0.7071 0 
-0.7071 0 

0 0.7071 
0 -0.7071 
0 0 
0 0 

0 
0 
0 
0 
0 
0 

0.7071 
-0.7071 

-3.5355 0.7071 -0.7071 

0.0000 1.0000 2.0000 

Performing wavelet transformations via the product of wavelet matrix W 
and input vector y is conceptually straightforward, but of limited practical 
value. Storing and manipulating wavelet matrices for inputs exceeding tens 
of thousands in length is not feasible. 

14.2.2 

Fast discrete wavelet transforms become feasible by implementing the so 
called cascade algorithm introduced by Mallat (1989). Let {h(lc),k E Z} 
and { g ( k ) ,  k E Z} be the quadrature mirror filters in the terminology of signal 

Wavelets in the Language of Signal Processing 



HOW DO THE WAVELETS WORK? 271 

processing. Two filters h and g form a quadrature mirror pair when: 

g(n) = ( - l ) n h ( l  - n). 

The filter h ( k )  is a low pass or smoothing filter while g ( k )  is the high pass or 
detail filter. The following properties of h(n) ,  g ( n )  can be derived by using so 
called scaling relationship, Fourier transforms and iorthogonality: C k h ( k )  = 
4. C k g ( k )  = 0 ,  C k h ( k ) 2  = 1, and C k h ( k ) k ( k  - 2m) = l ( m  = 0). 

The most compact way to describe the cascade algorithm, as well to  give 
efficient recipe for determining discrete wavelet coefficients is by using operator 
representation of filters. For a sequence a = {a,} the operators H and G are 
defined by the following coordinate-wise relations: 

The operators H and G perform filtering and down-sampling (omitting every 
second entry in the output of filtering), and correspond to  a single step in 
the wavelet decomposition. The wavelet decomposition thus consists of sub- 
sequent application of operators H and G in the particular order on the input 
data. 

Denote the original signal y by d J ) .  If the signal is of length n = 2’. 
then d J )  can be understood as the vector of coefficients in a series f(x) = 

Ck=, ck 4 n k ,  for some scaling function 4 .  At each step of the wavelet trans- 
form we move to  a coarser approximation &-’) with c(3-l) = He(’) and 
d ( 3 - l )  = Gc(3). Here, d ( 3 - l )  represent the “details” lost by degrading c(3) 
to  c(3-l). The filters H and G are decimating. thus the length of c(3-l) or 
d(J-’) is half the length of ~ ( 3 ) .  The discrete wavelet transform of a sequence 
y = c ( ~ )  of length n = 2 J  can then be represented as another sequence of 
length 2 J  (notice that the sequence c(3-l) has half the length of ~ ( 3 ) ) :  

2’--1 ( J )  

(p > d(O),d(C , ” “  d ( J - 2 )  , ( $ - I ) ) ,  (14.4) 

In fact, this decomposition may not be carried until the singletons do) and 
do) are obtained, but could be curtailed at ( J  - L)th step. 

( , (L) ,d(L)&+1)  , . . .  % d ( J - 2 )  5 d(J-1) ’  jl (14.5) 

for any 0 5 L 5 J - 1. The resulting vector is still a valid wavelet transform. 
See Exercise 14.4 for Haar wavelet transform “by hand.” 

function dwtr = dwtr(data, L, filterh) 
% function dwtr = dwt(data, L, filterh); 
% 
% with scaling filter filterh and L detail levels. 
% 
% Example of Use: 

Calculates the DWT of periodic data set 
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n = length(fi1terh); 
C = data(:)’; 
dwtr = [I; 
H = fliplr(fi1terh); 
G = filterh; 
G(1:2:n) = -G(1:2:n); 
for j = l:L 

nn = length(C); 
C = [C(mod((-(n-l) :-1) ,nn)+l) Cl ; 
D = conv(C,G); 
D = D([n:2:(n+nn-2)1+1); 
C = conv(C,H); 
c = c([n:2:(n+nn-2)1+1); 
dwtr = [D,dwtrl; 

end; 
dwtr = [C, dwtrl; 

%Length of wavelet filter 
%Data (row vector) live in V - j  
%At the beginning dwtr empty 
%Flip because of convolution 
%Make quadrature mirror 
% counterpart 
%Start cascade 
%Length needed to 
% make periodic 
%Convolve, 
% keep periodic and decimate 
%Convolve, 
% keep periodic and decimate 
%Add detail level to dwtr 
%Back to cascade or end 
%Add the last “smooth” part 

As a result, the discrete wavelet transformation can be summarized as: 

y - ( H ~ - ~ ~ ,  G H ~ - ~ - ~  y, G H ~ - ~ - ~  y, . . . , G H y ,  Gy), 0 5 L 5 J - 1. 

The MATLAB program dwtr . m performs discrete wavelet transform: 

> data = [l 0 -3 2 1 0 1 21; filter = [sqrt(2)/2 sqrt(2)/2]; 
> wt = dwtr(data, 3, filter) 

wt = 
1.4142 -1.4142 1.0000 -1.0000 0.7071 -3.5355 0.7071 -0.7071 

The reconstruction formula is also simple in terms of H and G; we first define 
adjoint operators H* and G* as follows: 

(H*a)k = C,h(k - 2 7 2 ) ~ ~  

(G*a)k = C,g(k  - 2 7 2 ) ~ ~ ~ .  

Recursive application leads to: 

( c ( L ) ,  ,-J(L), d(L+l), . . . , d ( J - 2 ) ,  d ( J - l ) )  + = ( H * ) J C ( L ) + ~ ~ ~ L 1 ( H * ) j G * d ( j ) ,  

for some 0 5 L 5 J -  1. 

function data = idwtr(wtr, L, filterh) 
% function data = idwt(wtr, L, filterh); Calculates the IDWT of wavelet 
% transformation wtr using wavelet filter “filterh” and L scales. 
% Use 
%>> max(abs(data - IDWTR(DWTR(data,3,filter), 3,filter))) 
% 
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%ans = 4.4409e-016 

M = length(wtr); 
if nargin==2, L = round(log2(nn)); end; 
H = filterh; 
C = fliplr(H); G(2:2:n) = -G(2:2:n); 
LL = nn/(2"L); 
C = wtr(1:LL); 

n = length(fi1terh); 

for j = 1:L 
w = mod(O:n/2-1,LL)+1; 
D = wtr(LL+1:2*LL); 
~u(1:2:2*LL+n) = [C C(1,w)l; 
Du(l:2:2*LL+n) = CD D(1,w)l; 
C = conv(Cu,H) + conv(Du,C); 
c = c( Cn:n+2*LL-lI-i) ; 
LL = 2*LL; 

end; 
data = C; 

% Lengths 
% Depth of transformation 
% Wavelet H filter 
% Wavelet G filter 
% Number of scaling coeffs 
% Scaling coeffs 
% Cascade algorithm 
% Make periodic 
% Wavelet coeffs 
% Upsample & keep periodic 
% Upsample & keep periodic 
% Convolve & add 
% Periodic part 
% Double the size of level 

% The inverse DWT 

Because wavelet filters uniquely correspond to  selection of the wavelet 
orthonormal basis. we give a table a few common (and short) filters commonly 
used. See Table 14.19 for filters from the Daubechies, Coiflet and Symmlet 
families '. See Exercise 14.5 for some common properties of wavelet filters. 

The careful reader might have already noticed that when the length of 
the filter is larger than two, boundary problems occur (there are no bound- 
ary problems with the Haar wavelet). There are several ways to  handle the 
boundaries, two main are: symmetric and periodzc, that is, extending the orig- 
inal function or data set in a symmetric or periodic manner to accommodate 
filtering that goes outside of domain of function/data. 

14.3 WAVELET S H R I N K AG E 

Wavelet shrinkage provides a simple tool for nonparametric function estima- 
tion. It is an active research area where the methodology is based on optimal 
shrinkage estimators for the location parameters. Some references are Donoho 
and Johnstone (1994, 1995), Vidakovic (1999), Antoniadis, and Bigot and Sap- 
atinas (2001). In this section we focus on the simplest, yet most important 
shrinkage strategy - wavelet thresholding. 

In discrete wavelet transform the filter H is an "averaging" filter while its 
mirror counterpart G produces details. The wavelet coefficients correspond 
to  details. When detail coefficients are small in magnitude, they may be 

IFilters are indexed by the number of taps and rounded at seven decimal places 
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Haar 
Daub 4 
Daub 6 
Coif 6 
Daub 8 
Symm 8 
Daub 10 
Symm 10 
Daub 12 
Symm 12 

Table 14.19 
let Families. 

Some Common Wavelet Filters from the Daubechies, Coiflet and Symm- 

l/Jz 
0.4829629 
0.3326706 
0.0385808 
0.2303778 

-0.0757657 
0.1601024 
0.0273331 
0.1115407 
0.0154041 

1/Jz 
0.8365163 
0.8068915 

0.7148466 

0.6038293 
0.0295195 
0.4946239 
0.0034907 

-0.1269691 

-0.0296355 

0.2241439 
0.4598775 

0.6308808 
0.4976187 
0.7243085 

0.7511339 
-0.1179901 

-0.0771616 

-0.0391342 

-0.1294095 
-0.13501 10 
0.60749 16 

0.8037388 
0.1384281 
0.1993975 
0.3152504 

-0.04831 17 

-0.0279838 

-0.0854413 
0.7456876 

0.2978578 
-0.2422949 
0.7234077 

-0.2262647 
0.4910559 

-0.1870348 

0.0352263 
0.2265843 
0.0308414 

-0.0992195 
-0.0322449 
0.6339789 

-0.1297669 
0.787641 1 

Daub 8 
Symm 8 
Daub 10 
Symm 10 
Daub 12 
Symm 12 

1 0.0328830 -0.0105974 
-0.0126034 0.0322231 
0.0775715 -0.0062415 -0.0125808 0.0033357 
0.0166021 -0.1753281 -0.0211018 0.0195389 
0.0975016 0.0275229 -0.0315820 0.0005538 0.0047773 -0.0010773 
0.3379294 -0.0726375 -0.0210603 0.0447249 0.0017677 -0.0078007 

omitted without substantially affecting the general picture. Thus the idea of 
thresholding wavelet coefficients is a way of cleaning out unimportant details 
that  correspond to  noise. 

An important feature of wavelets is that  they provide unconditional bases2 
for functions that are more regular. smooth have fast decay of their wavelet 
coefficients. As a consequence, wavelet shrinkage acts as a smoothing opera- 
tor. The same can not be said about Fourier methods. Shrinkage of Fourier 
coefficients in a Fourier expansion of a function affects the result globally due 
to  the non-local nature of sines and cosines. However, trigonometric bases 
can be localized by properly selected window functions] so that they provide 
local. wavelet-like decompositions. 

Why does wavelet thresholding work? Wavelet transforms disbalanced 
data. Informally, the "energy" in data set (sum of squares of the data) is 
preserved (equal to  sum of squares of wavelet coefficients) but this energy is 
packed in a few wavelet Coefficients. This dzsbalancing property ensures that 
the function of interest can be well described by a relatively small number of 
wavelet coefficients. The normal i.i.d. noise, on the other hand. is invariant 
with respect to  orthogonal transforms (e.g., wavelet transforms) and passes to  
the wavelet domain structurally unaffected. Small wavelet coefficients likely 

21nformally. a family {q2}  is an unconditional basis for a space of functions S if one can 
determine if the function f = Eta,& belongs to S by inspecting only the magnitudes of 
coefficients. la,/s. 
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correspond to  a noise because the signal part gets transformed to  a few big- 
magnitude coefficients. 

The process of thresholding wavelet coefficients can be divided into two 
steps. The first step is the policy choice, which is the choice of the thresh- 
old function T .  Two standard choices are: hard and soft thresholding with 
corresponding transformations given by: 

T h a r d  (d .X )  = d l(Id1 > A), 

T S O f t ( d .  A) = (d  - s i g n ( d ) A )  l(ldl >. A). (14.6) 

where X denotes the threshold, and d generically denotes a wavelet coefficient. 
Figure 14.6 shows graphs of (a) hard- and (b) soft-thresholding rules when 
the input is wavelet coefficient d. 

/ - 1  

--I-- 

Fig. 14.6 (a) Hard and (b) soft thresholding; with X = 1. 

Another class of useful functions are general shrinkage functions. A func- 
tion S from that class exhibits the following properties: 

S ( d )  M 0. for d small: S ( d )  M d, for d large. 

Many state-of-the-art shrinkage strategies are in fact of type S(d) .  
The second step is the choice of a threshold if the shrinkage rule is thresh- 

olding or appropriate parameters if the rule has 5’-Functional form. In the 
following subsection we briefly discuss some of the standard methods of se- 
lecting a threshold. 
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14.3.1 Universal Threshold 

In the early 199Os, Donoho and Johnstone proposed a threshold X (Donoho 
and Johnstone, 1993; 1994) based on the result in theory of extrema of normal 
random variables. 

Theorem 14.1 Let Z1,. . . ~ 2, be a sequence of i . i .d.  standard normal ran- 
dom variables. Define 

A, = { max 5 JG}. 
k l ,  ... .n 

Then  

I n  addition, if 

~ , ( t )  = { ,  max > t + d G } ,  
2=1,.. .,n 

then  P(B,(t))  < e - g .  

Informally, the theorem states that the Zis are “almost bounded” by f d m .  
Anything among the n values larger in magnitude than d- does not look 
like the i.i.d. normal noise. This motivates the following threshold: 

(14.7) 

which Donoho and Johnstone call universal. This threshold is one of the first 
proposed and provides an easy and automatic thresholding. 

In the real-life problems the level of noise 0 is not known, however wavelet 
domains are suitable for its assessment. Almost all methods for estimating the 
variance of noise involve the wavelet coefficients at the scale of finest detail. 
The signal-to-noise ratio is smallest at this level for almost all reasonably 
behaved signals, and the level coefficients correspond mainly to the noise. 

Some standard estimators of 0 are: 

or a more robust MAD estimator; 

(ii) 6 = 1/0.6745 mediankId,-l,k - median,(d,-l,,)/, (14.9) 

where dn- l ,k  are coefficients in the level of finest detail. In some situations, for 
instance when data sets are large or when 0 is over-estimated, the universal 
thresholding oversmooths. 
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Example 14.2 The following MATLAB script demonstrates how the wavelets 
smooth the functions. A Doppler signal of size 1024 is generated and random 
normal noise of size o = 0.1 is added. By using the Symmlet wavelet 8-tap fil- 
ter the noisy signal is transformed. After thresholdmg in the wavelet domain 
the signal is back-transformed to  the original domain. 

% Demo of wavelet-based function estimation 
clear all 
close all 
% (i) Make “Doppler” signal on [O,ll 
t=linspace(O,l,lO24); 
sig = sqrt(t.*(l-t)).*sin((2*pi*1.05) ./(t+.05)); 
% and plot it 
figure(1); plot(t, sig) 

% (ii) Add noise of size 0.1. We are fixing 
% the seed of random number generator for repeatability 
% of example. We add the random noise to the signal 
% and make a plot. 
randn(’seed’,I) 
sign = sig + 0.1 * randn(size(sig)); 
figure(2); plot(t, sign) 

% (iii) Take the filter H, 

filt = [ -0.07576571478934 
0.49761866763246 
0.29785779560554 
-0.01260396726226 

% (iv) Transform the noisy 
% Choose L=8, eight detail 

sw = dwtr(sign, 8, filt); 

in this case this is SYMMliET 8 

-0.02963552764595 . 
0.80373875180522 . 
-0.09921954357694 . 
0.03222310060407] : 

signal in the wavelet domain. 
levels in the decomposition. 

% At this point you may view the sw. Is it disbalanced? 
% Is it decorrelated? 
%(v) Let’s now threshold the small coefficients. 
The universal threshold is determined as 
lambda = sqrt(2 * log(1024)) * 0.1 = 0.3723 

Here we assumed $sigma=O.l$ is known. In real life 
this is not the case and we estimate sigma. 
A robust estimator is ’MAD’ from the finest level of detail 
believed to be mostly transformed noise. 

finest = sw(513:1024); 
sigma-est = 1/0.6745 * median(abs( finest - mediancfinest))); 
lambda = sqrt(2 * log(1024)) * sigma-est; 

% hard threshold in the wavelet domain 
swt=sw . *  (abs(sw) > lambda ) ;  
figure(3); plot([1:10241, swt, ’- ’) 
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% (vi) Back-transform the thresholded object to the time 
% domain. Of course, retain the same filter and value L. 

Fig. 14.7 Demo output (a) Original doppler signal, (b) Noisy doppler, (c) Wavelet 
coefficients that “survived” thresholding, (d) Inverse-transformed thresholded coeffi- 
cients. 

Example 14.3 A researcher was interested in predicting earthquakes by the  
level of water in nearby wells. She had  a large (8192 = 213 measurements) 
data set of water levels taken every hour in a period of time of about one year 
in a California well. Here is the  description of the  problem: 

The ability of water wells to act as strain meters has been observed for 
centuries. Lab studies indicate that a seismic slip occurs along a fault 
prior to rupture. Recent work has attempted to quantify this response, 
in an effort to use water wells as sensitive indicators of volumetric strain. 
If this is possible, water wells could aid in earthquake prediction by 
sensing precursory earthquake strain. 

We obtained water leveI records from a well in southern California, 
collected over a year time span. Several moderate size earthquakes 
(magnitude 4.0 - 6.0) occurred in close proximity to the well during 
this time interval. There is a a significant amount of noise in the wa- 
ter level record which must first be filtered out. Environmental factors 
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such as earth tides and atmospheric pressure create noise with frequen- 
cies ranging from seasonal to semidiurnal. The amount of rainfall also 
affects the water level, as do surface loading, pumping, recharge (such 
as an increase in water level due to irrigation), and sonic booms, to 
name a few. Once the noise is subtracted from the signal, the record 
can be analyzed for changes in water level, either an increase or a de- 
crease depending upon whether the aquifer is experiencing a tensile or 
compressional volume strain. just prior to an earthquake. 

This data set is given in earthquake. dat . A plot of the raw data for 
hourly measurements over one year (8192 = 213 observations) is given in 
Figure 14.8(a). The detail showing the oscillation at the earthquake time is 
presented in Figure 14.8(b). 

,- 

I 
3 1  

~ 

i 

Fig. 14.8 Panel (a) shows n = 8192 hourly measurements of the water level for a well 
in an earthquake zone. Notice the wide range of water levels at the time of an earth- 
quake around t = 417. Panel (b) focusses on the data around the earthquake time. 
Panel (c) shows the result of LOESS. and (d) gives a wavelet based reconstruction. 
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Application of LOESS smoother captured trend but the oscillation artifact 
is smoothed out as evident from Figure 14.8(c). After applying the Daubechies 
8 wavelet transform and universal thresholding we got a fairly smooth baseline 
function with preserved jump at the earthquake time. The processed data are 
presented in Figure 14.8(d). This feature of wavelet methods demonstrated 
data adaptivity and locality. 

How this can be explained? The wavelet coefficients corresponding to the 
earthquake feature (big oscillation) are large in magnitude and are located at 
all even the finest detail level. These few coefficients “survived” the thresh- 
olding. and the oscillation feature shows in the inverse transformation. See 
Exercise 14.6 for the suggested follow-up. 

Fig. 14.9 
Lenna image. 

One step in wavelet transformation of 2-D data exemplified on celebrated 
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Example 14.4 The most important application of i!-D wavelets is in image 
processing. Any gray-scale image can be represented by a matrix A in which 
the entries correspond to  color intensities of the pixel at location ( i , j ) .  We 
assume as standardly done that A is a square matrix of dimension 2n x 2n. n 
integer. 

The process of wavelet decomposition proceeds as follows. On the rows of 
the matrix A the filters H and G are applied. Two resulting matrices H,A 
and G,A are obtained, both of dimension 2n x 2n-1 (Subscript r suggest 
that the filters are applied on rows of the matrix A. 2n-1 is obtained in the 
dimension of H,A and G,A because wavelet filtering decimate). Now. the 
filters H and G are applied on the columns of H,A and G,A and matrices 
H,H,A, G,H,A, H,G,A and G,G,A of dimension 2n-1 x 2"-l are obtained. 
The matrix H,H,A is the average, while the matrices G,H,A,H,G,A and 
G,G,A are details (see Figure 14.9).3 

The process could be continued in the same fashion with the smoothed 
matrix H,H,A as an input, and can be carried out until a single number is 
obtained as an overall "smooth" or can be stopped at any step. Notice that 
in decomposition exemplified in Figure 14.9, the matrix is decomposed to  one 
smooth and three detail submatrices. 

A powerful generalization of wavelet bases is the concept of wavelet pack- 
ets. Wavelet packets result from applications of operators H and G, discussed 
on p. 271, in any order. This corresponds to  an overcomplete system of func- 
tions from which the best basis for a particular data set can be selected. 

14.4 EXERCISES 

14.1. Show that the matrix W' in (14.2) is orthogonal 

14.2. In (14.1) we argued that ?,bJk and $ J / k '  are orthogonal functions whenever 
j = j '  and ,k = k' is not satisfied simultaneously. Argue that d J k  and 
$ 3 ! k /  are orthogonal whenever j '  2 j .  Find an example in which $hJk and 
$j'k'  are not orthogonal if j '  < j .  

14.3. In Example 14.1 it was verified that in (14.3) f(x) = 1 whenever x E 
[O. 1). Show that f(z) = 0 whenever z E [l. 2). 

& & &  & 14.4. Verify that (fi, --a. 1, -1, 2. -&, 2. -2) is aHaar wavelet trans- 
form of data set y = (1,0, -3 ,2 ,1 .0 ,1 ,2)  by wing operators H and G 
from (14.4). 

3This image of Lenna (Sjooblom) Soderberg, a Playboy centerfold from 1972, has become 
one of the most widely used standard test images in signal processing. 
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Hint. For the Haar wavelet, low- and high-pass filters are h = (l/d l/d) 
and g = (1/& - l/d), so 

H Y  = H((1 ,0 ,  -3,2, 1 , 0 , 1 , 2 ) )  
= ( l . l / h +  O . l / h ,  - 3 . 1 / h +  2.1/&,  

1 . 1 / & + 0 .  l/h, 1 . 1 / h + 2 . 1 / h )  

Repeat the G operator on H y  and H ( H y ) .  The final filtering is H ( H ( H y ) ) .  
Organize result as 

14.5. Demonstrate that all filters in Table 14.19 satisfy the following proper- 
ties (up to rounding error): 

Cihi = A, Cih: = 1, and Cihihi+z = 0. 

14.6. Refer to Example 14.3 in which wavelet-based smoother exhibited no- 
table difference from the standard smoother LOESS. Read the data 
earthquake. dat into MATLAB, select the wavelet filter, and apply the 
wavelet transform to the data. 

(a) Estimate the size of the noise by estimating (T using MAD from page 
276 and find the universal threshold Xu. 

(b) Show that finest level of detail contains coefficients exceeding the 
universal threshold. 

(c) Threshold the wavelet coefficients using hard thresholding rule with 
X u  that you have obtained in (b), and apply inverse wavelet transform. 
Comment. How do you explain oscillations at boundaries? 
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15 
B 00 t s trap 

Confine! I‘ll confine myself no finer than I am: 
these clothes are good enough to drink in; and so be these boots too: 
an they be not. let them hang themselves in their own straps. 

William Shakespeare (Twelfth Nzghk. Act 1, Scene 111) 

15.1 BOOTSTRAP SAMPLING 

Bootstrap resampling is one of several controversial techniques in statistics 
and according to some. the most controversial. By resampling, we mean to 
take a random sample f r o m  the  sample,  as if your sampled data X I , .  . . , X ,  
represented a finite population of size n. This new s8ample (typically of the 
same size n) is taken by ”sampling with replacement”, so some of the n items 
from the original sample can appear more than once. This new collection 
is called a bootstrap sample.  and can be used to assess statistical properties 
such as an estimator’s variability and bias. predictive performance of a rule, 
significance of a test, and so forth. when the exact analytic methods are 
impossible or intractable. 

By simulating directly from the data. the bootstrap avoids making un- 
necessary assumptions about parameters and models -- we are figuratively 
pulling ourselves up by our bootstraps rather than relying on the outside help 
of parametric assumptions. In that sense, t h t  bootstrap is a nonparametric 
procedure. In fact, this resampling technique includes both parametric and 

285 
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Fig. 15.1 (a) Bradley Efron, Stanford University: (b) Prasanta Chandra Mahalanobis 
(1893-1972) 

nonparametric forms, but it is essentially empirical. 
The term bootstrap was coined by Bradley Efron (Figure 15.l(a)) at his 

1977 Stanford University Reitz Lecture to describe a resampling method that 
can help us to understand characteristics of an estimator (e.g.. uncertainty, 
bias) without the aid of additional probability modeling. The bootstrap de- 
scribed by Efron (1979) is not the first resampling method to help out this 
way (e.g., permutation methods of Fisher (1935) and Pitman (1937). spatial 
sampling methods of Mahalanobis (1946), or jack-knife methods of Quenouille 
(1949)). but it's the most popular resampling tool used in statistics today. 

So what good is a bootstrap sample? For any direct inference on the 
underlying distribution, it is obviously inferior to the original sample. If we 
estimate a parameter 8 = 8 ( F )  from a distribution F ,  we obviously prefer 
to use 0, = 8(Fn).  What the bootstrap sample can tell us, is how 8, might 
change from sample to sample. While we can only compute On once (because 
we have just the one sample of n),  we can resample (and form a bootstrap 
sample) an infinite amount of times. in theory. So a meta-estimator built from 
a bootstrap sample (say 8) tells us not about 8, but about On. If we generate 
repeated bootstrap samples 8 1 ,  . . . . 8 ~ ,  we can form an indirect picture of how 
On is distributed, and from this we generate confidence statements for 8.  B is 
not really limited - it's as large as you want as long as you have the patience 
for generating repeated bootstrap samples. 

For example, 5 & z,poz constitutes an exact (l-a)lOO% confidence in- 
terval for ,LL if we know X I , .  . . , X ,  - n / ( ~ ,  n') and 05 = n/fi. We are 
essentially finding the appropriate quantiles from the sampling distribution 
of point estimate 2 .  Unlike this simple example, characteristics of the sam- 
ple estimator often are much more difficult to ascertain, and even an interval 
based on a normal approximation seems out of reach or provide poor coverage 
probability. This is where resampling comes in most useful. 
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Fig. 15.2 Baron Von hfunchausen: the first bootstrapper. 

The idea of bootstrapping was met with initial trepidation. After all, it 
might seem to be promising something for nothing. The stories of Baron Von 
Munchausen (Raspe, 1785), based mostly on folk tales, include astounding 
feats such as riding cannonballs. travelling to the Moon and being swallowed 
by a whale before escaping unharmed. In one adventure. the baron escapes 
from a swamp by pulling himself up by his own hail-. In later versions he was 
using his own bootstraps to pull himself out of the sea, which gave rise to the 
term bootstrapping. 

15.2 N 0 N PAR A M  E T  R I C BOOTSTRAP 

The percentile bootstrap procedure provides a 1-a nonparametric confidence 
interval for 0 directly. We examine the EDF from the bootstrap sample for 
8, - a,, . . . . 8, - On. If On is a good estimate of 0, then we know 8 - 0, 
is a good estimate of 0, - 0. We don’t know the distribution of On - 0 
because we don’t know 0, so we cannot use the quantiles from 0, - 0 to 
form a confidence interval. But we do know the distribution of 8 - On, and 
the quantiles serve the - same purpose. Order the outcomes of the bootstrap 
sample (01 - on. .  . . , @B - 0,). Choose the c y / 2  and 1 - cy/2 sample quantiles 
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from the bootstrap sample: [e(l - a/2)  - en, #(a/2)  - en].  Then 

P e(i - 4 2 )  - en < e - en < 8 ( 4 2 )  - en)  
= P (e(1-  4 2 )  < 0 < &/a)) Rz 1 - a.  

( 

The quantiles of the bootstrap samples form an approximate confidence in- 
terval for 0 that is computationally simple to construct. 

Parametric Case. If the actual data are assumed to be generated from a 
distribution F ( z ;  6) (with unknown 6),  we can improve over the nonparametric 
bootstrap. Instead of resampling from the data, we can generate a more 
efficient bootstrap sample by simulating data from F ( z ;  O n ) .  

Example 15.1 Hubble Telescope and Hubble Correlation. The Hub- 
ble constant ( H )  is one of the most important numbers in cosmology because 
it is instrumental in estimating the size and age of the universe. This long- 
sought number indicates the rate at which the universe is expanding, from the 
primordial “Big Bang.” The Hubble constant can be used to determine the in- 
trinsic brightness and masses of stars in nearby galaxies, examine those same 
properties in more distant galaxies and galaxy clusters. deduce the amount of 
dark matter present in the universe, obtain the scale size of faraway galaxy 
clusters, and serve as a test for theoretical cosmological models. 

In 1929, Edwin Hubble (Figure 15.3(a)) investigated the relationship be- 
tween the distance of a galaxy from the earth and the velocity with which 
it appears to be receding. Galaxies appear to be moving away from us no 
matter which direction we look. This is thought to be the result of the Big 
Bang. Hubble hoped to provide some knowledge about how the universe was 
formed and what might happen in the future. The data collected include 
distances (megaparsecsl) to n = 24 galaxies and their recessional velocities 
(km/sec). The scatter plot of the pairs is given in Figure 15.3(b). Hubble’s 
law claims that Recessional Velocity is directly proportional to the Distance 
and the coefficient of proportionality is Hubble’s constant, H .  By working 
backward in time, the galaxies appear to meet in the same place. Thus 1/H 
can be used to estimate the time since the Big Bang - a measure of the age of 
the universe. Thus, because of this simple linear model, it is important to es- 
timate correlation between distances and velocities and see if the no-intercept 
linear regression model is appropriate. 

parsec = 3.26 light years. 
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Fig. 15.3 (a) Edwin Powell Hubble (1889-1953). American astronomer who is con- 
sidered the founder of extragalactic astronomy and who provided the first evidence of 
the expansion of the universe: (b) Scatter plot of 24 disfance-velocity pairs. Distance 
is measured in parsecs and velocity in km/h: (c) Histogram of correlations from 50000 
bootstrap samples: (d) Histogram of correlations of Fisher’s z transformations of the 
bootstrap correlations. 
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Distance in megaparsecs ([Mpc]) .032 .034 .214 .263 ,275 ,275 
.45 .5 .5 .63 .8 .9 
.9 .9 .9 1.0 1.1 1.1 
1.4 1.7 2.0 2.0 2.0 2.0 

The recessional velocity ([km/sec]) 

The correlation coefficient between mpc and u, based on n = 24 pairs is 
0.7896. How confident are we about this estimate? To answer this question 
we resample data and obtain B = 50000 subrogate samples, each consisting 
of 24 randomly selected (with repeating) pairs from the original set of 24 
pairs. The histogram of all correlations r:, i = 1,. . .50000 among bootstrap 
samples is shown in Figure 15.3(c). From the bootstrap samples we find that 
the standard deviation of r can be estimated by 0.0707. From the empirical 
density for r ,  we can generate various bootstrap summaries about r .  

Figure 15.3(d) shows the Fisher z-transform of the r*s, z: = 0.51og[(l + 
r:)/(l - r:)] which are bootstrap replicates of z = 0.51og[(l + r)/(1 - r ) ] .  
Theoretically, when normality is assumed, the standard deviation of z is (n - 
3)-1 /2 .  Here, we estimate standard deviation of z using bootstrap samples 
as 0.1906 which is close to (24 - 3)-lI2 = 0.2182. The core of the MATLAB 
program calculating bootstrap estimators is 

170 290 -130 -70 -185 -220 

650 150 500 920 450 500 
500 960 500 850 800 1090 

200 290 270 200 300 -30 

>> 
>> 
>> 

>> 

bsam= [I ; 
B=50000; 
for b = 1:B 
bs = bootsample(pairs); 
ccbs = corrcoef (bs) ; 
bsam = Cbsam ccbs(l,2)] ; 
end 

where the function 

bootsample (XI 

is a simple m-file resampling the vecin that is n x p data matrix with n equal 
to number of observations and p equal to dimension of a single observation. 

function vecout = bootsample(vecin) 
In, p] = size(vecin1; 
selected-indices = floor(l+n.*(rand(l,n))); 
vecout = vecin(se1ected-indices,:); 
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Example 15.2 Trimmed Mean. For robust estiniation of the population 
mean, outliers can be trimmed off the sample, ensuring the estimator will 
be less influenced by tails of the distribution. If we trim off almost all of the 
data, we will end up using the sample median. Suppose we trim off 50% of the 
data by excluding the smallest and largest 25% of the sample. Obviously, the 
standard error of this estimator is not easily tractable, so no exact confidence 
interval can be constructed. This is where the bootstrap technique can help 
out. In this example, we will focus on constructing a two-sided 95% confidence 
interval for p, where 

is an alternative measure of central tendency, the same as the population 
mean if the distribution is symmetric. 

If we compute the trimmed mean from the sample as pn, it is easy to 
generate bootstrap samples and do the same. In this case, limiting B to 1000 
or 2000 will make computing easier, because each repeated sample must be 
ranked and trimmed before f i  can be computed. Let b(.025) and fi(.975) be 
the lower and upper quantiles from the bootstrap s(amp1e f i l ,  . . . , f i ~ .  

The MATLAB m-file trimmean(x,P) trims P% (so 0 < P < 100) of the 
data, or P/2% of the biggest and smallest observations. The MATLAB m-file 

ciboot(x,’trimmean’,5,.90,1000,10) 

acquires 1000 bootstrap samples from x, performs the trimmean function (its 
additional argument, P=lO. is left on the end) and a 90% (2-sided) confidence 
interval is generated. The middle value is the point estimate. Below, the 
vector x represents a skewed sample of test scores, and a 90% confidence 
interval for the trimmed mean is (57.6171, 89.9474). The third argument in 
the ciboot function can take on integer values between one and six, and this 
input dictates the type of bootstrap to construct. The input options are 

1. Normal approximation (std is bootstrap). 

2. Simple bootstrap principle (bad, don’t use). 

3. Studentized, std is computed via jackknife. 

4. Studentized. std is 30 samples’ bootstrap. 

5. Efron’s pctl method. 

6. Efron’s pctl method with bias correction(def,ault) 
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>> x = [11,13,14,32,55,58,61,67,69,73,73,89,90,93,94,94,95,96,99,991; 
>> m = trimmean(x,iO) 
m =  

>> m2 = mean(x) 
m2 = 

>> ciboot (x, 'trimmean' ,5, .90,1000,10) 

71.7895 

68.7500 

ans = 
57.6171 71.7895 82.9474 

Estimating Standard Error. The most common application of a simple 
bootstrap is to  estimate the standard error of the estimator en. The algorithm 
is similar to the general nonparametric bootstrap: 

0 Generate B bootstrap samples of size n 

0 Evaluate the bootstrap estimators 6 1 ,  . . . ,6,. 

0 Estimate standard error of 0, as 

where 6* = B-lC6i.  

15.3 BIAS CORRECTION FOR NONPARAMETRIC INTERVALS 

The percentile method described in the last section is simple, easy to use. 
and has good large sample properties. However. the coverage probability is 
not accurate for many small sample problems. The Accelerutzon and Bzas- 
Correction (or BC,) method improves on the percentile method by adjusting 
the percentiles (e.g., 6( l  - 0/2 .6(~1/2) )  chosen from the bootstrap sample. A 
detailed discussion is provided in Efron and Tibshirani (1993). 

The BC, interval is determined by the proportion of the bootstrap esti- 
mates d less than On, i.e., po = B-lCI(t?, < 0,) define the bias factor as 

20 = @-%a) 

express this bias, where @ is the standard normal CDF, so that values of zo 
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away from zero indicate a problem. Let 

be the acceleration factor .  where e* is the average of the bootstrap estimates 
. . . ,e,. It gets this name because it measures the rate of change in 06% as 

a function of 0. 
Finally. the 100(1 - a)% BC, interval is computed as 

where 

Note that if zo = 0 (no measured bias) and a0 = 0, then (15.1) is the 
same as the percentile bootstrap interval. In the MATLAB m-file ciboot. 
the BC, is an option (6) for the nonparametric interval. For the trimmed 
mean example, the bias corrected interval is shifted upward: 

>> ciboot(x,’trimmean’,6,.90,1000,10) 
ans = 

60.0412 71.7895 84.4211 

Example 15.3 Recall the data from Crowder et al. (1991) which was dis- 
cussed in Example 10.2. The data contain strength measurements (in coded 
units) for 48 pieces of weathered cord. Seven of the pieces of cord were dam- 
aged and yielded strength measurements that  are considered right censored. 
The following MATLAB code uses a bias-corrected bootstrap to  calculate a 
95% confidence interval for the probability that the ;strength measure is equal 
to or less than 50. that is, F(50).  

>> 

>> 
>> 
>> 

data = [36.3, 41.7, 43.9, 49.9, 50.1, 50.8, 51.9, 52.1, 52.3, 52.3, . . .  
52.4, 52.6, 52.7, 53.1, 53.6, 53.6, 53.9, 53.9, 54.1, 54.6, . . .  
54.8, 54.8, 55.1, 55.4, 55.9, 56.0, 56.1, 56.5, 56.9, 57.1, . . .  
57.1, 57.3, 57.7, 57.8, 58.1, 58.9, 59.0, 59.1, 59.6, 60.4, . . .  
60.7, 26.8, 29.6, 33.4, 35.0, 40.0, 41.9, 42.51; 

censor=Cones(l,41), zeros(l,7)1 ; 
[best, sortdat, sortcenl = KMcdfSM(data’, censor’, 0); 
prob = best( sum( 50.0 >=data), 1) 
prob = 
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0.0949 
>> function fkmt = kme_at_50(dt) 

% this function performs Kaplan-Meier 
% estimation with given parameter 
% and produces estimated F(50.0) 
[kmest sortdat] = KMcdfSM(dt(: ,1), dt(: ,2), 0 ) ;  
fkmt = kmest(sum(50.0 >= sortdat), 1); 

Using h e - a t - 5 0  .m and c iboot  functions we obtain a confidence interval for 
F(50)  based on 1000 bootstrap replicates: 

>> ciboot( [data’ censor’], ’kme-at-50’, 5, .95, 1000) 
ans = 

0.0227 0.0949 0.1918 
>> % a 95% C I  for F(50) is (0.0227, 0.1918) 
>> function fkmt = kme-all-x(dt) 

% this function performs Kaplan-Meier estimation with given parameter 
% and gives estimated F()  for all data points 
[kmest sortdat] = KMcdfSM(dt(: ,1), dt(: , 2 ) ,  0) ;  
data = C36.3, 41.7, //...deleted...//, 41.9, 42.51; 
temp-val = [I; 
%calculate each CDF F O  value for all data points 
for i=l:length(data) 
if sum(data(i) >= sortdat) > 0 

else % when there is no observation, CDF is simply 0 

end 

temp-val = [temp-val kmest(sum(data(i) >= sortdat) , 111 ; 

temp-val = [temp-val 01; 

end 
fkmt = temp-Val; 

The MATLAB functions c iboot  and h e - a l l - x  are used to produce Figure 
15.4: 

>> ci = ciboot([data’ censor’], ’he-all-x’, 5, .95, 1000); 
>> figure; 
>> plot (data’, ci(: ,2) ’ , ’ . ’1 ; 
>> hold on; 
>> plot(data’, ci(:,l)’, ’+’I; 
>> plot(data’, ci(:,3)’, ’ * ’ ) ;  
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Fig. 15.4 95% confidence band the CDF of Crowder’s data using 1000 bootstrap 
samples. Lower boundary of the confidence band is plotted with marker ’+‘, while the 
upper boundary is plotted with marker ’*.. 

15.4 T H E  JACKKNIFE 

The jackknzfe procedure, introduced by Quenouille (1949). is a resampling 
method for estimating bias and variance in en. It predates the bootstrap and 
actually serves as a special case. The resample is based on the “leave one 
out’’ method, which was computationally easier when computing resources 
were limited. 

The z t h  jackknife sample is (21, . . . , ~ ~ - 1 .  ~ , + 1 ,  ..., zn). Let 8(,) be the esti- 
mator of 8 based only on the ith jackknife sample. The jackknife estimate of 
the bias is defined as 

bJ = (72 - 1) pn - 8’) , 

where 8* = n-1C8(i) .  The jackknife estimator for the variance of en is 

The jackknife serves as a poor man’s version of the bootstrap. That is. it 
estimates bias and variance the same. but with a limited resampling mecha- 
nism. In MATLAB, the m-file 

jackknife(x,function,pl, . . )  

produces the jackknife estimate for the input function. The function j ackrsp (x, k 
produces a matrix of jackknife samples (taking k elements out, with default 
of k = 1). 
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>> [b,v,f]=jackknife(’trimmean’, x ’ ,  10) 
%note: row vector input 

b =  
-0.1074 % Jackknife estimate of bias 

65.3476 % Jackknife estimate of variance 

71.8968 % Jackknife corrected estimate 

v =  

f =  

The jackknife performs well in most situations, but poorly in some. In case 
8, can change significantly with slight changes to the data, the jackknife can 
be temperamental. This is true with 8 = median, for example. In such cases, 
it is recommended to augment the resampling by using a delete-d jackknife, 
which leaves out d observations for each jackknife sample. See Chapter 11 of 
Efron and Tibshirani (1993) for details. 

15.5 BAYESIAN BOOTSTRAP 

The Bayesian bootstrap (BB), a Bayesian analogue to the bootstrap, was 
introduced by Rubin (1981). In Efron’s standard bootstrap, each observation 
X ,  from the sample X I , .  . . . X ,  has a probability of l / n  to be selected and 
after the selection process the relative frequency f, of X ,  in the bootstrap 
sample belongs to the set (0. l / n ,  2/n, .  . . , (n  - l ) / n ,  1). Of course. C,f, = 1. 
Then, for example, if the statistic to be evaluated is the sample mean, its 
bootstrap replicate is X* = C,f,X,.  

In Bayesian bootstrapping. at each replication a discrete probability dis- 
tribution g = (91,. . . , g,} on {1,2.. . . . n}  is generated and used to produce 
bootstrap statistics. Specifically, the distribution g is generated by generating 
n - 1 uniform random variables U, N U ( 0 ,  l), z = 1.. . . , n - 1, and ordering 
them according to 0, = U, ,-I with 0 0  = 0 and 0, = 1. Then the probability 
of X ,  is defined as 

- - 
g, = U, - Uz-l .  a = 1,. . . ,n.  

If the sample mean is the statistic of interest. its Bayesian bootstrap replicate 
is a weighted average if the sample, X* = C,g,X,. The following example 
explains why this resampling technique is Bayesian. 

Example 15.4 Suppose that X I . .  . . , X ,  are i.i.d. Ber(p) ,  and we seek a 
BB estimator of p .  Let n1 be the number of ones in the sample and n - n1 
the number of zeros. If the BB distribution g is generated then let PI = 
Cg,l(X, = 1) be the probability of 1 in the sample. The distribution for PI is 
simple, because the gaps in the U l ,  , , . , U,-l follow the (n-1)-variate Dirichlet 
distribution, Dzr( l .1 , .  . . . 1). Consequently, PI is the sum of n1 gaps and is 
distrubted Be(n1. n - nl ) .  Note that Be(n1, n - 721) is, in fact, the posterior 
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for PI if the prior is x [P1(1 - PI)]-’ .  That is. for .c E (0. l}, 

P ( X  = zlP1) = P;J(1 - P p Z .  PI K [P1(1-  p1)l-l .  

then the posterior is 

[ P l / X 1  ; . . . ,  X,] ~ B e ( n l : n - n l ) .  

For general case when X i  take d 5 n different values the Bayesian interpreta- 
tion is still valid; see Rubin’s (1981) article. 

Example 15.5 We revisit Hubble’s data and give a BB estimate of variability 
of observed coefficient of correlation T .  For each BB distribution g calculate 

where ( X i ,  X)‘ i = 1, . . . 2 4  are observed pairs of dist,ances and velocities. The 
MATLAB program below performs the BB resampling. 

>> 

>> 

>> 
>> 
>> 
>> 

>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 

x = C0.032 0.034 0.214 0.263 0.275 0.275 0.45 0.5 0.5 0.63 
0.8 0.9 0.9 0.9 0.9 1.0 1.1 1.1 1.4 1.7 2.0 2.0 2.0 2.0 1 ;  %Mpc 

650 150 500 920 450 500 500 960 500 850 800 10901; %velocity 
y = El70 290 -130 -70 -185 -220 200 290 270 200 300 -30 . . .  

n=24; corr(x’, y’); 
B=50000; %number of BB replicates 
bbcorr = [ I ;  %store BB correlation replicates 
f o r  i = 1:B 

sampl = (rand(1,n-1)); 
osmp = sort (sampl) ; 
all = [ O  osamp 13; 
gis = diff(al1, 1); 

% gis is BB distribution, 
% with gis as weights 

corrbb is correlation 

ssx = sum(gis .* x); ssy = sum( gis . *  y) ;  
ssx2 = sum(gis . *  x.-2); ssy2 = sum(gis . *  y.-2); 
ssxy = sum(gis . *  x . *  y); 
corrbb = (ssxy - ssx * ssy)/ . . .  
sqrt((ssx2 - ssxA2)*(ssy2 - ssy-2)); %correlation replicate 

%add replicate to the storage sequence bbcorr=[bbcorr corrbb]; 
end 
figure ( 1 ) 
hist(bbcorr,80) 
std (bbcorr) 
zs = 1/2 * log((l+bbcorr)./(l-bbcorr)); %Fis:her’s z 
figure (2) 
hist ( z s  ,801 
std(zs) 
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fig. 15.5 The histogram of 50,000 BB resamples for the correlation between the 
distance and velocity in the Hubble data; (b) Fisher z-transform of the BB correlations. 

The histograms of correlation bootstrap replicates and their z-transforms 
in Figure 15.5 (a-b) look similar to the those in Figure 15.3 (c-d). Numerically, 
B = 50,000 replicates gave standard deviation of observed T as 0.0635 and 
standard deviation of z = 1/21og((l + ~ ) / ( 1  - T ) )  as 0.1704 slightly smaller 
than theoretical 24 - 3X1I2 = 0.2182. 

15.6 PERMUTATION TESTS 

Suppose that in a statistical experiment the sample or samples are taken 
and a statistic S is constructed for testing a particular hypothesis Ho. The 
values of S that seem extreme from the viewpoint of HO are critical for this 
hypothesis. The decision if the observed value of statistics S is extreme is 
made by looking at  the distribution of S when HO is true. But what if such 
distribution is unknown or too complex to find? What if the distribution for 
5' is known only under stringent assumptions that we are not willing to make? 

Resampling methods consisting of permuting the original data can be used 
to  approximate the null distribution of S. Given the sample, one forms the 
permutations that are conszstent with experimental design and Ho,  and then 
calculates the value of S. The values of S are used to estimate its density 
(often as a histogram) and using this empirical density we find an approximate 
p-value. often called a permutat ion p-value. 

What permutations are consistent with Ho? Suppose that in a two-sample 
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problem we want to compare the means of two popidations based on two in- 
dependent samples X I , .  . .  , X ,  and Yl , . .  . ,Yn. T’he null hypothesis Ho is 
1 - 1 ~  = p y .  The permutations consistent with Ho wiould be all permutations 
of a combined (concatenated) sample X I . .  . . , X,. Y ; ,  . . . , Y,. Or suppose we 
a repeated measures design in which observations are triplets corresponding 
to three treatments. i.e., (X11, XlZ3 X13), . . . . ( X n l ,  Xn2, Xn3), and that Ho 
states that the three treatment means are the same, 1-11 = 1-12 = 1-13. Then per- 
mutations consistent with this experimental design are random permutations 
among the triplets (X,,, X,2. Xa3), i = 1,. . . , n and a possible permutation 
might be 

Thus, depending on the design and HO, consistent permutations can be quite 
different. 

Example 15.6 Byzantine Coins. To illustrate the spirit of permutation 
tests we use data from a paper by Hendy and Charles (1970) (see also Hand 
et al, 1994) that represent the silver content (%Ag) (of a number of Byzantine 
coins discovered in Cyprus. The coins (Figure 15.6) are from the first and 
fourth coinage in the reign of King Manuel I, Comnenus (1143-1180). 

1st coinage 5.9 6.8 6.4 7.0 6.6 7.7 7.2 6.9 6.2 
4th coinage 5.3 5.6 5.5 5.1 6.2 5.8 5.8 

The question of interest is whether or not there is statistical evidence to 
suggest that the silver content of the coins was significantly different in the 
later coinage. 

Fig. 15.6 A coin of Manuel I Comnenus (1143-1180) 

Of course. the two-sample t-test or one of its noinparametric counterparts 
is possible to apply here, but we will use the permutation test for purposes of 
illustration. The following MATLAB commands peirform the test: 
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>> coins=[5.9 6.8 6.4 7.0 6.6 7.7 7.2 6.9 6.2 . 
>> 5.3 5.6 5.5 5.1 6.2 5.8 5.81; 
>> coinsl=coins(l:9); coins2=coins(l0:16); 
>> s = (mean(coins~)-mean(coins2))/sqrt(var(coinsl)+var 
>> Sps = [ I ;  asl=O; %Sps is permutation S, 
>> 
>> N=10000; 
>> for i = 1:N 

%as1 is achieved significance level 

coinsp=coins(randperm(l6)); 
coinspl=coinsp(l:9) ; coinsp2=coinsp(lO: 16) ; 
~p = (mean(coinsp~)-mean(coinsp2))/ . . . 

sps = [Sps sp 1 ;  
sqrt (var (coinspl)+var (coinsp2)) ; 

as1 = as1 + (abs(Sp) > S 1 ; 
end 

>> as1 = asl/N 

coins2) 

The value for S is 1.7301, and the permutation p-value or the achieved 
significance level is as1 = 0.0004. Panel (a) in Figure 15.7 shows the permu- 
tation null distribution of statistics S and the observed value of S is indicated 
by the dotted vertical line. Note that there is nothing special about selecting 

and that any other statistics that sensibly measures deviation from Ho : 
p1 = p2 could be used. For example, one could use S = median(Xl)/sl - 
median(X2)/sz, or simply S = - x2. 

To demonstrate how the choice what to permute depends on statistical de- 
sign, we consider again the two sample problem but with paired observations. 
In this case, the permutations are done within the pairs, independently from 
pair to pair. 

Example 15.7 Left-handed Grippers. Measurements of the left- and 
right-hand gripping strengths of 10 left-handed writers are recorded. 

1 Person 1 1  1 2 1  3 I 4  1 5 1 ~ 1 7 1 8 1  1 l 0 I  
1 Left hand (X) I 140 I 90 1 125 I 130 I 95 I 121 I 85 I 97 I 131 I 110 1 

Do the data provide strong evidence that people who write with their left 
hand have greater gripping strength in the left hand than they do in the right 
hand? 
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In the MATLAB solution provided below, dataL and d a t a  are paired 
measurements and pdataL and pdataR are random permutations. either (1.2) 
or (2; l} of the 10 original pairs. The statistics S is the difference of the 
sample means. The permutation null distribution is shown as non-normalized 
histogram in Figure 15.7(b). The position of S with respect to the histogram 
is marked by dotted line. 

>> dataL =[ 140 , 90 , 125 , 130 , 95 , 121 , 85 , 97 , 131 P 110 1 ;  
>> d a t a  = [  138 , 87 , 110 , 132 , 96 , 120 , 86 , 90 , 129 , 100 1 ;  
>> S=mean(dataL - d a t a )  
>> data =[dataL; d a t a ] ;  
>> means=[] ; as1 =O; N=10000; 
>> f o r  i = 1:N 

pdata= [I ; 
f o r  j = l : l O  

pairs  = data(randperm(2) , j )  ; 
pdata = [pdata pairs ] ;  

end 
pdataL = pdata(1, :)  ; 
pdataR = pdata(2, : )  ; 
pmean=mean(pdataL - pdataR) ; 
means= [means pmeanl; 
as1 = as1 + (abs(pmean) > S) ; 

end 

f ig. 15.7 Panels (a) and (b) show permutation null distribution of statistics S and 
the observed value of S (marked by dotted line) for the cases of (a) Bizantine coins. 
and (b) Left-handed grippers. 
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15.7 MORE ON T H E  BOOTSTRAP 

There are several excellent resources for learning more about bootstrap tech- 
niques, and there are many different kinds of bootstraps that work on various 
problems. Besides Efron and Tibshirani (1993), books by Chernick (1999) and 
Davison and Hinkley (1997) provide excellent overviews with numerous help- 
ful examples. In the case of dependent data various bootstrapping strategies 
are proposed such as block bootstrap, stationary bootstrap, wavelet-based 
bootstrap (wavestrap), and so on. A monograph by Good (2000) gives a 
comprehensive coverage of permutation tests. 

Bootstrapping is not infallible. Data sets that might lead to poor perfor- 
mance include those with missing values and excessive censoring. Choice of 
statistics is also critical; see Exercise 15.6. If there are few observations in the 
tail of the distribution, bootstrap statistics based on the EDF perform poorly 
because they are deduced using only a few of those extreme observations. 

15.8 EXERCISES 

15.1. Generate a sample of 20 from the gamma distribution with X = 0.1 and 
r=3. Compute a 90% confidence interval for the mean using (a) the 
standard normal approximation, (b) the percentile method and (c) the 
bias-corrected method. Repeat this 1000 times and report the actual 
coverage probability of the three intervals you constructed. 

15.2. For the case of estimating the sample mean with X, derive the expected 
value of the jackknife estimate of bias and variance. 

15.3. Refer to insect waiting times for the female Western White Clematis in 
Table 10.15. Use the percentile method to find a 90% confidence interval 
for F(30), the probability that the waiting time is less than or equal to  
30 minutes. 

15.4. In a data set of size n generated from a continuous F ,  how many distinct 
bootstrap samples are possible? 

15.5. Refer to the dominance-submissiveness data in Exercise 7.3. Construct a 
95% confidence interval for the correlation using the percentile bootstrap 
and the jackknife. Compare your results with the normal approximation 
described in Section 2 of Chapter 7. 

15.6. Suppose we have three observations from U(O,8) .  If we are interested 
in estimating 8, the MLE for it is 8 = X33,  the largest observation. If 
we obtain a bootstrap sampling procedure to estimate the variance of 
the hlLE, what is the distribution of the bootstrap estimator for 8? 
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15.7. Seven patients each underwent three different methods of kidney dialy- 
sis. The following values were obtained for weLght change in kilograms 
between dialysis sessions: 

Patient Treatment 1 Treatment 2 Treatment 3 

1 2.90 2.97 2.67 
2 2.56 2.45 2.62 
3 2.88 2.76 1.84 
4 2.73 2.20 2.33 
5 2.50 2.16 1.27 
6 3.18 2.89 2.39 
7 2.83 2.87 2.39 

Test the null hypothesis that  there is no difference in mean weight change 
among treatments. Use properly designed permutation test. 

15.8. In a controlled clinical trial Physician's Health Study I which began in 
1982 and ended in 1987, more that 22.000 physicians participated. The 
participants were randomly assigned to two grosups: (i) Aspirin and (ii) 
Placebo, where the aspirin group have been taking 325 mg aspirin every 
second day. At the end of trial, the number of participants who suffered 
from Myocardial Infarction was assessed. The counts are given in the 
following table: 

MyoInf No MyoInf Total 

Aspirin 104 10933 11037 
Placebo 189 10845 11034 

The popular measure in assessing results in clinical trials is Risk Ra- 
tio (RR) which is the ratio of proportions of cases (risks) in the two 
groupsltreatments. From the table, 

Interpretation of RR is that the risk of Myocardial Infarction for the 
Placebo group is approximately 110.55 = 1.82 times higher than that 
for the Aspirin group. With MATLAB, construct a bootstrap estimate 
for the variability of RR. Hint: 

aspi = [zeros(10933,1); ones(l04,l)I; 
plac = [zeros(10845,1); ones(189,l)I; 
RR = (sum(aspi)/length(aspi))/(sum(plac)/length(plac)); 
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BRR = [ I ;  B=10000; 
for b = 1:B 

baspi = bootsample(aspi); 
bplac = bootsample(p1ac) ; 

BRR = [BRR (sum(baspi)/length(baspi))/(sum(bplac)/length(bplac))l ; 
end 

(ii) Find the variability of the difference of the risks R, - R,, and of 
logarithm of the odds ratio, log(R,/(l - R,)) - log(R,/(l - R,)). 

(iii) Using the Bayesian bootstrap, estimate the variability of RR, R, - 
R,, and log(Ra/(l - R,)) - log(R,/(1 - Rp)).  

15.9. Let f ,  and g ,  be frequency/probability of the observation X ,  in an ordi- 
nary/Bayesian bootstrap resample from X I . .  . . . X,. Prove that IE f ,  = 
IEg, = l / n ,  i.e., the expected probability distribution is discrete uniform, 
Varf, = (n  + l) /n,  Varg, = (n  - 1)/n2, and for i # j ,  Corr(f,. f J )  = 

Corr(g,,g,) = - I / (n  - 1). 
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16 
EM Algorithm 

Insanity is doing the same thing over and over again and expecting 
different results. 

Albert Einstein 

The Expectation-Maximization (EM) algorithm is broadly applicable sta- 
tistical technique for maximizing complex likelihoods while handling problems 
with incomplete data. Within each iteration of the #algorithm. two steps are 
performed: (i) the E-Step consisting of projecting an appropriate functional 
containing the augmented data on the space of the original. incomplete data. 
and (ii) the M-Step consisting of maximizing the functional. 

The name EM algorithm was coined by Dempster, Laird, and Rubin (1979) 
in their fundamental paper, referred to  here as the DLR paper. But as is 
usually the case, if one comes to  a smart idea, one may be sure that other smart 
guys in the history had already thought about it. Llong before, LfcKendrick 
(1926) and Healy and Westmacott (1956) proposed iterative methods that 
are examples of the EM algorithm. In fact. before the DLR paper appeared 
in 1997, dozens of papers proposing various iterative solvers were essentially 
applying the EM Algorithm in some form. 

However, the DLR paper was the first to formally recognize these separate 
algorithms as having the same fundamental underpinnings. so perhaps their 
1977 paper prevented further reinventions of the same basic math tool. While 
the algorithm is not guaranteed to converge in every type of problem (as 
mistakenly claimed by DLR), Wu (1983) showed convergence is guaranteed 
if the densities making up the full data belong to the exponential family. 

307 
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This does not prevent the EM method from being helpful in nonparametric 
problems; Tsai and Crowley (1985) first applied it to a general nonparametric 
setting and numerous applications have appeared since. 

16.0.1 Definition 

Let Y be a random vector corresponding to the observed data y and having 
a postulated PDF f ( y ,  $), where 1c, = ($1,. . . , $ ~ d )  is a vector of unknown 
parameters. Let z be a vector of augmented (so called complete) data, and 
let z be the missing data that completes IC, so that z = [p, 21. 

Denote by gc(z,$) the PDF of the random vector corresponding to the 
complete data set IC. The log-likelihood for $, if z were fully observed, would 
be 

The incomplete data vector y comes from the "incomplete" sample space 
y .  There is an one-to-one correspondence between the complete sample space 
X and the incomplete sample space y .  Thus, for IC E X. one can uniquely 
find the "incomplete" y = y(z) E y .  Also, the incomplete pdf can be found 
by properly integrating out the complete pdf, 

where X(y) is the subset of X constrained by the relation y = y(z). 

one performs the following two steps: 

E-Step. Calculate 

Let $ ( O )  be some initial value for $. At the k-th step the EM algorithm 

M-Step. Choose any value $ ( k + l )  that maximizes Q($,  $(k)), that is, 

The E and M steps are alternated until the difference 

L(7p++1)) - L($(")  

becomes small in absolute value. 
Next we illustrate the EM algorithm with a famous example first consid- 

ered by Fisher and Balmukand (1928). It is also discussed in Rao (1973). and 
later by Mclachlan and Krishnan (1997) and Slatkin and Excoffier (1996). 
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16.1 FISHER’S EXAMPLE 

The following genetics example was recognized by as an application of the 
EM algorithm by Dempster et al. (1979). The description provided here 
essentially follows a lecture by Terry Speed of UC at I3erkeley. In basic genetics 
terminology. suppose there are two linked bi-allelic loci, A and B ,  with alleles 
A and a .  and B and b,  respectively, where A is dominant over a and B is 
dominant over b. A double heterozygote AaBb will produce gametes of four 
types: AB, Ab. aB and ab. As the loci are linked, 1 he types AB and ab will 
appear with a frequency different from that of Ab and aB, say 1 - r and r. 
respectively. in males, and 1 - r’ and r’ respectively in females. 

Here we suppose that the parental origin of these heterozygotes is from 
the mating AABB x aabb. so that r and T’ are the male and female recom- 
bination rates between the two loci. The problem is to  estimate r and r’, if 
possible. from the offspring of selfed double heterozygotes. Because gametes 
AB. Ab.aB and ab are produced in proportions ( l - r ) /2 ,  r / 2 ,  r /2  and ( l - r ) /2? 
respectively, by the male parent. and (1 - r’)/2, rf /2 .r’ /2  and (1 - r’)/2, re- 
spectively. by the female parent. zygotes with genotypes AABB. AaBB.. . . 
etc, are produced with frequencies (1 - r ) ( l  - r’)/4, (1 - T ) T ’ / ~ .  etc. 

The problem here is this: although there are 16 distinct offspring geno- 
types, taking parental origin into account. the dominance relations imply that 
we only observe 4 distinct phenotypes, which we denote by A*B*. A*b*, a*B* 
and a* b*. Here A* (respectively B*)  denotes the dominant while a* (respec- 
tively b*) denotes the recessive phenotype determined by the alleles at A 
(respectively B ) .  

Thus individuals with genotypes AABB, AaBB, AABb or AaBb, (which 
account for 9/16 of the gametic combinations) exhibit the phenotype A*B*, 
i.e. the dominant alternative in both characters. while those with genotypes 
AAbb or Aabb (3/16) exhibit the phenotype A*b*, those with genotypes aaBB 
and aaBb (3/16) exhibit the phenotype a*B*. and finally the double recessive 
aabb (1/16) exhibits the phenotype a*b*. It is a slightly surprising fact that  
the probabilities of the four phenotypic classes are definable in terms of the 
parameter y = (1 - r)(1 - T ’ ) ,  as follows: a*b* has probability 4 / 4  (easy to  
see), a*B* and A*b* both have probabilities (1 - y ) / 4 ,  while A*B* has rest of 
the probability. which is (2+y)/4.  Kow suppose we have a random sample of n 
offspring from the selfing of our double heterozygote. The 4 phenotypic classes 
will be represented roughly in proportion to their theoretical probabilities, 
their joint distribution being multinomial 

2+.11,1-7)  1-y: + M n  ( 4 ’ 4 ’ 4 ‘ 4  n;- - - - - -  (16.1) 

Note that here neither r nor T’ will be separately estimable from these data, 
but only the product (1 - r ) ( l  - r’). Because we know that T 5 1/2  and 
r’ 5 l / 2 ,  it follows that II, 2 1/4. 
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How do we estimate +? Fisher and Balmukand listed a variety of methods 
that were in the literature at the time, and compare them with maximum 
likelihood, which is the method of choice in problems like this. We describe a 
variant on their approach to illustrate the EM algorithm. 

Let 9 = (125.18,20,34) be a realization of vector y = (y l ,  y2, y3, y4) be- 
lieved to be coming from the multinomial distribution given in (16.1). The 
probability mass function, given the data, is 

n! 
(1/2 + $/4)y1 (1/4 - $/4)y2$-y3 ($/4)'*. 

g(yl+ ' )  = y1!7&!y3!y4! 

The log likelihood, after omitting an additive term not containing $ is 

logL($) = Y1 lOd2 + $1 + (YZ + Y3) log(1 - $1 + Y4 log($). 

By differentiating with respect to  11, one gets 

Y1 Y2 + Y 3  Y4 8logL($)/8+ = - - ~ a + +  1 - $  +.;.' 
The equation alogL($)/d$ = 0 can be solved and solution is $ = ( 
d m ) / 3 9 4  x 0.626821. 

5 +  

Now assume that instead of original value y1 the counts y11 and y12, 
such that y11 + y12 = y1, could be observed, and that their probabilities 
are 1/2 and $/4, respectively. The complete data can be defined as x = 
( ~ 1 1 ,  y12, 9 2 ,  y3, ~ 4 ) .  The probability mass function of incomplete data y is 
S(Y> $1 = Cgc(z, $)! where 

gc (z l  $) = ~ ( z ) ( 1 / 2 ) ~ " ( $ / 4 ) ~ ~ ~ ( 1 / 4  - $/4)y22+y3($/4)y4, 

c (x )  is free of $ l  and the summation is taken over all values of z for which 
Y l l  + y12 = Y1. 

The complete log likelihood is 

log Lc($) = (Y12 + Y4) log($) + (Y2 + Y3) 1 4 1  - $1. (16.2) 

Our goal is to find the conditional expectation of log Lc($) given y, using the 
starting point for $(O), 

Q($,  $(')I = Ep){log  LC($)IY}. 

As log L, is linear function in y11 and y12, the E-Step is done by simply by 
replacing y11 and yl2 by their conditional expectations, given y. If Y11 is the 
random variable corresponding to y1l1 it is easy to see that 
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so that the conditional expectation of Yl1 given y1 is 

Of course, &) = y1 - yiy). This completes the E-Step part. 
so that Q(+,+(”)) is maximized. After 

( 0 )  replacing y11 and y12 by their conditional expectations yiy) and ylz in the 
Q-function, the maximum is obtained at  

In the M-Step one chooses 

Y F  + Y4 - -- &) I Y 2  + Y4 - 
( 0 )  . 

9102) + Y2 + Y3 + Y4 n - Y11 

The EM-Algorithm is composed of alternating these two steps. At the 
iteration k we have 

where y i t )  = $y1/(1/2 + q(k) /4)  and y!:) = y1 
algorithm computes the WILE for this problem. 
emexample. m. 

- Y11 ( I c )  . To see how the EM 
see the MATLAB function 

16.2 MIXTURES 

Recall from Chapter 2 that mixtures are compound distributions of the form 
F ( z )  = F(zlt)dG(t) .  The CDF G ( t )  serves as a mixing distribution on ker- 
nel distribution F ( z / t ) .  Recognizing and estimating rnixtures of distributions 
is an important task in data analysis. Pattern recognition. data mining and 
other modern statistical tasks often call for mixture estimation. 

For example. suppose an industrial process that ]produces machine parts 
with lifetime distribution F1, but a small proportion (of the parts (say, w) are 
defective and have CDF F 2  >> F1.  If we cannot sort out the good ones from 
the defective ones, the lifetime of a randomly chosen part is 

F ( z )  = (1 - w)F1(z) + wF2(z) .  

This is a simple two-point mixture where the mixing distribution has two 
discrete points of positive mass. With (finite) discrete mixtures like this, the 
probability points of G serve as weights for the kernel distribution. In the 
nonparametric likelihood, we see immediately how difficult it is to solve for 
the MLE in the presence of the weight w ,  especially if w is unknown. 

Suppose we want to estimate the weights of a fixed number k of fully known 
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distributions. We illustrate EM approach which introduces unobserved indi- 
cators with the goal of simplifying the likelihood. The weights are estimated 
by maximum likelihood. Assume that a sample X I .  X z ,  . . . . X ,  comes from 
the mixture 

k 
f ( z . w )  = C3=1w3f3(4.  

where f l .  . . . f k  are continuous and the weights 0 5 w3 5 1 are unknown and 
constitute ( k  - 1)-dimensional vector w = (q.. . . , wk-1) and Wk = 1 - w1 - 
. . . - w k - 1 .  The class-densities f, (x) are fully specified. 

Even in this simplest case when f l l .  . . . f k  are given and the only param- 
eters are the weights w .  the log-likelihood assumes a complicated form. 

The derivatives with respect to w3 lead to  the system of equations. not solvable 
in a closed form. 

Here is a situation where the EM Algorithm can be applied with a little 
creative foresight. Augment the data z = ( 5 1 , .  . . ,zn) by an unobservable 
matrix z = ( z t 3 ,  i = 1,. . . . n : j  = 1.. . . , k ) .  The values z,3 are indicators, 
defined as 

I, zi from f j  

0. otherwise 
zi j  = { 

The unobservable matrix z (our “missing value”) tells us (in an oracular fash- 
ion) where the ith observation z, comes from. Note that each row of z contains 
a single 1 and k - 1 0‘s. With augmented data, z = (y, z )  the (complete) like- 
lihood takes quite a simple form, 

The complete log-likelihood is simply 

log L,(w) = c;==,c;=,zij 10gwj + C. 

where C = C,C3z,3 log f 3 ( x t )  is free of w .  This is easily solved. 

The mth E-Step is 
Assume that mth iteration of the weight estimate w(m) is already obtained. 

where z:?) is the posterior probability of ith observation coming from the j t h  
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mixture-component, f:, , in the iterative step m. 

Because logL,(w) is linear in zt3,  Q ( ~ . U J ( ~ ) )  is simply Z:=,C~=,z~~) logw, + 
C. The subsequent M-Step is simple: Q(w. ~ ( ~ 1 )  is maximized by 

J n 

The MATLAB script (mixture-cla .m)  illustrates the algorithm above. A 
sample of size 150 is generated from the mixture , f (z )  = 0.5n/(-5.22) + 
0.3N(0, 0.52)+0.2n/(2, 1). The mixing weights are estimated by the EM algo- 
rithm. A4 = 20 iterations of EM algorithm yielded 2 =: (0.4977,0.2732,0.2290). 
Figure 16.1 gives histogram of data, theoretical mixture and EM estimate. 

0.251 

0.21 

I 

O. l2 l  
0.1 1 

0.05 - 

-1 0 -5 
0 .  

0 5 
Fig. 16 1 
(histogram). the mixture (dotted h e )  and EM estimated mixture (solzd h e ) .  

Observations from the 0.5hr ( -5 .  2’) + 0.3Ar(0, ( j1 .5~)  + 0.2N(2,1) mixture 

Example 16.1 As an example of a specific mixture o f  distributions we con- 
sider application of EM algorithm in the so called Zero Inflated Poisson (ZIP) 
model. In ZIP models the observations come from two populations, one in 
which all values are identically equal to 0 and the other Poisson P(A). The 
“zero” population is selected with probability [, and the Poisson population 
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with complementary probability of 1 - E .  Given the data, both X and E are to 
be estimated. To illustrate EM algorithm in fitting ZIP models, we consider 
data set (Thisted, 1988) on distribution of number of children in a sample of 
n = 4075 widows, given in Table 16.20. 

Table 16.20 Frequency Distribution of the Number of Children Among 4075 Widows 

Number of Children (number) 0 1 2  3 4 5 6  
Number of Widows (freq) 3062 587 284 103 33 4 2 

At first glance the Poisson model for this data seems to be appropriate, 
however, the sample mean and variance are quite different (theoretically, in 
Poisson models they are the same). 

>> 
>> 
>> 
>> 

>> 

number = 0:6; %number of children 
freqs =[3062 587 284 103 33 4 21 ; 
n = sum(freqs) 
sum(freqs . +  number)/n %sample mean 
ans = 

0.3995 
sum(freqs . +  (number-0.3995) .-2)/(n-i) 

%sample variance 
ails = 

0.6626 

This indicates presence of over-dispersion and the ZIP model can account 
for the apparent excess of zeros. The ZIP model can be formalized as 

xz 
2! 

P ( x = ~ )  = (l-()-e-’. i = 1 , 2  . . . . ,  

and the estimation of < and X is of interest. To apply the EM algorithm, we 
treat this problem as an zncomplete data problem. The complete data would 
involve knowledge of frequencies of zeros from both populations, no0 and 1201. 

such that the observed fSequency of zeros no is split as no0 + nol. Here no0 is 
number of cases coming from the the point mass at 0-part and no1 is number 
of cases coming from the Poisson part of the mixture. If values of no0 and no1 
are available, the estimation of < and X is straightforward. For example, the 
MLEs are 

A &in, < = -  and A = -. 
n T I  - no0 
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where n, is the observed frequency of i children. This will be a basis for 
M-step in the EM implementation, because the estimator of ( comes from 
the fact that no0 - Bin(n,(), while the estimator of X is the sample mean 
of the Poisson part. The E-step involves finding IEn,,o if E and X are known. 
With 7200 - Bin(no.poo/(poo + p o l ) ) .  where poo = ( and pol = (1 -()e-’, the 
expectation of no0 is 

E 
t + (1 - ()e-’ ’ 

IE(no0 1 observed frequencies, <, A) = no x - 

From this expectation, the iterative procedure can be set with 

1 

n - no0 

X( t+ l )  = ~ ( t )  CZi nz, 

where t is the iteration step. The following MATLAB code performs 20 it- 
erations of the algorithm and collects the calculated values of R O O ,  ( and X 
in three sequences newnOOs, newxis. and newlambdais. The initial values are 
given for E and X as ( 0  = 314 and XO = 114. 

>> newxi =3/4; newlambda = 1/4; %initial values 
>> newnOOs= [I ; newxis= [I ; newlambdas= [I ; 
>> f o r  i = 1:20 

newno0 = freqs(1) * newxi/(newxi + . . .  

newxi = newnOO/n; 
newlambda = sum((l:6).* freqs(2:7))/(n-newiOO); 
%collect the values in three sequences 
newnOOs= [newnOOs newno01 ; newxis= [newxis newxi] ; 
newlambdas=[newlambdas newlambda]; 

(1-newxi) *exp(-newlambda) ) ; 

end 

Table 16.21 gives the partial output of the MATLAB program. The values 
for newxi. newlambda. and newnOO will stabilize after several iteration steps. 

16.3 E M  A N D  ORDER STATISTICS 

When applying nonparametric maximum likelihood to data that contain (in- 
dependent) order statistics, the EM Algorithm can be applied by assuming 
that with the observed order statistic Xt.k (the ith smallest observation from 
an i.i.d. sample of k ) ,  there are associated with it k - 1 missing values: i - 1 
values smaller than x,.k and k - i  values that are larger. Kvam and Samaniego 
(1994) exploited this opportunity to use the EM for finding the nonparametric 
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Table 16.21 
on Widow Data 

Some of the Twenty Steps in the EM Implementation of ZIP Modeling 

Step newxi newlambda newnOO 

0 114 314 2430.9 
1 0.5965 0.9902 2447.2 
2 0.6005 1.0001 2460.1 

0.6037 1.0081 2470.2 3 

18 0.6149 1.0372 2505.6 
19 0.6149 1.0373 2505.8 
20 0.6149 1.0374 2505.9 

MLE for i.i.d. component lifetimes based on observing only k-out-of-n system 
lifetimes. Recall a k-out-of-n system needs k or more working components to 
operate, and fails after n - k + 1 components fail, hence the system lifetime 
is equivalent to X n - k f l  n .  

Suppose we observe independent order statistics X r z  k ,  . i = 1, . . . , n where 
the unordered values are independently generated from F .  When F is abso- 
lutely continuous, the density for XTz k ,  is expressed as 

F ( x )  ) k t  - T p  f (z) . 

For simplicity, let k,  = k .  In this application. we assign the complete 
data to be X ,  = {X,, ,  . . . . X & ,  Z,} ,  z = 1,.  . . , n  where 2, is defined as the 
rank of the value observed from X,.  The observed data can be written as 
U, = {Wz, Z,}, where W, is the Zzth smallest observation from X, .  

With the complete data, the LILE for F ( z )  is the EDF, which we will write 
as N(cc)/(nk)  where N ( x )  = C,C,l(X,,  5 z). This makes the M - s t e p  simple. 
but for the E-step,  N is estimated through the log-likelihood. For example, if 
2, = z. we observe W, distributed as X ,  k .  If W, 5 z. out of the subgroup of 
size k from which W, was measured, 

F ( t )  - F(rn7i) 

1 - F(W2) 
z + ( k  - z )  

are expected to be less than or equal to x. On the other hand, if Wi > x, we 
know k - z + 1 elements from X i  are larger than x ,  and 
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are expected in (-x.x]. 
The E-Step is completed by summing all of these expected counts out of 

the complete sample of nlc based on the most recent estimator of F froni the 
M-Step. Then, if F ( J )  represents our estimate of F after j iterations of the 
EM Algorithm, it is updated as 

(16.3) 

Equation (16.3) essentially joins the two steps of the 13hf Algorithm together. 
All that is needed is a initial estimate F(O) to  start it off. The observed sample 
EDF suffices. Because the full likelihood is essentially a multinomial distribu- 
tion. convergence of F ( J )  is guaranteed. In general, the speed of convergence 
is dependent upon the amount of information. Compared to the mixtures 
application, there is a great amount of missing data here. arid convergence is 
expected to  be relatively slow. 

16.4 MAP VIA €M 

The EM algorithm can be readily adapted to  Bayesian context to  maximize 
the posterior distribution. A maximum of the posterior distribution is the so 
called MAP (maximum a posteriori) estimator. used widely in Bayesian infer- 
ence. The benefit of MAP estimators over some other posterior parameters 
was pointed out on p. 53 of Chapter 4 in the context of Bayesian estima- 
tors. The maximum of the posterior ~ ( y l y ) .  if it exists. coincides with the 
maximum of the product of the likelihood and prior f ( y I $ ) ~ ( $ ) .  In terms of 
logarithms, finding the MAP estimator amounts to  maximizing 

log7r(wly) = logL(7J) + logn(7h). 

The EM algorithm can be readily implemented as follows: 

E-Step. At ( k  + l)st iteration calculate 

The E-Step coincides with the traditional EM algorithm, that is, &($. . l D ( k ) )  
has to  be calculated. 

M-Step. Choose @('+I) to maximize Q(+. ~ ( ' 1 )  + logx(l;,). The M-Step here 
differs from that in the EM, because the objective function to be maximized 
withe respect to  q ' s  contains additional term. logarithm of the prior. How- 
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ever. the presence of this additional term contributes to the concavity of the 
objective function thus improving the speed of convergence. 

Example 16.2 MAP Solution to Fisher's Genomic Example. Assume 
that we elicit a Be(v1, v2) prior on $, 

The beta distribution is a natural conjugate for the missing data distribution, 
because ~ 1 2  N Bin(y1, ($/4)/(1/2 + $/4)). Thus the log-posterior (additive 
constants ignored) is 

The E-step is completed by replacing y12 by its conditional expectation 
y1 x ($(k)/4)/(1/2 + 7.,!1(')/4). This step is the same as in the standard EM 
algorithm. 

The M-Step, at ( k  + 1)st iteration, is 

When the beta prior coincides with uniform distribution (that is, when u1 = 

v2 = l), the MAP and MLE solutions coincide. 

16.5 INFECTION PATTERN ESTIMATION 

Reilly and Lawlor (1999) applied the EM Algorithm to identify contaminated 
lots in blood samples. Here the observed data contain the disease exposure 
history of a person over k points in time. For the z t h  individual, let 

X, = l ( z t h  person infected by end of trial), 

where P, = P ( X ,  = 1) is the probability that the z t h  person was infected at 
least once during k exposures to the disease. The exposure history is defined 
as a vector y, = {y21,. . . , yzk}% where 

yt3 = l ( z t h  person exposed to  disease at j t h  time point k ) .  

Let A, be the rate of infection at time point 3 .  The probability of not being 
infected in time point j is 1 - yZ3X3. so we have P, = 1 - n(l - yZ3X3). The 
corresponding likelihood for X = { X I . .  . . . Xk} from observing n. patients is a 
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bit daunting: 

n 

L(A) = n p ; - t  (1 - p p  
2 = 1  

The EM Algorithm helps if we assign the unobservable 

Z,, = l(person z infected at time poiint 1 7 ) .  

where P(Zz ,  = 1) = A, if yZ3=1 and P(Z,, = 1) = 0 if yz3=O. Averaging over 
ytJ,  P(Z,, = 1) = ytJ A,. With z,, in the complete likelihood (1 5 z 5 n. 1 5 
3 5 Ic). we have the observed data changing to  5, = max{ztl,. . . , z , k } .  and 

n k  

L(AIZ) = l-J l-J (Y2JA3)=*3 (1 - Yyz3~3)1-213 . 
2 = 1 3 = l  

which has the simple binomial form. 
For the E-Step, we find IE(ZtJlx2, A ( m ) ) .  where A(") is the current estimate 

for ( A l . .  . . , Ak) after m iterations of the algorithm. We need only concern 
ourselves with the case 2,  = 1, so that 

In the M-Step, MLEs for ( A 1 , .  . . , A,) are updated in iteration m + 1 from 
A+"), . . . , A p  to 

16.6 EXERCISES 

16.1. Suppose we have data generated from a mixture of two normal distri- 
butions with a common known variance. n7rite a hlATLAB script to 
determine the MLE of the unknown means from an i.i.d. sample from 
the mixture by using the Ehl  algorithm. Test your program using a 
sample of ten observations generated from an equal mixture of the two 
kernels N(0,l) and N(1.1). 

16.2. The data in the following table come from the mixture of two Poisson 
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random variables: P(A1) with probability E and %'(A,) with probability 
1 - E .  

Value 0 1 2 3 4 5 6 7 8 9 1 0  
F'req. 708 947 832 635 427 246 121 51 19 6 1 

(i) Develop an EM algorithm for estimating E ,  XI, and A,. 

(ii) Write MATLAB program that uses (i) in estimating E ,  XI, and A2 

for data from the table. 

16.3. The following data give the numbers of occupants in 1768 cars observed 
on a road junction in Jakarta, Indonesia, during a certain time period 
on a weekday morning. 

Number of occupants 1 2 3 4 5 6 7 
Number of cars 1 897 540 223 85 17 5 1 

The proposed model for number of occupants X is truncated Poisson 
(TP), defined as 

A2 exp{-X) i = 1,2 ;  P ( X  = i) = 
(I  - exp{-A}) i ! '  

(i) Write down the likelihood (or the log-likelihood) function. Is it 
straightforward to find the MLE of A by maximizing the likelihood or 
log-likelihood directly? 

(ii) Develop an EM algorithm for approximating the MLE of A. Hznt: 
Assume that missing data is io - the number of cases when X = 0. so 
with the complete data the model is Poisson. ?(A). Estimate X from the 
complete data. Update io given the estimator of A. 

(iii) Write MATLAB program that will estimate the MLE of X for 
Jakarta cars data using the EN procedure from (ii). 

16.4. Consider the problem of right censoring in lifetime measurements in 
Chapter 10. Set up the EM algorithm for solving the nonparametric 
MLE for a sample of possibly-right censored values X I : .  . . , X,. 

16.5. Write RIATLAB program that will approximate the MAP estimator in 
Fisher's problem (Example 16.2). if the prior on $ is Be(2 ,2) .  Compare 
the MAP and MLE solutions. 
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Statistical Learning 

Learning is not compulsory . . . neither is survival. 

W. Edwards .Deming (1900-1993) 

A general type of artificial intelligence. called machzne learnzng, refers to tech- 
niques that sift through data and find patterns that lead to  optimal decision 
rules, such as classification rules. In a way, these techniques allow computers 
to “learn” from the data, adapting as trends in the data become more clearly 
understood with the computer algorithms. Statistical learning pertains to  the 
data analysis in this treatment, but the field of machine learning goes well 
beyond statistics and into algorithmic complexity of computational methods. 

In business and finance, machine learning is used to  search through huge 
amounts of data to  find structure and pattern, and this is called data mznzng. 
In engineering, these methods are developed for pattern recognatzon. a term for 
classifying images into predetermined groups based cn the study of statistical 
classification rules that statisticians refer to as dzscrzmznant analysts. In elec- 
trical engineering, specifically, the study of szgnal processzng uses statistical 
learning techniques to  analyze signals from sounds, r<adar or other monitoring 
devices and convert them into digital data for easier statistical analysis. 

Techniques called neural networks were so named because they were thought 
to  imitate the way the human brain works. Analogou!; to neurons, connections 
between processing elements are generated dynamically in a learning system 
based on a large database of examples. In fact. most neural network algo- 
rithms are based on statistical learning techniques. especially nonparametric 
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ones. 
In this chapter, we will only present a brief exposition of classification and 

statistical learning that can be used in machine learning, discriminant anal- 
ysis, pattern recognition, neural networks and data mining. Nonparametric 
methods now play a vital role in statistical learning. As computing power has 
progressed through the years, researchers have taken on bigger and more com- 
plex problems. An increasing number of these problems cannot be properly 
summarized using parametric models. 

This research area has a large and growing knowledge base that cannot be 
justly summarized in this book chapter. For students who are interested in 
reading more about statistical learning methods, both parametric and non- 
parametric, we recommend books by Hastie, Tibshirani and Friedman (2001) 
and Duda, Hart and Stork (2001). 

17.1 DISC R I M I N A N  T A N  A LY S IS 

Discriminant Analysis is the statistical name for categorical prediction. The 
goal is to predict a categorical response variable, G,  from one or more predictor 
variables, x. For example, if there is a partition of k groups 6 = (GI,  . . . , Gk). 
we want to find the probability that any particular observation x belongs 
to group Gj ,  j = 1,. . . , k and then use this information to classify it in 
one group or the other. This is called supervised classification or supervised 
learning because the structure of the categorical response is known, and the 
problem is to find out in which group each observation belongs. Unsupervised 
classification. or unsupervised learning on the other hand, aims to find out 
how many relevant classes there are and then to characterize them. 

One can view this simply as a categorical extension to prediction for simple 
regression: using a set of data of the form (x1 ,g l )  , . . . , (xn ,gn) ,  we want to 
devise a rule to classify future observations x,+1,.. . , x,+,. 

17.1.1 Bias Versus Variance 

Recall that a loss function measures the discrepancy between the data re- 
sponses and what the proposed model predicts for response values, given the 
corresponding set of inputs. For continuous response values y with inputs 2 .  

we are most familiar with squared error loss 

We want to find the predictive function f that minimizes the expected loss. 
E[L(y. f ) j ,  where the expectation averages over all possible response values. 
With the observed data set, we can estimate this as 
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The function that minimizes the squared error is the conditional mean 
IE(YIX = x). and the expected squared errors E(Y - f ( Y ) ) 2  consists of two 
parts: varzance and the square of the bias. If the classifier is based on a 
global rule. such as linear regression, it is simple, rigid, but at least stable. It 
has little variance, but by overlooking important nuances of the data, can be 
highly biased. A classifier that fits the model locally fails to garner information 
from as many observations and is more unstable. It has larger variance. 
but its adaptability to the detailed characteristics of the data ensure it has 
less bias. Compared to traditional statistical classification methods. most 
nonparametric classifiers tend to be less stable (more variable) but highly 
adaptable (less bias). 

17.1.2 Cross-Validation 

Obviously, the more local model will report less error than a global model, 
so instead of finding a model that simply minimizes error for the data set, it 
is better to put aside some of the data to test the model fit independently. 
The part of the data used to form the estimated model is called the training 
sample.  The reserved group of data is the test sample.  

The idea of using a training sample to develop a decision rule is paramount 
to empirical classification. Using the test sample to judge the method con- 
structed from the training data is called cross-validixtion. Because data are 
often sparse and hard to come by. some methods use the training set to both 
develop the rule and to measure its misclassificatiori rate (or error rate) as 
well. See the jackknife and bootstrap methods described in Chapter 15, for 
example. 

17.1.3 Bayesian Decision Theory 

There are two kinds of loss functions commonly used for categorical responses: 
a zero-one loss and cross-entropy loss. The zero-one loss merely counts the 
number of misclassified observations. Cross-entropy. on the other hand, uses 
the estimated class probabilities lj,(x) = P ( g  E G,/z)) .  and we minimize 
E(-2 lnlj,(X)). 

By using zero-one loss, the estimator that minimizes risk classifies the 
observation to the most probable class. given the input P(G1X). Because 
this is based on Bayes rule of probability, this is called the Bayes Classz- 
f ier .  Although, if P(XIG,)  represents the distribution of observations from 
population G,. it might be assumed we know a prior probability P(G,) that 
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represents the probability any particular observation comes from population 
G, . Furthermore, optimal decisions might depend on particular consequences 
of misclassification, which can be represented in cost variables; for example. 
cZ3 = Cost of classifying an observation from population G, into population 

For example, if k=2, the Bayes Deciszon Rule which minimizes the ex- 
G3. 

pected cost (cZ3) is to classify 2 into G1 if 

and otherwise classify the observation into G2. 
Cross-entropy has an advantage over zero-one loss because of its continuity; 

in regression trees, for example, classifiers found via optimization techniques 
are easier to use if the loss function is differentiable. 

17.2 LINEAR CLASSIFICATION MODELS 

In terms of bias versus variance, a linear classification model represents a 
strict global model with potential for bias, but low variance that makes the 
classifier more stable. For example, if a categorical response depends on two 
ordinal inputs on the ( 2 , ~ )  axis, a linear classifier will draw a straight line 
somewhere on the graph to best separate the two groups. 

The first linear rule developed was based on assuming the the underlying 
distribution of inputs were normally distributed with different means for the 
different populations. If we assume further that the distributions have an 
identical covariance structure ( X ,  - N ( p L , ,  C)),  and the unknown parameters 
have MLEs il, and 2, then the discrimination function reduces to 

1 
2 

IC2-l ( 5 1  - 2 2 ) ’  - - ( 5 1  + 5 2 )  2-l ( 5 1  - 2 2 )  > s (17.1) 

for some value b, which is a function of cost. This is called Fzsher’s Lanear 
Dzscrzmznatzon Functzon (LDF) because with the equal variance assumption. 
the rule is linear in IC. The LDF was developed using normal distributions. 
but this linear rule can also be derived using a minimal squared-error ap- 
proach. This is true. you can recall. for estimating parameters in multiple 
linear regression as well. 

If the variances are not the same. the optimization procedure is repeated 
with extra MLEs for the covariance matrices, and the rule is quadratic in the 
inputs and hence called a Quadratzc Dzscrzmznant Functzon (QDF). Because 
the linear rule is overly simplistic for some examples, quadratic classification 
rules are used to extend the linear rule by including squared values of the 
predictors. With k predictors in the model. this begets (k;l) additional pa- 



LINEAR CLA!5IFICATION MODELS 327 

rameters to estimate. So many parameters in the model can cause obvious 
problems, even in large data sets. 

There have been several studies that have looked into the quality of linear 
and quadratic classifiers. While these rules work well if the normality assump- 
tions are valid, the performance can be pretty lousy if they are not. There are 
numerous studies on the LDF and QDF robustness. for example, see Moore 
(1973), Marks and Dunn (1974), Randles, Bramberg, and Hogg (1978). 

17.2.1 Logistic Regression as Classifier 

The simple zero-one loss function makes sense in thls categorical classification 
problem. If we relied on the squared error loss (and outputs labeled with 
zeroes and ones), the estimate for g is not necessarilly in [0,1], and even if the 
large sample properties of the procedure are satisfactory, it will be hard to 
take such results seriously. 

One of the simplest models in the regression framework is the logistic 
regression model, which serves as a bridge between simple linear regression 
and statistical classification. Logistic regression, discussed in Chapter 12 in 
the context of Generalized Linear hlodels (GLM), applies the linear model to 
binary response variables. relying on a lznk functzon that will allow the linear 
model to adequately describe probabilities for binary outcomes. Below we 
will use a simple illustration of how it can be used as a classifier. For a more 
comprehensive instruction on logistic regression and other models for ordinal 
data. Agresti‘s book Categorzcal Data Analyszs serves as an excellent basis. 

If we start with the simplest case where k = 2 groups. we can arbitrarily 
assign gz = 0 or gz = 1 for categories Go and GI. This means we are modeling 
a binary response function based on the measurements on z. If we restrict 
our attention to a linear model P(g = 115) = z’p, we will be saddled with an 
unrefined model that can estimate probability with a value outside [0,1]. To 
avoid this problem, consider transformations of the linear model such as 

(i) logit: p ( z )  = P(g = 11.) = exp(z’P)/[l +exp(s’p)], so z’p is estimating 
lnb(z) / ( l  - p ( z ) ) ]  which has its range on R. 

(ii) probit: P(g = 11.) = G(z’3); where G is the standard normal CDF. In 
this case z’p is estimating W1 ( p ( z ) ) .  

(iii) log-log: p ( z )  = 1 - exp(exp(z’3)) so that z’p is estimating In[- ln(1 - 
P(Z))I on 

Because the logit transformation is symmetric and has relation to the nat- 
ural parameter in the GLM context. it is generally the default transformation 
in this group of three. We focus on the logit link and seek to maximize the 
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likelihood 

n 

L(P) = rIPz(Z)9"1 -Pz(Z))l-gt, 
2=1 

in terms of p ( z )  = 1 - exp(exp(z'P)) to estimate ,6' and therefore obtain 
MLEs for p ( z )  = P(g = llz). This likelihood is rather well behaved and can 
be maximized in a straightforward manner. We use the MATLAB function 
logistic to perform a logistic regression in the example below. 

Example 17.1 (Kutner, Nachtsheim, and Neter, 1996) A study of 25 com- 
puter programmers aims to  predict task success based on the programmers' 
months of work experience. The MATLAB m-file logist computes simple 
ordinal logistic regressions: 

>> x=[14 29 6 25 18 4 18 12 22 6 30 11 30 5 20 13 9 32 
24 13 19 4 28 22 81; 

>> y=[O 0 0 1 1  0 0 0 1 0  1 0  1 0  1 0  0 1 0  1 0  0 1 1  11; 
>> logist(y,x,l) 
Number of iterations 

3 
Deviance 
25.4246 
Theta SE 
3.0585 1.2590 
Beta SE 
0.1614 0.0650 

0.1614 
ans = 

Here P = (PO, P I )  and /!?=(3.0585,0.1614). The estimated logistic regression 
function is 

e-3.0585+0.1615z 

= 1 + e-3.0585+0.1615z ' 

For example, in the case x1 = 14. we have $1 = 0.31; i.e., we estimate 
that there is a 31% chance a programmer with 14 months experience will 
successfully complete the project. 

In the logistic regression model, if we use j5 as a criterion for classifying 
observations' the regression serves as a simple linear classification model. If 
misclassification penalties are the same for each category, 9 = 1/2 will be the 
classifier boundary. For asymmetric loss. the relative costs of the misclassifi- 
cation errors will determine an optimal threshold. 

Example 17.2 (Fisher's Iris Data) To illustrate this technique, we use Fisher's 
Iris data. which is commonly used to show off classification methods. The iris 
data set contains physical measurements of 150 flowers - 50 for each of three 
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types of iris (Virginica. Versicolor and Setosa). Iris flowers have three petals 
and three outer petal-like sepals. Figure (17.2.la) shows a plot of petal length 
vs width for Versicolor (circles) and Virginica (plus signs) along with the line 
that best linearly categorizes them. How is this line determined? 

From the logistic function x’p = ln(p/(l  - p ) ) ,  p = 1/2  represents an 
observation that is half-way between the Virginica iris and the Versicolor iris. 
Observations with values of p < 0.5 are classified to  be Versicolor while those 
with p > 0.5 are classified as Virginica. At p = 1/2, x’p = ln(p/(l  - p ) )  = 0, 
and the line is defined by Do + P1.1 + p2x2 = 0, which in this case equates to  
x2 = (42.2723 - 5.7545x1)/10.4467. This line is drawn in Figure (17.2.la). 

>> load iris 
>> x = [PetalLength,PetalWidthl ; 
>> plot (PetalLength(51: 1001, PetalWidth(51: l o o ) ,  ’0’) 
>> hold on 
>> x2 = CPetalLength(51: 150), PetalWidth(51: l b O ) ]  ; 

>> v2 = Variety(51:150); 
>> L2 = logist(v2,x2,1); 

>> fplot ( ’  (45.27-5.7*x) / l o .  4’, C3,71) 

Number of iterations 
8 

Deviance 
20,5635 
Theta SE 

45.2723 13.6117 
Beta SE 
5.7545 2.3059 
10.4467 3.7556 

While this example provides a spiffy illustration of linear classification. 
most populations are not so easily differentiated, and a linear rule can seem 
overly simplified and crude. Figure (17.2.lb) shows a similar plot of sepal 
width vs. length. The iris types are not so easily distinguished, and the linear 
classification does not help us in this example. 

In the next parts of this chapter, we will look at ‘‘nonparametric” classify- 
ing methods that can be used to construct a more flexible, nonlinear classifier. 

17.3 NEAREST N El GH BOR CLASS1 Fl CAT10 N 

Recall from Chapter 13. nearest neighbor methods can be used to create 
nonparametric regressions by determining the regression curve at  x based on 
explanatory variables 2, that  are considered closest to  x. We will call this a 
Ic-nearest neighbor classifier if it considers the k closest points to 5 (using a 
majority vote) when constructing the rule at that point. 

If we allow k to increase, the estimator eventually uses all of the data to  
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Fig. 17.1 
and (b) sepal length vs. sepal width. Versicolor = 0,  Virginica = +. 

Two types of iris classified according to (a) petal length vs. petal width, 

fit each local response, so the rule is a global one. This leads to a simpler 
model with low variance. But if the assumptions of the simple model are 
wrong, high bias will cause the expected mean squared error to explode. On 
the other hand, if we let k go down to one, the classifier will create minute 
neighborhoods around each observed 2,. revealing nothing from the data that 
a plot of the data has not already shown us. This is highly suspect as well. 

The best model is likely to  be somewhere in between these two extremes. 
As we allow k to increase, we will receive more smoothness in the classification 
boundary and more stability in the estimator. With small k ,  we will have a 
more jagged classification rule, but the rule will be able to identify more 
interesting nuances of the data. If we use a loss function to judge which is 
best, the 1-nearest neighbor model will fit best, because there is no penalty 
for over-fitting. Once we identify each estimated category (conditional on X )  
as the observed category in the data, there will be no error to report. 

In this case, it will help to split the data into a training sample and a 
test sample. Even with the loss function. the idea of local fitting works 
well with large samples. In fact. as the input sample size n gets larger, the 
Ic-nearest neighbor estimator will be consistent as long as k / n  + 0. That 
is, it will achieve the goals we wanted without the strong model assumptions 
that come with parametric classification. There is an extra problem using the 
nonparametric technique, however. If the dimension of X is somewhat large. 
the amount of data needed to achieve a satisfactory answer from the nearest 
neighbor grows exponentially. 
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17.3.1 The Curse of Dimensionality 

The curse of dzmenszonalaty, termed by Bellman (1961). describes the prop- 
erty of data to become sparse if the dimension of the sample space increases. 
For example, imagine the denseness of a data set with 100 observations dis- 
tributed uniformly on the unit square. To achieve the same denseness in a 
10-dimensional unit hypercube, we would require lo2' observations. 

This is a significant problem for nonparametri c classification problems 
including nearest neighbor classifiers and neural networks. As the dimen- 
sion of inputs increase, the observations in the training set become relatively 
sparse. These procedures based on a large number of parameters help to han- 
dle complex problems, but must be considered inappropriate for most small or 
medium sized data sets. In those cases, the linear methods may seem overly 
simplistic or even crude, but still preferable to nearest neighbor methods. 

17.3.2 Constructing the Nearest Neighbor Classifier 

The classification rule is based on the ratio of the nearest-neighbor density 
estimator. That is. if J: is from population G, then P(z1G) E (proportion of 
observations in the neighborhood around z)/(voluine of the neighborhood). 
To classify 5 ,  select the population corresponding to the largest value of 

This simplifies to the nearest neighbor rule; if the neighborhood around z is 
defined to be the closest T observations. z is classified into the population that 
is most frequently represented in that neighborhood. 

Figure (17.4) shows the output derived from the MATLAB example below. 
Fifty randomly generated points are classified into one of two groups in v in 
a partially random way. The nearest neighbor plots reflect three different 
smoothing conditions of k = l l .  5 and 1. As k gets ,smaller, the classifier acts 
more locally, and the rule appears more jagged. 

>> y=rand(50,2) 
>> v=round(0.3*rand(50,1)+0.3*y(:,1)+0.4*y(:,2)); 
>> n=lOO; 
>> x=nby2(n); 
>> m=n-2; 
>> f o r  i=l:m 

w (i ,1) =nearneighbor (x (i ,1: 2) , y ,4, v) ; 
end 

>> rr=find(w==l); 
>> x2=x(rr,:); 
>> plot (x2(:, 1) ,x2(: ,2), J . ' )  
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Fig. 17.2 Nearest neighbor classification of 50 observations plotted in (a) using neigh- 
borhood sizes of (b) 11, (c) 5, (d) 1. 



NEURAL NETWORKS 333 

17.4 NEURAL NETWORKS 

Despite what your detractors say, you have a remarkable brain. Even with 
the increasing speed of computer processing. the much slower human brain 
has surprising ability to sort through gobs of information. disseminate some 
of its peculiarities and make a correct classification often several times faster 
than a computer. When a familiar face appears to you around a street corner. 
your brain has several processes working in parallel to identify this person you 
see, using past experience to gauge your expectation (you might not believe 
your eyes. for example, if you saw Elvis appear around the corner) along with 
all the sensory data from what you see. hear. or even smell. 

The computer is at  a disadvantage in this contest because despite all of the 
speed and memory available, the static processes it uses cannot parse through 
the same amount of information in an efficient manner. It cannot adapt and 
learn as the human brain does. Instead, the digital processor goes through 
sequential algorithms, almost all of them being a waste of CPU time, rather 
than traversing a relatively few complex neural pathways set up by our past 
experiences. 

Rosenblatt (1962) developed a simple learning algorithm he named the 
perceptron, which consists of an input layer of several nodes that is completely 
connected to nodes of an output layer. The perceptron is overly simplistic and 
has numerous shortcomings, but it also represents the first neural network. 
By extending this to a two-step network which includes a hzdden layer  of 
nodes between the inputs and outputs. the network overcomes most of the 
disadvantages of the simpler map. Figure (17.4) shows a simple feed-forward 
neural network, that is, the information travels in thle direction from input to 
output. 

Fig. 17.3 Basic structure of feed-forward neural network. 

The square nodes in Figure (17.4) represent neurons. and the connections 
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(or edges) between them represent the synapses of the brain. Each connection 
is weighted, and this weight can be interpreted as the relative strength in the 
connection between the nodes. Even though the figure shows three layers, 
this is considered a two-layer network because the input layer, which does not 
process data or perform calculations, is not counted. 

Each node in the hidden layers is characterized by an activation func t ion  
which can be as simple as an indicator function (the binary output is similar 
to a computer) or have more complex nonlinear forms. A simple activation 
function would represent a node that would react when the weighted input 
surpassed some fixed threshold. 

The neural network essentially looks at repeated examples (or input ob- 
servations) and recalls patterns appearing in the inputs along with each sub- 
sequent response. We want to train the network to find this relationship 
between inputs and outputs using supervised learning. A key in training the 
network is to find the weights to go along with the activation functions that 
lead to supervised learning. To determine weights, we use a back-propagation 
algorithm. 

17.4.1 Back- propagation 

Before the neural network experiences any input data, the weights for the 
nodes are essentially random (noninformative). So at this point, the network 
functions like the scattered brain of a college freshman who has celebrated his 
first weekend on campus by drinking way too much beer. 

The feed-forward neural network is represented by 

n0 * n H  

input nodes hidden nodes output nodes' 
* n I  

With an input vector X = ( 2 1 ,  . . . .  z n r ) ,  each of the n I  input node codes 
the data and "fires" a signal across the edges to the hidden nodes. At each 
of the n H  hidden nodes. this message takes the form of a weighted linear 
combination from each attribute, 

XFt, = A(ao, + ~ 1 ~ ~ 1  + . . . + LY,,~Z,,), j = 1.. . . , n H  (17.2) 

where A is the activation function which is usually chosen to be the szgmozd 
func t ion  

1 
1 + e c X  

A(z) = -. 

We will discuss why A is chosen to be a sigmoid later. In the next step, the 
n H  hidden nodes fire this nonlinear outcome of the activation function to the 
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output nodes, each translating the signals as a linear combination 

Each output node is a function of the inputs, and through the steps of the 
neural network, each node is also a function of the weights Q and p. If we 
observe Xl = ( ~ 1 1 . .  . . , x n f l )  with output gl(k)  for k = 1.. ..,no, we use the 
same kind of transformation used in logistic regression: 

For the training data { ( X l , g ~ ) ,  . . . , ( X n , g n ) } ,  the classification is com- 
pared to  the observation's known group, which is then back-propagated across 
the network, and the network responds (learns) by adjusting weights in the 
cases an error in classification occurs. The loss function associated with mis- 
classification can be squared errors. such as 

SSQ(a,P) = Cr=ICL21(gi(k) - g ~ ( k ) ) ~ ,  (17.4) 

where gl(k)  is the actual response of the input X I  for output node k and gl(k)  
is the estimated response. 

Now we look how those weights are changed in this back-propagation. To 
minimize the squared error SSQ in (17.4) with respect to  weights Q and /? 
from both layers of the neural net, we can take partial derivatives (with respect 
to weight) to  find the direction the weights should go in order to decrease the 
error. But there are a lot of parameters to estimate: at3. with 1 5 i 5 n1. 

1 6 j L n H  and P 3 k ,  1 5 j 5 n H ,  1 5 k 5 no. It's not helpful to  think of 
this as a parameter set, as if they have their own intrinsic value. If you do, 
the network looks terribly over-parameterized and unnecessarily complicated. 
Remember that a and p are artificial, and our focus is on the n predicted 
outcomes instead of estimated parameters. We will do this iteratively using 
batch learnzng by updating the network after the entire data set is entered. 

Actually, finding the global minimum of SSQ with respect to  Q and p will 
lead to over-fitting the model, that  is, the answer wid1 not represent the true 
underlying process because it is blindly mimicking every idiosyncrasy of the 
data. The gradient is expressed here with a constant y called the learnzng 
rate: 

(17.5) 

(17.6) 

and is solved iteratively with the following back-propagation equations (see 
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Chapter 11 of Hastie et al. (2001)) via error variables a and b: 

(17.7) 

Obviously. the activation function A must be differentiable. Note that if A ( z )  
is chosen as a binary function such as I ( z  2 0). we end up with a regular 
linear model from (17.2). The sigmoid function. when scaled as A,(z) = A(cz) 
will look like I(. 2 0) as c + co, but the function also has a well-behaved 
derivative. 

In the first step, we use current values of Q and p to predict outputs from 
(17.2) and (17.3). In the next step we compute errors b from the output layer. 
and use (17.7) to compute a from the hidden layer. Instead of batch process- 
ing, updates to the gradient can be made sequentially after each observation. 
In this case, y is not constant. and should decrease to zero as the iterations 
are repeated (this is why it is called the learning rate). 

The hidden layer of the network. along with the nonlinear activation func- 
tion, gives it the flexibility to learn by creating convex regions for classification 
that need not be linearly separable like the more simple linear rules require. 
One can introduce another hidden layer that in effect can allow non convex 
regions (by combining convex regions together). Applications exist with even 
more hidden layers, but two hidden layers should be ample for almost every 
nonlinear classification problem that fits into the neural network framework. 

17.4.2 Implementing the Neural Network 

Implementing the steps above into a computer algorithm is not simple, nor is 
it free from potential errors. One popular method for processing through the 
back-propagation algorithm uses six steps: 

1. Assign random values to the weights. 

2 .  Input the first pattern to get outputs to the hidden layer (Rl, .... RnH)  
and output layer (g(1). ... >tj( k)). 

3. Compute the output errors b. 

4. Compute the hidden layer errors a as a function of b. 

5. Update the weights using (17.5) 

6. Repeat the steps for the next observation 

Computing a neural network from scratch would be challenging for many 
In MATLAB. of us. even if we have a good programming background. 
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there are a few modest programs that can be used for classification, such 
as sof tmax (X, K ,Prior) that uses implements a feed-forward neural network 
using a training set X ,  a vector K for class indexing, with an optional prior 
argument. Instead of minimizing SSQ in (17.4). softmax assumes that “the 
outputs are a Poisson process conditional on their sum and calculates the 
error as the residual deviance.’‘ 

MATLAB also has a Neural Networks Toolbox, see 

http://www.mathworks.com 

which features a graphical user interface (GUI) for creating, training, and 
running neural networks. 

17.4.3 Projection Pursuit 

The technique of Projection Pursuit is similar to that of neural networks. as 
both employ a nonlinear function that is applied only to linear combinations 
of the input. While the neural network is relatively fixed with a set number 
of hidden layer nodes (and hence a fixed number of parameters), projection 
pursuit seems more nonparametric because it uses unspecified functions in its 
transformations. We will start with a basic model 

dX) = TLl+ ( e m  > (17.8) 

where n p  represents the number of unknown parameter vectors (01 . .  . . ,On*). 
Note that 0:X is the projection of X onto the vector B,. If we pursue a 

value of 0% that makes this projection effective, it seems logical enough to call 
this projection pursuit. The idea of using a linear combination of inputs to 
uncover structure in the data was first suggested by Kruskal (1969). Friedman 
and Stuetzle (1981) derived a more formal projection pursuit regression using 
a multi-step algorithm: 

1. Define 7:’) = gz. 

2 .  Maximize the standardized squared errors 

over weights w ( 3 )  (under the constraint that $(3)’1 = 1) and g ( 3 - l ) .  

3. Update 7 with T , ( ~ )  = T:’-’) - g(J - ’ ) ( t i~ (J ) ’ z~) .  

4. Repeat the first step k times until SSQ(k)  _< 6 for some fixed S > 0. 
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Once the algorithm finishes, it essentially has given up trying to find other 
projections, and we complete the projection pursuit estimator as 

(17.10) 

17.5 BINARY CLASSIFICATION TREES 

Binary trees offer a graphical and logical basis for empirical classification. De- 
cisions are made sequentially through a route of branches on a tree - every 
time a choice is made, the route is split into two directions. Observations 
that are collected at the same endpoint (node) are classified into the same 
population. At those junctures on the route where the split is made are non- 
termznal nodes, and terminal nodes denote all the different endpoints where 
a classification of the tree. These endpoints are also called the leaves of the 
tree. and the starting node is called the root. 

With the training set (51, gl), . . . , (xn, gn), where z is a vector of m compo- 
nents, splits are based on a single variable of z, possibly a linear combination. 
This leads to decision rules that are fairly easy to interpret and explain, so 
binary trees are popular for disseminating information to a broad audience. 
The phases of of tree construction include 

0 Deciding whether to make the node a terminal node. 

0 Select.ion of splits in a nonterminal node 

0 Assigning classification rule at terminal nodes. 

This is the essential approach of CART (Classzficatzon and Regresszon Trees). 
The goal is to produce a simple and effective classification tree without an 
excess number of nodes. 

If we have k populations GI,  . . . . Gk. we will use the frequencies found in 
the training data to estimate population frequency in the same way we con- 
structed nearest-neighbor classification rules: the proportion of observations 
in training set from the ith population = P(G,) = n,/n. Suppose there are 
n , ( r )  observations from G, that reach node r .  The probability of such an 
observation reaching node T is estimated as 

We want to construct a perfectly pure split where we can isolate one or 
some of the populations into a single node that can be a terminal node (or at 
least split more easily into one during a later split). Figure 17.4 illustrates a 
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Fig. 17.4 Purifying a tree by splitting. 

perfect split of node T .  This, of course: is not always possible. This quality 
measure of a split is defined in an impurity index fu:nction 

where y is nonnegative. symmetric in its arguments, maximized at ( l / k . .  . . , l / k ) %  
and minimized at any k-vector that  has a one and k - 1 zeroes. 

Several different methods of impurity have been defined for constructing 
trees. The three most popular impurity measures are cross-entropy. Gini 
impurity and misclassification impurity: 

1. Cross-entropy: Z(T)  = -C, p,(T)>oP,(r) ln[P,(r)]. 

2. Gini: Z(T)  = -C,+,Pz(~)P, (~) .  

3. Misclassification: Z(T)  = 1 - max, P,(T) 

The misclassification impurity represents the minimum probability that 
the training set observations would be (empirical1y:l misclassified at node T .  

The Gini measure and Cross-entropy measure have an analytical advantage 
over the discrete impurity measure by being differentiable. We will focus on 
the most popular index of the three. which is the cross-entropy impurity. 

By splitting a node, we will reduce the impurity to 

where q(R) is the proportion of observations that go to  node T R ?  and q(L)  is 
the proportion of observations that go to node T L .  Constructed this way, the 
binary tree is a recurswe classifier. 

Q 
Xi 

Let Q be a potential split for the input vector x. If x = ( 2 1 ,  .... 2,). 
= {zcz > 20)  would be a valid split if 2, is ordinal. or Q = ( 2 ,  E S }  if 
is categorical and S is a subset of possible categorical outcomes for z,. In 

either case, the split creates two additional nodes for the binary response of 
the data to Q. For the first split. we find the split L)1 that will minimize the 
impurity measure the most. The second split will be chosen to  be the Qz that 
minimizes the impurity from one of the two nodes created by &I. 
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Suppose we are the middle of constructing a binary classification tree T 
that has a set of terminal nodes R. With 

P( reach node r )  = P ( r )  = CPi(r) ,  

suppose the current impurity function is 

At the next stage, then, we split the node that will most greatly decrease I,. 

Example 17.3 The following made-up example was used in Elsner, Lehmiller, 
and Kimberlain (1996) to illustrate a case for which linear classification models 
fail and binary classification trees perform well. Hurricanes categorized ac- 
cording to season as “tropical only” or “baroclinically influenced“ . Hurricanes 
are classified according to location (longitude, latitude), and Figure (17.5(a)) 
shows that no linear rule can separate the two categories without a great 
amount of misclassification. The average latitude of origin for tropical-only 
hurricanes is 18.8’N, compared to  29.1°N for baroclinically influenced storms. 
The baroclinically influenced hurricane season extends from-mid May to De- 
cember, while the tropical-only season is largely confined to the months of 
August through October. 

For this problem, simple splits are considered and the ones that minimize 
impurity are Q1 : Longitude 2 67.75, and Qz : Longitude 5 62.5 (see home- 
work). In this case, the tree perfectly separates the two types of storms with 
two splits and three terminal nodes in Figure 17.5(b). 
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F g  17 5 
Elsner at al. (1996). (b) Corresponding separating tree. 

(a) Location of 37 tropical (circles) and other (plus-signs) hurricanes from 
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>> long =[59.00 59.50 60.00 60.50 61.00 61.00 61.50 61.50 62.00 63.00 . . .  
63.50 64.00 64.50 65.00 65.00 65.00 65.50 66.50 65.50 66.00 66.00 . . .  
66.00 66.50 66.50 66.50 67.00 67.50 68.00 613.50 69.00 69.00 69.50 . . .  
69.50 70.00 70.50 71.00 71.501; 

>> 

>> 

>> 
>> 
>> 

lat = c17.00 21.00 12.00 16.00 13.00 15.00 1.7.00 19.00 14.00 15.00.. . 
19.00 12.00 16.00 12.00 15.00 17.00 16.00 19.00 21.00 13.00 14.00. . .  
17.00 17.00 18.00 21.00 14.00 18.00 14.00 18.00 13.00 15.00 17.00 . . .  
19.00 12.00 16.00 17.00 21.001; 
trop= [ 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 0 0  . . .  

0 0 0 0 0 0 0 01; 
plot (long(find(1ong’ . *trop ’>0.5)) ’ ,lat (find(1ong’. *trop’>O. 5)) ’ , ’0’) 
hold on 
p1ot(1ong(find(1ong’.*tropJ<0.5))’,1at(find(1ong’.*trop’<0.5))’,’+’) 

17.5.1 Growing the Tree 

So far we have not decided how many splits will be used in the final tree; we 
have only determined which splits should take place first. In constructing a 
binary classification tree, it is standard to  grow a tree that is initially too large, 
and to  then prune it back, forming a sequence of sub-trees. This approach 
works well; if one of the splits made in the tree appears to  have no value. it 
might be worth saving if there exists below it an effective split. 

In this case we define a branch to  be a split direction that begins at a node 
and includes all the subsequent nodes in the direction of that  split (called a 
subtree or descendants). For example. suppose we consider splitting tree T at 
node r and T, represents the classification tree after the split is made. The 
new nodes made under r will be denoted TR and rL. The impurity is now 

The change in impurity caused by the split is 

Again, let R be the set of all terminal nodes of the tree. If we consider the 
potential differences for any particular split Q. say AzTp(r;  Q), then the next 
split should be chosen by finding the terminal node r and split Q corresponding 
to  

. 

To prevent the tree from splitting too much, we will have a fixed threshold 
level T > 0 so that splitting must stop once the change no longer exceeds T .  
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We classify each terminal node according to majority vote: observations in 
terminal node r are classified into the population i with the highest n i ( r ) .  
With this simple rule, the misclassification rate for observations arriving at 
node r is estimated as 1 - Pz(r).  

17.5.2 Pruning the Tree 

With a tree constructed using only a threshold value to prevent overgrowth. a 
large set of training data may yield a tree with an abundance of branches and 
terminal nodes. If 7 is small enough, the tree will fit the data locally, similar 
to how a 1-nearest-neighbor overfits a model. If T is too large, the tree will 
stop growing prematurely, and we might fail to find some interesting features 
of the data. The best method is t o  grow the tree a bit too much and then 
prune back unnecessary branches. 

To make this efficable, there must be a penalty function <T = <T(/RI) 
for adding extra terminal nodes, where IRl is the cardinality, or number of 
terminal nodes of R. We define our cost function to be a combination of 
misclassification error and penalty for over-fitting: 

where 

This is called the cost-complexity pruning algorithm in Breiman et a1 
(1984). Using this rule, we will always find a subtree of T that minimizes 
C ( T ) .  If we allow <T -+ 0, the subtree is just the original tree T ,  and if we 
allow [T -+ m, the subtree is a single node that doesn’t split at all. If we 
increase <T from 0, we will get a sequence of subtrees. each one being nested 
in the previous one. 

In deciding whether or not to prune a branch of the tree at node r ,  we will 
compare C ( T )  of the tree to the new cost that would result from removing the 
branches under node T .  LT will necessarily increase, while [T will decrease as 
the number of terminal nodes in the tree decreases. 

Let T, be the branch under node r ,  so the tree remaining after cutting 
branch T, (we will call this T(,)) is nested in T ,  i.e., T(T) c T .  The set of 
terminal nodes in the branch T, is denoted R,. If another branch at node s 
is pruned, we will denote the remaining subtree as T(,.s) C T(T)  C T .  Now, 

C ( Z )  = &R,LT, (3) + <T, 
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is equal to C ( T )  if <T is set to 

Using this approach, we want to trim the node T that minimizes h(r ) .  
Obviously, only non-terminal nodes r E RC because terminal nodes have no 
branches. If we repeat this procedure after recomputing h(r )  for the resulting 
subtree, this pruning will create another sequence of nested trees 

T I) T(Tl) 2 T ( T 1 , T 2 )  2 . . . 2 rg. 

where TO is the the first node of the original tree 2”. Each subtree has an 
associated cost (C(T) ,  C(TT1).  . . . , C(r0))  which can be used to determine at 
what point the pruning should finish. The problem with this procedure is 
that the misclassification probability is based only on the training data. 

A better estimator can be constructed by cross-validation. If we divide 
the training data into u subsets S1. . . . . S,, we can form u artificial training 
sets as 

S(3) = us, 
t i 3  

and constructing a binary classification tree based on each of the u sets 
S(1), . . . . S(,,). This type of cross-validation is analogous to the jackknife 
”leave-one-out” resampling procedure. If we let L(3) be the estimated misclas- 
sification probability based on the subtree chosen in the j t h  step of the cross 
validation (i.e.. leaving out S J ) ,  and let C ( 3 )  be the corresponding penalty 
function. then 

provides a bona fide estimator for misclassification error. The corresponding 
penalty function for Lcv is estimated as the geometric mean of the penalty 
functions in the cross validation. That is. 

To perform a binary tree search in MATLAB, the function treef it creates 
a decision tree based on an input an nxm matrix of inputs and a n-vector 
y of outcomes. The function treedisp creates a graphical representation 
of the tree using the same inputs. Several options are available to control 
tree growth, tree pruning, and misclassification costs (see Chapter 23). The 
function treeprune produces a sequence of trees by pruning according to a 
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threshold rule. For example, if T is the output of a treeprune function, then 
treeprune(T1 generates an unpruned tree of T and adds information about 
optimal pruning. 

>> numobs = size(meas, 1) ; 
>> tree = treefit (meas ( : ,I: 2) , species) ; 
>> [dtnum,dtnode,dtclassl = treeval(tree, meas(:,l:2)); 
>> bad = “strcmp(dtclass, species) ; 
>> sum(bad) / numobs 

ans = 

0.1333 
%The decision tree misclassifies 13.3% or 20 of the specimens. 

>> [grpnum,node,grpname] = treeval(tree, [x y l )  ; 
>> gscatter(x,y,grpnme,’grb’,’sod’) 
>> treedisp(tree,’name’,C’SL’ ’SW’)) 
>> resubcost = treetest(tree,’resub’); 
>> [cost,secost,ntermnodes,bestlevel] = . . .  
>> 
>> plot(ntermnodes,cost,’b-’ , ntermnodes,resubcost,’r--’) 
>> xlabel(’Number of terminal nodes’) 
>> ylabel(’Cost(misc1assification error)’) 
>> legend(’Cross-validation’,’Resubstitution’) 

treetest (tree, ’ cross ’ ,meas ( : ,I: 2) , species) ; 

vers 

i ca  

v i r g i m i c o l o r  

Fig. 17 6 MATLAB function treedisp applied to Fisher’s Iris Data. 
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17.5.3 General Tree Classifiers 

Classification and regression trees can be convenient1.y divided to five different 
families. 

(i) The CART family : Simple versions of CART have been emphasized in 
this chapter. This method is characterized by its use of two branches 
from each nonterminal node. Cross-validation and pruning are used to 
determine size of tree. Response variable can be quantitative or nominal. 
Predictor variables can be nominal or ordinal. and continuous predictors 
are supported. Motzvatzon: statistical prediction. 

(ii) The CLS family: These include ID3, originally developed by Quinlan 
(1979). and off-shoots such as CLS and C4.5. For this method, the num- 
ber of branches equals the number of categories of the predictor. Only 
nominal response and predictor variables are supported in early versions, 
so continuous inputs had to be binned. However, the latest version of 
C4.5 supports ordinal predictors. Motmation: concept learning. 

(iii) The AID family: Methods include AID, THAID. CHAID. MAID, XAID. 
FIRM, and TREEDISC. The number of branches varies from two to  the 
number of categories of the predictor. Statistical significance tests (with 
multiplicity adjustments in the later versions) are used to  determine the 
size of tree. AID. MAID, and XAID are for quantitative responses. 
THAID. CHAID. and TREEDISC are for nominal responses, although 
the version of CHAID from Statistical Innovations, distributed by SPSS. 
can handle a quantitative categorical response. FIRM comes in two vari- 
eties for categorical or continuous response. Predictors can be nominal 
or ordinal and there is usually provision for a missing-value category. 
Some versions can handle continuous predictors, others cannot. Motz- 
vatzon: detecting complex statistical relationshilos. 

(iv) Linear combinations: Methods include OC1 and SE-Trees. The Num- 
ber of branches varies from two to  the number of categories of predictor. 
Motzvation: Detecting linear statistical relationships combined to con- 
cept learning. 

(v) Hybrid models: IND is one example. IND combines CART and C4 as 
well as Bayesian and minimum encoding methods. Knowledge Seeker 
combines methods from CHAID and ID3 with a novel multiplicity ad- 
justment.Motiwation: Combines methods from other families to find op- 
timal algorithm. 
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17.6 EXERCISES 

17.1. Create a simple nearest-neighbor program using MATLAB. It should 
input a training set of data in m + l  columns; one column should contain 
the population identifier 1, ..., k and the others contain the input vectors 
that can have length m. Along with this training set, also input another 
m column matrix representing the classification set. The output should 
contain n, m, k and the classifications for the input set. 

17.2. For the Example 17.3, show the optimal splits, using the cross-entropy 
measure, in terms of intervals { longitude 2 l o }  and { latitude 2 11) 

17.3. In this exercise the goal is to discriminate between observations coming 
from two different normal populations, using logistic regression. 

Simulate a training data set, {(Xt,Y,).i = 1,. . . .n},  (take n even) as 
follows: For the first half of data, X, ,  i = 1 , .  . . , n/2 are sampled from 
the standard normal distribution and Y,  = 0, i = 1,. . . , n/2. For the 
second half, X , ,  i = n/2+1, . . . , n are sampled from normal distribution 
with mean 2 and variance 1, while Y,  = 1, a = n/2 + 1,. . . . n. Fit the 
logistic regression to this data, P(Y = 1) = f ( X ) .  

Simulate a validation set { ( X ; ,  y),j = 1,. . . , m} the same way, and 
classify these new 7 ’ s  as 0 or 1 depending whether f ( X , * )  < 0.5 or 
2 0.5. 

(a) Calculate the error of this logistic regression classifier, 

In your simulations use n = 60,200, and 2000 and m = 100. 

(b) Can the error L,(rn) be made arbitrarily small by increasing n? 
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18 
Nonparametric Bayes 

Bayesian (bey' -zhuhn) n. 1. Result of breeding EL statistician with a 
clergyman to produce the much sought honest statistician. 

Anonymous 

This chapter is about nonparametric Bayesian inference. Understanding the 
computational machinery needed for non-conjugate Bayesian analysis in this 
chapter can be quite challenging and it is beyond the scope of this text. 
Instead, we will use specialized software. WinBUGS, to  implement complex 
Bayesian models in a user-friendly manner. Some applications of WinBUGS 
have been discussed in Chapter 4 and an overview of' WinBUGS is given in 
the Appendix B. 

Our purpose is to explore the useful applications of the nonparametric side 
of Bayesian inference. At first glance. the term nonparametrzc Bayes might 
seem like an oxymoron; after all, Bayesian analysis if3 all about introducing 
prior distributions on parameters. Actually, nonparametric Bayes is often 
seen as a synonym for Bayesian models with process priors on the spaces of 
densities and functions. Dirichlet process priors are the most popular choice. 
However, many other Bayesian methods are nonparametric in spirit. In addi- 
tion to  Dirichlet process priors, Bayesian formulations of contingency tables 
and Bayesian models on the coefficients in atomic decoinpositions of functions 
will be discussed later in this chapter. 

349 
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18.1 DlRlCHLET PROCESSES 

The central idea of traditional nonparametric Bayesian analysis is to draw in- 
ference on an unknown distribution function. This leads to models on function 
spaces, so that the Bayesian nonparametric approach to modeling requires a 
dramatic shift in methodology. In fact, a commonly used technical defini- 
tion of nonparametric Bayes models involves infinitely many parameters. as 
mentioned in Chapter 10. 

Results from Bayesian inference are comparable to classical nonparametric 
inference, such as density and function estimation, estimation of mixtures and 
smoothing. There are two main groups of nonparametric Bayes methodolo- 
gies: (1) methods that involve prior/posterior analysis on distribution spaces, 
and ( 2 )  methods in which standard Bayes analysis is performed on a vast 
number of parameters, such as atomic decompositions of functions and den- 
sities. Although the these two methodologies can be presented in a unified 
way (see Mueller and Quintana, 2005), because of simplicity we present them 
separately. 

Recall a Dirichlet random variable can be constructed from gamma random 
variables. If X I , .  . . , X ,  are i.i.d. Garnrna(a,, l),  then for Y ,  = X,/C,”=,X,, 
the vector (Yl, . . . , Y,) has Dirichlet Dir(a1,.  . . , a,) distribution. The Dirich- 
let distribution represents a multivariate extension of the beta distribution: 
Dar(al.a2) = Be(a1,az).  Also, from Chapter 2 ,  IEY, = a,/C,”,,a,, Ex2 = 
a,(a, + l)/Cy=la,(l + C,”=la,), and E(Y, 5 )  = a,a,/C,”=la,(l + C,”=,a,). 

The Dirichlet process (DP), with precursors in the work of Freedman 
(1963) and Fabius (1964), was formally developed by Ferguson (1973, 1974). 

It is the first prior developed for spaces of distribution functions. The DP 
is, formally, a probability measure (distribution) on the space of probability 
measures (distributions) defined on a common probability space X. Hence, a 
realization of DP is a random distribution function. 

The DP is characterized by two parameters: (i) Qo,  a specific probability 
measure on X (or equivalently, Go a specified distribution function on X); (ii) 
a,  a positive scalar parameter. 

Definition 18.1 (Ferguson, 19’73) The DP generates random probability mea- 
sures (random distributions) Q on X such that for any3nite partition B1,. . . . BI, 
of x. 

(Q(B1). . . . , Q ( B k ) )  N D i r ( a Q o ( B i ) % .  . . , a&o(Blc)), 

where, Q(B, )  (a random variable) and Qo(Bi)  (a constant) denote the prob- 
ability of set Bi under Q and Q o )  respectively. Thus, for  any B ,  
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and 

The probability measure QO plays the role of the center of the DP, while Q 

can be viewed as a precision parameter. Large CI implies small variability of 
DP about its center Qo. 

The above can be expressed in terms of CDFs, rather than in terms of 
probabilities. For B = (-m.z] the probability Q ( B )  = Q((-m,z]) = G ( z )  
is a distribution function. As a result, we can write 

and 

The notation G N DP(aG0) indicates that the DP prior is placed on the 
distribution G. 

Example 18.1 Let G N DP(aG0) and x1 < z2 < . . .  < x, are arbitrary 
real numbers from the support of G. Then 

( G ( z i ) ,  G ( z z )  - G ( z i ) .  . . . . G(zn)  - G(xn-1)) - 
D i r ( ~ G o ( z l ) ,  Q(Go(z~)  - G O ( ~ I ) ) ? .  . .  , a(Go(zn) - Go(zn-1)))- (18.1) 

which suggests a way to generate a realization of density from DP at discrete 
points. 

If ( d l . .  . . . d,) is a draw from (18.1). then ( d l .  d l  +&, . . . , Cr=2=ld2) is a draw 
from ( G ( z l ) ,  G ( z 2 ) ,  . . . , G ( z n ) ) .  The MATLAB program dpgen.m generates 
15 draws form DP(cuG0) for the base CDF Go 5 Be(2,2) and the precision 
parameter Q = 20. In Figure 18.1 the base CDF Be(2,2) is shown as a dotted 
line. Fifteen random CDF’s from DP(20, Be(2,2)) are scattered around the 
base CDF. 

>> n = 30; 
>> a = 2; %a, b are parameters of the 
>> 
>> b = 2; 

>> alpha = 20; %The precision parameter alpha = 20 describes 
>> % scattering about the BASE distribution. 
>> % Higher alpha, less variability. 

>> x = linspace(l/n,l,n); %the equispaced points at which 
>> % random CDF’s are evaluated. 
>> y = CDF-beta(x, a, b); % find CDF’s of BASE: 

%generate random CDF’s at 30 equispiiced points 

%BASE distribution G-0 = Beta(2,2) 

>> y------------------- 
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>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
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par = [ y ( l )  diff (y ) ]  ; % and form a Dirichlet parameter 

f o r  i = 1:15 % Generate 15 random CDF’s. 
yy = rand-dirichlet(a1pha * par,l); 
plot( x, cumsum(yy),’-’,’linewidth’,l) %cumulative sum 
% of Dirichlet vector is a random CDF 
hold on 
end 
yyy = 6 .*  (x.-2/2 - x.-3/3); %Plot BASE CDF as reference 
plot( x, yyy, ’ : ’ ,  ’linewidth’,3) 

........................ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Fig. 18.1 
from DP(20, B e ( 2 , 2 ) )  are scattered around the base CDF. 

The base CDF Be(2 ,2)  is shown as a dotted line. Fifteen random CDF’s 

An alternative definition of DP. due to  Sethuraman and Tiwari (1982) and 
Sethuraman (1994), is known as the stick-breaking algorithm. 

Definition 18.2 Let Ui - Be(1, a) .  i = 1: 2 , .  . . and V ,  - Go, i = 1 , 2 , .  . . be 
two independent sequences of i . i .d .  random variables. Define weights w1 = U1 

and w i  = Ui nili(l - Uj),i > 1. Then, 

G = Cp=l~kS(Vj)  N DP(aGo),  

where 6(Vj) is  a point mass at Vk. 
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The distribution G is discrete, as a countable )mixture of point masses. 
and from this definition one can see that with probability 1 only discrete 
distributions fall in the support of DP. The name stick-breaking comes from 
the fact that  Cw, = 1 with probability 1, that is, the unity is broken on 
infinitely many random weights. The Definition 18.2 suggests another way to 
generate approximately from a given DP. 

Let GK = Cf=',,wkG(Vk) where the weights 01.. . . , W K - ~  are as in Defini- 
tion 18.2 and the last weight LJK is modified as 1 - w1 - . . . - wK-1 ,  so that 
the sum of K weights is 1. In practical applications, K is selected so that 
(1 - (a / (1+  a ) ) K )  is small. 

18.1.1 Updating Dirichlet Process Priors 

The critical step in any Bayesian inference is the transition from the prior to 
the posterior, that is, updating a prior when data are available. If Y1, Y2. . . . , Y, 
is a random sample from G. and G has Dirichlet prior DP(aG0).  the posterior 
is remains Dirichlet, GIYI,. . . , Y, - DP(a*G;) .  with a* = a + n, and 

(18.2) 

Notice that the DP prior and the EDF constitute a conjugate pazr because the 
posterior is also a DP. The posterior estimate of distribution is E(GIY1. . . . . Yn) = 

GT,(t) which is, as we saw in several examples with con,jugate priors. a weighted 
average of the "prior mean" and the maximum likelihood estimator (the EDF). 

Example 18.2 In the spirit of classical nonparametrics, the problem of esti- 
mating the CDF at a fixed value 2.  has a simple nonparametric Bayes solution. 
Suppose the sample X I ,  . . . . X ,  - F is observed and that one is interested in 
estimating F ( z ) .  Suppose the F ( z )  is assigned a Dirichlet process prior with 
a center Fo and a small precision parameter a. The posterior distribution for 
F ( z )  is Be(aFo(z) +ex, a(1-  Fo(z)) + n - e,) where ex is the number of ob- 
servations in the sample smaller than or equal to  z. As cy -+ 0, the posterior 
tends to a Be(e,, TI-&). This limiting posterior is often called nonznformatzwe. 
By inspecting the Be(l,. n - l,) distribution, or generating from it. one can 
find a posterior probability region for the CDF at any value z. Note that the 
posterior expectation of F ( z )  is equal to  the classical estimator e,/n. which 
makes sense because the prior is noninformative. 

Example 18.3 The underground train at Hartsfield-Jackson airport arrives 
at its starting station every four minutes. The numb'er of people Y entering 
a single car of the train is random variable with a Pojsson distribution, 

Y/X - ?(A). 
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f ig. 18.2 For a sample n = 15 Beta(2,2) observations a boxplot of "noninformative" 
posterior realizations of P ( X  5 1) is shown. Exact value F(1) for Beta(2,2) is shown 
as dotted line. 

A sample of size N = 20 for Y is obtained below. 

9 7 7  8 8 1 1  8 7 5  7 
1 3 5 7 1 4 4  6 1 8 9 8 1 0  

The prior on X is any  discrete distribution supported on integers [l. 171. 

XIP N DD~SCT ( ( 1 , 2 , .  . . . 17), P = ( p l , p z ,  . . . . p 1 7 ) ) .  

where C, p ,  = 1. The hyperprior on probabilities P is Dirichlet, 

P N Di~(aGo(l) .aGo(2),  . . . . aGo(17)). 

We can assume that  the prior on X is a Dirichlet process with 

Go = [l.l, 1.2.2,3,3,4 .4 .5 .6 ,5 .4 ,3 .2 .1 .1] /48 

and o = 48. We are interested in posterior inference on the rate parameter A. 

model 

for (i in 1:N) 
c 

c 
y [i] - dpois (lambda) 
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3 
lambda dcat (P [I 
P [l :bins] ddirch(alphaG0 [I 

> 
#data 
list (bins=17, alphaGO=c(l, 1,1,2,2,3,3,4,4,5,6,5,4,3,2,1,1) , 
y=c(9,7,7,8,8,11,8,7,5,7,13,5,7,14,4,6,18,9,8,10), N=20 

) 

#inits 
list(lambda=l2, 
P=c(0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0~) 
) 

The summary posterior statistics were found directly from within Win- 
BUGS: 

1 node 1 mean 1 sd 1 MC error I 2.5% 1 median 1 97.5% I 
1 lambda 1 8.634 I 0.6687 I 0.003232 I 8 I9 I 10 I 

0.02034 
0.02038 
0.02046 
0.04075 
0.04103 
0.06142 
0.06171 
0.09012 
0.09134 
0.1035 
0.1226 
0.1019 
0.08173 
0.061 18 
0.04085 
0.02032 
0.02044 

0.01982 
0.01995 
0.02004 
0.028 
0.028 
0.03419 
0.03406 
0.04161 
0.04 163 
0.04329 
0.04663 
0.04284 
0.03874 
0.03396 
0.02795 
0.01996 
0.01986 

8.5563-5 
78.2 19E-5 
8.7523-5 
1.1793-4 
1.237E-4 
1.5753-4 
1.5863-4 
1.9813-4 
1.9563-4 
1.853-4 

1.811E-4 
1.71E-4 
1.5853-4 
1.3363-4 
9.5493-5 

2.2783-4 

8.4873-5 

5.4133-4 
5.3743-4 
5.2453-4 
0.004988 
0.005249 
0.01316 
0.01313 
0.02637 
0.02676 
0.03516 
0.04698 
0.03496 
0.02326 
0.01288 
0.005309 
5.3173-4 
5.4753-4 

0.01445 
0.01423 
0.01434 
0.03454 
0.03507 
0.05536 
0.05573 
0.08438 
0.08578 
0.09774 
0.1175 
0.09649 
0.07608 
0.05512 
0.03477 
0.01419 
0.01445 

0.07282 
0.07391 
0.07456 
0.1113 
0.1107 
0.143 
0.1427 
0.1859 
0.1866 
0.2022 
0.2276 
0.1994 
0.1718 
0.1426 
0.1106 
0.07444 
0.07347 

The main parameter of interest is the arrival rate, A. The posterior mean 
of X is 8.634. The median is 9 passengers every four iminutes. Either number 
could be justified as an estimate of the passenger arrival rate per four minute 
interval. WinBUGS provides an easy way to save the simulated parameter 
values, in order, to a text file. This then enables the data to be easily imported 
into another environment. such as R or MATLAB, for data analysis and 
graphing. In this example, MATLAB was used to provide the histograms for 
X and p lo .  The histograms in Figure 18.3 illustrate that X is pretty much 
confined to the five integers 7. 8. 9. 10. and 11, with the mode 9. 
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Fig. 18.3 Histograms of 40,000 samples from the posterior for X and P[10]. 

18.1.2 Generalizing Dirichlet Processes 

Some popular NP Bayesian models employ a mixture of Dirichlet processes. 
The motivation for such models is their extraordinary modeling flexibility. 
Let X I ,  Xa, . . . , X ,  be the observations modeled as 

XiIOi - Bin(nz,Oz), 
OilF - F, i = l ,  . . . ,  n 

F - Dir(a) .  

(18.3) 

If Q assigns mass to every open interval on [0,1] then the support of the 
distributions on F is the class of all distributions on [0,1]. This model allows 
for pooling information across the samples. For example, observation X, will 
have an effect on the posterior distribution of 0 3 .  j # i, via the hierarchical 
stage of the model involving the common Dirichlet process. 

The model (18.3) is used extensively in the applications of Bayesian non- 
parametrics. For example, Berry and Christensen (1979) use the model for 
the quality of welding material submitted to a naval shipyard, implying an 
interest in posterior distributions of 0,. Liu (1996) uses the model for re- 
sults of flicks of thumbtacks and focusses on distribution of O,+llX1,. . . , X,. 
McEarchern. Clyde, and Liu (1999) discuss estimation of the posterior pre- 
dictive Xn+l /X1. .  . . . X,, and some other posterior functionals. 

The DP is the most popular nonparametric Bayes model in the literature 
(for a recent review, see MacEachern and Mueller, 2000). However, limiting 
the prior to discrete distributions may not be appropriate for some applica- 
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tions. A simple extension to  remove the constraint of discrete measures is to  
use a convoluted DP: 

This model is called Dzrrchlet Process Mzxture (DPM). because the mix- 
ing is done by the DP. Posterior inference for DMP models is based on 
MCMC posterior simulation. Most approaches proceed by introducing la- 
tent variables d % X,ld, - f(xid,).O,(G - G and G‘ w DP(aG0).  Efficient 
MCMC simulation for general MDP models is discussed, among others. in 
Escobar (1994), Escobar and West (1995), Bush and MacEachern (1996) 
and MacEachern and Mueller (1998). Using a Gaussian kernel, f ( z lp ,  C) 0: 

exp{(z - p)’)E(z - p ) / 2 } .  and mixing with respect to d = (p .  C ) ,  a density 
estimate resembling traditional kernel density estimation is obtained. Such 
approaches have been studied in Lo (1984) and Escobar and West (1995). 

A related generalization of Dirichlet Processes is i;he Mzxture of Dzrzchlet 
Processes (MDP). The MDP is defined as a DP with a center CDF which 
depends on random 0. 

F - DP(aGe)  

0 N 7 r ( d ) .  

Antoniak (1974) explored theoretical properties of MDP’s and obtained pos- 
terior distribution for 0. 

18.2 BAYESIAN CONTINGENCY TABLES AND CATEGORICAL 
MODELS 

In contingency tables, the cell counts N,, can be modeled as realizations 
from a count distribution, such as Multinomial Mn(n,p,,) or Poisson P(A,,). 
The hypothesis of interest is independence of row and column factors. H0 : 
p,, = a,b,, where a, and b, are marginal probabilities of levels of two factors 
satisfying Etaz = C,b, = 1. 

The expected cell count for the multinomial distribution is ENzJ = npt3. 
Under Ho, this equals na,b,, so by taking the logarilhm on both sides, one 
obtains 
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Morning 
Noon 

Afternoon 
Evening 

for some parameters a, and @,. This shows that testing the model for addi- 
tivity in parameters a and p is equivalent to testing the original independence 
hypothesis Ho. For the Poisson counts, the situation is analogous: one uses 
log A,, = const + a, + D,. 

Example 18.4 Activities of Dolphin Groups Revisited. We revisit the 
Dolphin’s Activity example from p. 162. Groups of dolphins were observed 
off the coast of Iceland and the table providing group counts is given below. 
The counts are listed according to the time of the day and the main activity 
of the dolphin group. The hypothesis of interest is independence of the type 
of activity from the time of the day. 

6 28 38 
6 4 5 
14 0 9 
13 56 10 

1 Travelling Feeding Socializing 

The WinBUGS program implementing the additive model is quite simple. 
We assume the cell counts are assumed distributed Poisson and the logarithm 
of intensity (expectation) is represented in an additive manner. The model 
parts (intercept, a,, and p J )  are assigned normal priors with mean zero and 
precision parameter xi. The precision parameter is given a gamma prior with 
mean 1 and variance 10. In addition to the model parameters, the WinBUGS 
program will calculate the deviance and chi-square statistics that measure 
goodness of fit for this model. 

model { 
for (i in 1:nrow) { 

for (j in 1:ncol) C 
groups[i, jl - dpois(lambda[i, jl) 
log(lambda[i,j]) <- c + alpha[il + beta[jl 
1 )  

# 

c - dnorm(0, xi) 
for (i in 1:nrow) { alpha[i] dnorm(0, xi) 1 
for (j in 1:ncol) { beta[jl I dnorrn(0, xi) 1 
xi - dgauuna(0.01, 0.01) 

# 
for (i in 1:nrow) C 

for (j in 1:ncol) { 
devG[i, j] <- groups[i, j] * log((groups[i,jl+O.5)/ 
(lambda [i , j 1 +O .5) ) - (groups [i , j 1 -lambda [i , j 1 ; 
devX[i,jl <- (groups[i,jl-lambda[i,jl) 

*(groups [it jl -lambda[i, jl ) /lambda[i, jl ; 1 > 
G2 <- 2 * sum( devG[,] 1 ;  
X2 <- sum( devX[,] )) 



B A Y W A N  CAT€GOR/CAL MOD€LS 359 

1.514 
1.028 
-0.5182 
-0.1105 
1.121 
0.1314 
0.9439 
0.5924 
1.514 
77.8 
77.73 

The data are imported as 

0.7393 
0.5658 
0.5894 
0.5793 
0.5656 
0.6478 
0.6427 
0.6451 
0.7393 
3.452 
9.871 

list(nrow=4, ncol=3, 
groups = s t ruc tu re (  

.Data = c (  6 ,  28, 38, 6, 4, 5, 
14, 0, 9, 13, 56, 101, .Dim,=c(4,3)) ) 

and initial parameters are 

l i s t ( x i = O . l ,  c = 0 ,  a lpha=c(0 ,0 ,0 ,0) ,  beta=c(0,0,0) ) 

The following output gives Bayes estimators of tbe parameters, and mea- 
sures of fit. This additive model conforms poorly to the observations; under 
the hypothesis of independence, the test statistic is x 2  with 3 x 4 - 6 = 

6 degrees of freedom, and the observed value X 2  = 77.73 has a pvalue 
(I-chi2cdf (77.73, 6 ) )  that is essentially zero. 

I node 

C 

alpha[l] 
alpha[2] 
alpha[3] 
alpha[4] 
beta[l] 
beta[2] 
bet a[3] 

G2 
x2 

C 

mean I sd MC error I 2.5% 

0.03152 
0.0215 
0.02072 
0.02108 
0.02 158 
0.02492 
0.02516 
0.02512 
0.03152 
0.01548 
0.03737 

-0.02262 
- 0.07829 
-1.695 
-1.259 
0.02059 
-1.134 
-0.3026 
-0.6616 
- 0.02262 
73.07 
64.32 

median 

1.536 
1.025 
-0.5166 
-0.1113 
1.117 
0.1101 
0.9201 
0.5687 
1.536 
77.16 
75.85 

97.5% 

2.961 
2.185 
0.6532 
1.068 
2.277 
1.507 
2.308 
1.951 
2.961 
86.2 
102.2 

Example 18.5 CEsarean Section Infections Rlevisited. We now con- 
sider the Bayesian solution to the Czesarean section birth problem from p. 
236. The model for probability of infection in a birth by Cmarean section 
was given in terms of the logat link as, 

P ( i n f  ec t ion)  
= ,& + noplan + f l 2  r i s k f a c  + p3 a n t i b i o .  

log P ( n o  i n f e c t i o n )  

The WinBUGS program provided below implements the model in which the 
number of infections is Bin(n. p )  with p connected to covariates noplan r i s k f  a c  
and a n t i b i o  via the logit link. Priors on coefficients in the linear predictor 
are set to be a vague Gaussian (small precision parameter). 

model( 
f o r ( i  i n  l:N)( 

inf [i] - dbin(pCi1 , t o t a l  [ i ] )  
l o g i t ( p [ i ] )  <- beta0 + betal*noplan[i] + 
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beta0  
b e t a l  
be ta2  
b e t a 3  

be ta2*r i skf  a c  [i] + beta3*ant ib io  [i] 

3 
be ta0  -dnorm(O, ~ . o ~ ~ ~ ~ )  
b e t a l  -dnorm(O, 0 . 0 0 0 0 ~ )  
b e t a 2  "dnorm(0, 0.00001) 
b e t a 3  "dnorm(0, 0 . 0 0 0 0 ~ )  

> 

-1.962 0.4283 0.004451 -2.861 -1.941 -1.183 
1.115 0.4323 0.003004 0.29 1.106 1.988 
2.101 0.4691 0.004843 1.225 2.084 3.066 
-3.339 0.4896 0.003262 -4.338 -3.324 -2.418 

#DATA 
l i s t (  i n f = c ( l ,  11, 0 ,  0 ,  28, 23, 8, 01, 

noplan = c ( 0 , 1 , 0 , 1 , 0 9 1 , 0 , 1 ) ,  
r i s k f a c  = c ( l , l ,  0 ,  0, 1,1, 0, 01, 
a n t i b i o  = c ( l , l ,  l,l,O,O,O,O) , N=8) 

t o t a l  = c(18 ,  98, 2 ,  0 ,  58, 26, 40, 91, 

#INITS 
l ist  (be ta0  =0, betal=O, 

beta2=0,  beta3=0) 

The Bayes estimates of the parameters Po - p3 are given in the WinBUGS 
output below. 

I node 1 mean 1 sd 1 MC error 1 2.5% I median 1 97.5% 1 

Note that Bayes estimators are close to the estimators obtained in the frequen- 
tist solution in Chapter 12: (po,&.p2,@3) = (-1.89, 1.07, 2.03. -3.25) and 
that in addition to the posterior means, posterior medians and 95% credible 
sets for the parameters are provided. WinBUGS can provide various posterior 
location and precision measures. From the table. the 95% credible set for PO 
is [-2.861. -1.1831. 

18.3 BAYESIAN INFERENCE IN INFINITELY DIMENSIONAL 
NONPARAMETRIC PROBLEMS 

Earlier in the book we argued that many statistical procedures classified as 
nonparametric are, in fact, infinitely parametric. Examples include wavelet 
regression, orthogonal series density estimators and nonparametric MLEs 
(Chapter 10). In order to estimate such functions, we rely on shrinkage, 
tapering or truncation of coefficient estimators in a potentially infinite ex- 
pansion class. (Chencov's orthogonal series density estimators, Fourier and 
wavelet shrinkage, and related.) The benefits of shrinkage estimation in statis- 
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tics were first explored in the mid-1950's by C. Stein In the 1970's and 1980's. 
many statisticians were active in research on statistical properties of classical 
and Bayesian shrinkage estimators. 

Bayesian methods have become popular in shrinkage estimation because 
Bayes rules are. in general, 9hrinkers". Most Bayes rules shrink large coef- 
ficients slightly, whereas small ones are more heaviily shrunk. Furthermore, 
interest for Bayesian methods is boosted by the possibility of incorporating 
prior information about the function to model wavelet coefficients in a realistic 
way. 

Wavelet transformations W are applied to  noisy measurements yz = f ,  + 
E , ,  i = 1.. . . , n, or, in vector notation, y = f + E .  The linearity of W implies 
that the transformed vector d = W(y) is the sum of the transformed signal 
8 = W ( f )  and the transformed noise 7 = W ( E ) .  Furthermore, the orthog- 
onality of W implies that E ~ ,  i.i.d. normal N(0,o') components of the noise 
vector E .  are transformed into components of 7 with the same distribution. 

Bayesian methods are applied in the wavelet djomain, that is, after the 
wavelet transformation has been applied and the model d ,  N N(6',, a'). z = 
1,. . . , n, has been obtained. We can model coefficient-by-coefficient because 
wavelets decorrelate and d, 's are approximately independent. 

Therefore we concentrate just on a single typical wavelet coefficient and 
one model: d = 6' + E .  Bayesian methods are applied to  estimate the loca- 
tion parameter 6'. As 6''s correspond to  the function to  be estimated, back- 
transforming an estimated vector 8 will give the estimator of the function. 

18.3.1 BAMS Wavelet Shrinkage 

BASIS (stands for Bayeszan Adaptzve Multascale Shrznkage) is a simple effi- 
cient shrinkage in which the shrinkage rule is a Bayes rule for properly selected 
prior and hyperparameters of the prior. Starting with [die.  0'1 N N(6'. 0') and 
the prior 0' N € ( p ) ,  p > 0, with density f(a'1p) == pe-pu2,  we obtain the 
marginal likelihood 

1 
2 

dl6' N D€ (6' .  . with density f(di6') = - fie-fild-el 

If the prior on 6' is a mixture of a point mass 60 at zero, and a double- 
exponential distribution. 

6 ' l E  N €60 + (1 - €)D€(O, T ) ,  

then the posterior mean of 6' (from Bayes rule) is: 

(18.4) 

(18.5) 
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where 

(18.6) 

and 

Fig. 18.4 Bayes rule (18.7) and comparable hard and soft thresholding rules. 

As evident from Figure 18.4, the Bayes rule (18.5) falls between comparable 
hard- and soft-thresholding rules. To apply the shrinkage in (18.5) on a specific 
problem, the hyperparameters p,  7 ,  and E have to be specified. A default 
choice for the parameters is suggested in Vidakovic and Ruggeri (2001); see 
also Antoniadis, Bigot, and Sapatinas (2001) for a comparative study of many 
shrinkage rules, including BAMS. Their analysis is accompanied by MATLAB 
routines and can be found at  

http://www-lmc.imag.fr/SMS/software/Gaussi~WaveDen/. 

Figure 18.5(a) shows a noisy doppler function of size n = 1024, where 
the signal-to-noise ratio (defined as a ratio of variances of signal and noise) is 
7. Panel (b) in the same figure shows the smoothed function by BAMS. The 
graphs are based on default values for the hyperparameters. 

Example 18.6 Bayesian Wavelet Shrinkage in WinBUGS. Because of 
the decorrelating property of wavelet transforms, the wavelet coefficients are 
modeled independently. A selected coefficient d is assumed to be normal 
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fig. 18.5 
Signal reconstructed by BAMS. 

(a) A noisy doppler signal [SKR=7, n=1024, noise variance cz = 11. (b) 

d N N ( Q ,  6 )  where Q is the coefficient corresponding to  the underlying signal 
in data and < is the precision, reciprocal of variance. The signal component 
6' is modeled as a mixture of two double-exponential distributions with zero 
mean and different precisions. because WinBUGS will not allow a point mass 
prior. The precision of one part of the mixture is large (so the variance is 
small) indicating coefficients that  could be ignored as negligible. The cor- 
responding precision of the second part is small (so the variance is large) 
indicating important coefficients of possibly large magnitude. The densities 
in the prior mixture are taken in proportion p : (1 - p )  where p is Bernoulli. 
For all other parameters and hyperparameters. appropriate prior distributions 
are adopted. 

We are interested in the posterior means for 8.  Here is the WinBUGS 
implementation of the described model acting on ;some imaginary wavelet 
coefficients ranging from -50 to  50, as an illustration. Figure 18.6 shows the 
Bayes rule. Note a desirable shape close to  that of the thresholding rules. 

modelf 
f o r  (j in 1:N)C 

DD[j] dnorm(thetaCj1, tau) ; 
theta[j] <- pCjl * mulCj1 + (1-pCjl) * mu2Cjl; 
mul[jl ddexp(0, taul); 
muZ[jl ,, ddexp(0, tad); 
p[j] dbern(r) ; 

3 
r - dbeta(1,lO) ; 
tau - dgamma(0.5, 0.5) ; 
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tau1 - dgamma(0.005, 0.5); 
tau2 -dgamma(0.5, 0.005); 

#data 
list( DD=c(-50, -10, -5,-4,-3,-2,-1,-0.5, -0.1, 0, 

0.1, 0.5, 1, 2,3,4,5, 10, 501, N = 1 9 ) ;  

#inits 
list (tau=i, taul=O.i, tau2=i0) ; 

Fig. 18.6 Approximation of Bayes shrinkage rule calculated by WinBUGS. 

18.4 EXERCISES 

18.1. Show that in the DP Definition 18.2, IE(C:==lwi) = 1 - [a/(l - a)]’. 

18.2. Let p = s-”, ydG(y) and let G be a random CDF with Dirichlet process 
prior DP(aG0). Let y be a sample of size n from G. Using (18.2): show 
that 

In other words, show that the expected posterior mean is a weighted 
average of the expected prior mean and the sample mean. 

18.3. Redo Exercise 9.13, where the results for 148 survey responses are broken 
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down by program choice and by race. Test the fit of the properly set 
additive Bayesian model. Use WinBUGS for model analysis. 

18.4. Show that m(d) and S(d) from (18.6) and (18.7) are marginal distribu- 
tions and the Bayes rule for the model is 

die DE ( e ,  6) , e D E ( O . ~ ) ,  

where p and r are the hyperparameters 

18.5. This is an open-ended question. Select a data set with noise present 
in it (a noisy signal). transform the data to  the wavelet domain, apply 
shrinkage on wavelet coefficients by the Bayes procedure described be- 
low, and back-transform the shrunk coefficients to the domain of original 
data. 

(i) Prove that for [die] - N(O.1). [Olr2] N N(0,r2) ,  and r2 N (r2)-3/4% 
the posterior is unimodal at 0 if 0 < d2 < 2 and bimodal otherwise with 
the second mode 

2 

(ii) Generalize to [die] - N(O, u 2 ) .  u2 known, and apply the larger mode 
shrinkage. Is this shrinkage of the thresholding type? 

(iii) Use the approximation (1 - u)" N (1 - cyu) for u small to argue that 
the largest mode shrinkage is close to  a James-Stein-type rule S*(d) = 

(1 - &)+ d,  where (f)+ = max(0, f}. 

18.6. Chipman, Kolaczyk, and McCulloch (1997) prolpose the following model 
for Bayesian wavelet shrinkage (ABWS) which we give in a simplified 
form, 

The prior on 6' is defined as a mixture of two normals with a hyperprior 
on the mixing proportion, 

Variance o2 is considered known. and c >> 1 

i) Show that the Bayes rule (posterior expectation) for 0 has the explicit 
form of 
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where 

d d l y  = 1) 
p r ( d l y  = 1) + (1 - p)7r(dly = 0) 

P ( y  = lid) = 

and 7r(dlr = 1) and 7r(d(y = 0) are densities of N(0,a2 + ( c T ) ~ )  and 
N(0, a’ + T’ )  distributions, respectively, evaluated at  d. 

(ii) Plot the Bayes rule from (i) for selected values of parameters and 
hyperparameters (0’; T * ,  y, c )  so that the shape of the rule is reminiscent 
of thresholding. 
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Appendix A: MATLAB 

The combination of some data and an aching desire for an answer does 
not ensure that a reasonable answer can be extracted from a given body 
of data. 

J. W. Tukey (1915-2000) 

A . l  USING MATLAB 

MATLAB is a interactive environment that allows t'he user to  perform compu- 
tational tasks and create graphical output. The user types in expressions and 
commands in a Command Window where numerical results of the commands 
are displayed with the user input. Graphical output will be produced in a 
new (graphics) window that can usually be printed1 or stored. 

When MATLAB is launched. several windows are available to  the user as 
you can see in Fig. A.7. Their uses are listed below: 

Command Window: Typing commands and expressions - this is the 
main interactive window in the user interface 

Launch Pad Window: Allows user to  run demos 

Workspace Window: List of variables entered or created during ses- 
sion 

369 
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Fig. A. 7 Interactive environment of LIATLAB. 

0 Command History Window: List of recent commands used 

0 Array Editor Window: Allows user to manipulate arrays variables 
using spreadsheet 

0 Current Directory Window: To specify directory where MATLAB 
will search for or store files 

MATLAB is a high-level technical computing language for algorithm de- 
velopment, data visualization, data analysis, and numeric computation. Some 
highlight features of MATLAB can be summarized as 

0 High-level language for technical computing. which are easy to learn 

0 Development environment for managing code, files. and data 

0 Mathematical functions for linear algebra. statistics, Fourier analysis. 
filtering. optimization, and numerical integration 

0 2-D and 3-D graphics functions for visualizing data 

0 Tools for building custom graphical user interfaces 

0 Functions to communicate with other statistical software. such as R. 
WinBUGS 
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To get started, you can type doc in the command window. This will bring 
you to an HTML help window and you can search keyword or browse topics 
therein. 

>> doc 

Fig. A.8 Help window of MATLAB. 

If you know the function name, but do not know how to use it, it is often 
useful to  type "help function name" in command window. For example, if 
you want to  know how to use function randg or find out what randg does. 

>> h e l p  randg 

RANDG Gamma random numbers ( u n i t  s c a l e ) .  
Note: To genera te  gamma random numbers with s p e c i f i e d  shape and 
s c a l e  parameters ,  you should c a l l  GAMRND. 

R = RANDG r e t u r n s  a s c a l a r  random value  chosen from a gamma 
d i s t r i b u t i o n  with u n i t  s c a l e  and shape. 

R = RANDG(A) r e t u r n s  a mat r ix  of random values  chosen from gamma 
d i s t r i b u t i o n s  with u n i t  s c a l e .  R i s  t h e  same s i z e  as A, and RANDG 
genera tes  each element of R us ing  a shape parameter equal  t o  t h e  
corresponding element of A .  
. . . .  
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A . l . l  Toolboxes 

Serving as extensions to the basic MATLAB programming environment, tool- 
boxes are available for specific research interests. Toolboxes available include 

Communications Toolbox 
Control System Toolbox 
DSP Blockset 
Extended Symbolic Math Toolbox 
Financial Toolbox 
Frequency Domain System Identification 
Fuzzy Logic Toolbox 
Higher-Order Spectral Analysis Toolbox 
Image Processing Toolbox 
LMI Control Toolbox 
Mapping Toolbox 
Model Predictive Control Toolbox 
Mu-Analysis and Synthesis Toolbox 
NAG Foundation Blockset 
Neural Network Toolbox 
Optimization Toolbox 
Partial Differential Equation Toolbox 
QFT Control Design Toolbox 
Robust Control Toolbox 
Signal Processing Toolbox 
Spline Toolbox 
Statistics Toolbox 
System Identification Toolbox 
Wavelet Toolbox 

For the most part we use functions in the base MATLAB product, but where 
necessary we also use functions from the Statistics Toolbox. There are numer- 
ous procedures from other toolboxes that can be helpful in nonparametric data 
analysis (e.g., Neural Network Toolbox, Wavelet Toolbox) but we restrict rou- 
tine applications to basic and fundamental computational algorithms to  avoid 
making the book depend on any pre-written software code. 

A.2 M A T R I X  OPERATIONS 

MATLAB was originally written to provide easy interaction with matrix soft- 
ware developed by the NASA1-sponsored LINPACK and EISPACK projects. 
Today, MATLAB engines incorporate the LAPACK and BLAS libraries, em- 
bedding the state of the art in software for matrix computation. Instead of 

'National Aeronautics and Space Administration. 
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relying on do loops to perform repeated tasks, IIA'TLAB is better suited to 
using arrays because MATLAB is an interpreted language. 

MATLAB was originally written to provide easy access to  matrix software 
developed by the LINPACK and EISPACK projects, ( these projects were 
sponsored by NASA and much of the source code is in public domain) which 
together represent the state-of-the-art in software for matrix computation. 

A.2.1 Entering a Matrix 

There are a few basic conventions of entering a ma,trix in MATLAB, which 
include 

0 Separating the elements of a row with blanks or commas. 

0 Using a semicolon ':' to  indicate the end of each row. 

0 Surrounding the entire list of elements with square brackets, [ 

>> A = C3 0 1; 1 2 1; 1 1 11 % columns separa ted  by a space 
% rows separa ted  by " ; "  

A =  
3 0 1 
1 2 1 
1 1 1 

A.2.2 Arithmetic Operations 

MATLAB uses familiar arithmetic operators and precedence rules, but unlike 
most programming languages, these expressions involve entire matrices. The 
common matrix operators used in MATLAB are listed as follows: 

+ addition - subtraction 
* multiplication power 
' transpose .' transpose 
\ left division / right divisiion 
.* element-wise multiplication . A  element-wise power 
./ element-wise right division 

>> X=[lO 10 201 ' ; 
>> A*X % A is 3x3, X is 3x1 and X' is lx 

% semicolon suppresses  output  of X 

% so A*X is 3x1 
ans = 

50 
50 
40 
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>> y=A\X % y is the solution of Ay=X 

Y =  
-10.0000 
-10.0000 
40.0000 

>> A.*A % " . * "  multiplies corresponding elements of 
% matching matrices; this is equivalent to A.-2 

ans = 

9 0 1 
1 4 1 
I 1 1 

A.2.3 Logical Operations 

The relational operators in MATLAB are 

< less than > greater than 
<= less-than-or-equal __  
>= greater-than-or-equal -= not equal 
& (logical) and 1 (logical) or 
N (logical) not 

equal __  

When relational operators are applied to scalars, 0 represents false and 1 
represents true. 

A.2.4 Matrix Functions 

These extra matrix functions are helpful in creating and manipulating arrays: 

eye identity matrix ones matrix of ones 
zeros matrix of zeros diag diagonal matrix 
rand matrix of random U(0,l)  inv matrix inverse 
det matrix determinant rank rank of matrix 
find indices of nonzero entries norm normalized matrix 

A.3 CREATING FUNCTIONS IN MATLAB 

Along with the extensive collection of existing MATLAB functions, you can 
create your own problem-specific function using input variables and generating 
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array or graphical output. Once you look at a simple example, you can easily 
see how a function is constructed. For example, here is a way to compute the 
PDF of a triangular distribution, centered at  zero with the support [-c. c]: 

function y = tripdf(x,c) 
y l  = max(O,c-abs(x)) / c-2; 
Y = Yl 

The function starts with the function y = functionname(input) where 
y is just a dummy variable assigned as function output at  the end of the 
function. Local variables (such as y l )  can be defined and combined with 
input variables (x,c) and the output can be scalar or matrix form. Once the 
function is named. it will override any previous function with the same name 
(so try not to call your function "sort", "inv" or any other known MATLAB 
function you might want to use later). 

The function can be typed and saved as an m-file (i.e., tripdf .m) because 
that is how MATLAB recognizes an external file with executable code. Al- 
ternatively, you can type the entire function (line b;y line) directly into the 
program, but it won't be automatically saved after you finish. Then you can 
'.call" the new function as 

>> v = tripdf(0:4,3) 

v = co.3333 0.2222 0.1111 0 03 

>> tripdf ( -1 ,Z)  <= 0.5 % =1 if statement is true 
ans = 

1 

It also possible to define a function as a variable. For example, if you 
want to define a truncated (and unnormalized) normal PDF, use the following 
command 

>> tnormpdf = a(x, mu, sig, left, right) . . .  

>> tnormpdf (-3:3,0,1,-2,2) 
normpdf (x,mu,sig) .*(x>left & x <right); 

ans = 

0 0 0.2420 0.3989 0.2420 0 0 

The tnormpdf function does not integrate to 1. To normalize it, one can di- 
vide the result by (normcdf (right ,mu,sigma) - normcdf (left ,mu,sigma)) . 

A.4 IMPORTING AND EXPORTING DATA 

As a first step of data analysis, we may need to  import data from external 
sources. The most common types of files used in the MATLAB statistical 
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computing are MATLAB data files, Text files, and Spreadsheet files. The 
MATLAB data file has the extension name * .mat. Here is an example of 
importing such data to MATLAB workspace. 

A.4.1 M A T  Files 

You can use the command whos to look what variables are in the data file. 

>> whos -file dataexample 

Name Size Bytes Class 

Sigma 2x2 
U S  1x1 
mu 1x2 
xx 500x2 

32 double array 
8 double array 
16 double array 

8000 double array 

Grand total is 1007 elements using 8056 bytes 

Then you can use the command load to load all variables in this data file. 

>> clear 
>> load dataexample 
>> whos 

% clear variables in the workspace 

% check what variables a r e  in the workspace 

Name Size 
Bytes Class 

Sigma 2x2 
anS 1x1 
mu 1x2 
xx 500x2 

32 double array 
8 double array 
16 double array 

8000 double array 

Grand total is 1007 elements using 8056 bytes 

In some cases, you may only want to load some variables in the MAT file to 
the workspace. Here is how you can do it. 

>> clear 
>> varlist = {’Sigma’,’mu’); 
>> load(’dataexample.mat’,varlistC:)) 
>> clear varlist 
>> whos 

% Created a list of variables 

% remove varlist from workspace 
% see what is in the workspace 

Name Size Bytes Class 
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Sigma 2x2 
mu 1x2 

32 double array 
16 double array 

Grand total is 6 elements using 48 bytes 

Another way of creating variables of interest is to use an index. 

>> clear 
>> vars = whos(’-file’, ’dataexample.mat’); 
>> load( ’ dataexample .mat ’ ,vars ( [l ,3] ) .name) 

If you do not want to use full variable names, but want to use some patterns 
in these names. the load  command can be used with a ‘-regexp‘ option. The 
following command will load the same variable as the previous one. 

>> load(’dataexample.mat’, ’-regexp’, ’-St-m’); 

Text files usually have the ext,ension name * . t x t ,  * . d .a t ,  * . csv, and so forth. 

A.4.2 Text Files 

If the data in the text file are organized as a matrix, you can still use load  to 
import the data into the workspace. 

>> load mytextdata.dat 
>> mytextdata 

mytextdata = 

-0.3097 0.2950 -0.1681 -1.4250 
-1.5219 -0.3927 -0.6873 0.4615 
0.8265 0.5759 -0.9907 1.0915 
-0.6130 -1.1414 -0.0498 -1.0443 
0.9597 0.0611 0.7193 -2.8428 
1.9730 0.0123 -0.2831 0.9968 

You can also assign the loading data to be stored )in a new variable. 

>> x = load(’mytextdata.dat’); 

The command load will not work if the text file is not organized in matrix 
form. For example, if you have a text file mydata. t x t  

>> type mydata. txt 

var 1 var2 var3 var4 name 
-0.3097 0.2950 -0.1681 -1.4250 Olive 
-1.5219 -0.3927 -0.6873 0.4615 Richard 
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0.8265 0.5759 -0.9907 1.0915 Dwayne 
-0.6130 -1.1414 -0.0498 -1.0443 Edwin 
0.9597 0.0611 0.7193 -2.8428 Sheryl 
1.9730 0.0123 -0.2831 0.9968 Frank 

You should use a new function txtread to import variables to workspace. 

>> [vari ,var2 ,var3,var4, strl = . . . 
textread(’mydata.txt’,’%f%f%f%f%s’, ’headerlines’,l ) ;  

Alternatively, you can use textscan to finish the import. 

>> fid = fopen(’mydata.txt’); 
>> c = textscan(fid, ’%f%f%f%f%s’, ’headerLines’,l); 
>> f close (f id) ; 
>> [CC1:411 % varl - var4 

ans = 
-0.3097 0.2950 -0.1681 -1.4250 
-1.5219 -0.3927 -0,6873 0.4615 
0.8265 0.5759 -0.9907 1.0915 
-0.6130 -1.1414 -0.0498 -1.0443 
0.9597 0.0611 0.7193 -2.8428 
1.9730 0.0123 -0.2831 0.9968 

ans = 
’Olive’ 
’Richard ’ 
’Dwayne’ 
’Edwin’ 
’ Sheryl ’ 
Frank ’ 

Comma-separated values files are useful when exchanging data. Given the 
file data .  csv that contains the comma-separated values 

>> type data. csv 

02, 04, 06, 08, 10, 12 
03, 06, 09, 12, 15, 18 
05, 10, 15, 20, 25, 30 
07, 14, 21, 28, 35, 42 
11, 22, 33, 44, 55, 66 

You can use csvread to read the entire file into workspace 

>> csvread(’data.csv’) 



IMPORTING AN,D EXPORTING DATA 379 

ans = 

2 4 6 8 
3 6 9 12 
5 10 15 20 
7 14 21 28 
11 22 33 44 

10 12 
15 18 
25 30 
35 42 
55 66 

A.4.3 Spreadsheet Files 

Data from a spreadsheet can be imported into the workspace using the func- 
tion xlsread. 

>> [NUMERIC, TXT ,RAW] =xls read(  ’ d a t a .  x l s  ’ 1 ; 
>> NUMERIC 

NUMERIC = 

1.0000 
2.0000 
3.0000 
4.0000 
5.0000 
6.0000 
7.0000 
8.0000 
9.0000 

>> TXT 

TXT = 
’Date ’ 
’1/1/2001’ 
’1/2/2001’ 
’1/3/2001’ 
’1/4/2001’ 
’1/5/2001’ 
’1/6/2001’ 
’1/7/2001’ 
’1/8/2001’ 
’1/9/2001’ 

>> RAW 

RAW = 
’Date ’ 
’1/1/2001’ 
J1/2/2001’ 

0.3000 N a N  
0.4500 N a N  
0.3000 12.0000 
0.3500 5.0000 
0.3500 5.0000 
0.3500 10.0000 
0.3500 13.0000 
0.3500 5.0000 
0.3500 23.0000 

’ v a r l  ’ var2 ’ ’var3’  

’ v a r l  ’ 
c 11 
c 21 

’var2’  
CO .30001 
[O .45001 

’name’ 
’Frank’ 

’ Sheryl  ’ 

’ 12i chard ’ 
’ Olive ’ 
’ Dwayne ’ 
’ Edwin’ 
’ ;:tan J 

’ 9  

, ’  

’name’ 
’Frank’ 
C N a N l  
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’1/3/2001’ [ 31 [0.3000] [ 121 ’Sheryl’ 
’1/4/2001’ [ 41 [0.35001 I: 51 [: NaNl 
’1/5/2001’ [ 51 [0.3500] [ 51 ’Richard’ 
’1/6/2001’ [ 61 [0.3500] [ 101 ’Olive’ 
’1/7/2001’ [ 71 [0.35001 131 ’Dwayne’ 
’1/8/2001’ [ 81 [0.35001 [ 51 ’Edwin’ 
’1/9/2001’ [ 91 C0.35001 [ 231 ’Stan’ 

It is also possible to specify the sheet name of xls file as the source of the 
data. 

>> NUMERIC = xlsread(’data.xls’,’rnd’); % read data from 
% a sheet named as rnd 

From an xls file, you can get data from a specified region in a named sheet: 

>> NUMERIC = xlsread(’data.xls’,’data’,’b2:c10J); 

The following command also allows you do interactive region selection: 

>> NUMERIC = xlsread(’data.xls’,-l); 

The simplest way to save the variables from a workspace to a permanent 
file in the format of a MAT file is to use the command save. If you have a 
single matrix to save, save filename varname - a s c i i  will save export the 
result to text file. You can also save numeric array or cell array in an Excel 
workbook using x l s w r i t e .  

A.5 DATA VISUALIZATION 

A.5.1 Scatter Plot 

A scatterplot is a useful summary of a set of bivariate data (two variables). 
usually drawn before working out a linear correlation coefficient or fitting a 
regression line. It gives a good visual picture of the relationship between 
the two variables, and aids the interpretation of the correlation coefficient or 
regression model. 

In MATLAB, a simple way of make a plot matrix is to use the command 
p l o t .  Fig. A.9 gives the result of the following MATLAB commands: 

However. this is is not enough if you are dealing with more than two variables. 
In this case. the function p l o t m a t r i x  should used in stead (Fig.A.lO). 
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Fig. A.9 Scatterplot of (z,y) for x = rand(1000,l) and y = .5*x + 5*x.2 + 
.3*randn(1000,1). 

>> x = randn(50,3); 
>> y = x*[-l 2 1;2 0 1;l -2 3 ; l ’ ;  
>> plotmatrix(y) 

In classification problems, it is also useful to  look at scatter plot matrix with 
grouping variable (Fig.A. 11). 

>> load carsmall; 
>> X = [MPG,Acceleration,Displacement,Weight,Horsepower] ; 
>> varNames = {’MPG’ ’Acceleration’ ’Displacement’ . . .  

>> gplotmatrix(X, [I ,Cylinders, ’bgrcm’ , [ I ,  [I, ’on’, ’hist’ ,varNames) ; 
>> set(gcf,’color’,’white’) 

’Weight’ ’Horsepower’); 

A.5.2 Box Plot 

Box plot is an excellent tool for conveying location and variation information 
in data sets. particularly for detecting and illustrating location and variation 
changes between different groups of data. Here is an example of how MATLAB 
makes a boxplot (Fig. A.12). 

>> load carsmall 
>> boxplot(MPG, Origin, ’grouporder’, . . .  

>> set(gcf,’color’,’white’) 
{’France’ ’Germany’ ’Italy’ ’Japan’ ’Sweden’ ’USA’)) 
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Fig. A.10 Simulated data visualized by plotmatrix. 

Fig. A . l l  Scatterplot matrix for Car Data. 
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Fig. A.12 Boxplot for Car Data. 

A.5.3 Histogram and Density Plot 

A histogram of univariate data can be plotted using hist (Fig.A.13). 

>> hist (randn(100,l) 

while a three-dimensional histogram of bivariate data is plotted using 
hist3, (Fig.A.14); 

>> mu = [I -11; Sigma = L.9 .4 ;  . 4  .31; 
>> r = mvnrnd(mu, Sigma, 500); 
>> hist3(r) 

If you like a smoother density plot. you may turn to  a kernel density or 
distribution estimate implemented in ksdensity (Fig.A.15). Also, in recent 
versions of MATLAB you have the option of not asking for outputs from the 
ksdensity, and the function plots the results directly. 

>> [y,x] = ksdensity(randn(100,l)); 
>> plot (x ,y )  

A.5.4 Plotting Function List 

Here is a complete list of statistical plotting functions available in MATLAB 
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Fig. A.13 Histogram for simulated random normal data. 

Fig. A. 14 Spatial histogram for simulated two-dimensional random normal data. 
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Fig. A.15 Kernel density estimator for simulated random normal data. 

andrewsplot - Andrews plot for multivariate d,ata. 
bar - Bar graph. 
biplot - Biplot of variable/factor coefficients and scores. 
boxplot - Boxplots of a data matrix (one !per column). 
cdfplot - Plot of empirical cumulative distribution function. 
contour - Contour plot. 
ecdf - Empirical CDF (Kaplan-Meier estimate). 
ecdfhist - Histogram calculated from empirical CDF. 
fplot - Plots scalar function $f(x)$ at values of $x$. 
f surf ht - Interactive contour plot of a function. 
gline - Point, drag and click line drawing on figures. 
glyphplot - Plot stars or Chernoff faces fo:r multivariate data. 
gname - Interactive point labeling in x-y plots. 
gplotmatrix - Matrix of scatter plots grouped by a common variable. 
gscatter 
hist - Histogram (in MATLAB toolbox). 
hist3 
ksdensity - Kernel smoothing density estimation. 
lsline - Add least-square fit line to scatter plot. 
normplot - Normal probability plot. 
parallelcoords - Parallel coordinates plot for multivariate data. 
probplot - Probability plot. 
q¶Plot - Quantile-Quantile plot. 
refcurve - Reference polynomial curve. 
ref line - Reference line. 
stairs - Stair-step of y with jumps at pt3ints x. 
surfht - Interactive contour plot of a data grid. 

- Scatter plot of two variables g:rouped by a third. 

- Three-dimensional histogram of bivariate data. 
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wblplot - Weibull probability plot. 

A.6 STATISTICS 

For your convenience! let’s look at a list of functions that can be used to 
compute summary statistics from data. 

corr 
corrcoef 

cross t ab 
geomean 
grpst at s 
harmmean 
iqr 
kurtosis 
mad 
mean 
median 
moment 
nancov 
nanmax 
nanmean 
nanmedian 
nanmin 
nanstd 
nansum 
nanvar 

cov 

- Linear or rank correlation coefficient. 
- Correlation coefficient with confidence intervals 
- Covariance. 
- Cross tabulation. 
- Geometric mean. 
- Summary statistics by group. 
- Harmonic mean. 
- Interquartile range. 
- Kurtosis. 
- Median Absolute Deviation. 
- Sample average (in MATLAB toolbox). 
- 50th percentile of a sample. 
- Moments of a sample. 
- Covariance matrix ignoring NaNs. 
- Maximum ignoring NaNs. 
- Mean ignoring NaNs. 
- Median ignoring NaNs. 
- Minimum ignoring NaNs. 
- Standard deviation ignoring NaNs. 
- Sum ignoring NaNs. 
- Variance ignoring NaNs. 

partialcorr - Linear or rank partial correlation coefficient. 
prctile - Percentiles. 
quantile - Quantiles. 
range - Range. 
skewness - Skewness. 
std - Standard deviation (in MATLAB toolbox). 
tabulate - Frequency table. 
trimmean - Trimmed mean. 
var - Variance 
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A.6.1 Distributions 

I Distribution I CDF I PDF 1 Inveirse CDF I RNG 1 

Beta 
Binomial 
Chi square 
Exponential 
Extreme value 
F 
Gamma 
Geometric 
Hypergeometric 
Lognormal 
Multivariate normal 
Negative binomial 
Normal (Gaussian) 
Poisson 
Rayleigh 
t 
Discrete uniform 
Uniform distribution 
Weibull 

betacdf 
binocdf 
chi2cdf 
expcdf 
evcdf 
f cdf 

gamcdf 
geocdf 

hygecdf 
logncdf 
mvncdf 

nbincdf 
normcdf 

poisscdf  
r a y  1 cdf 

t cdf 
unidcdf 
unif  cdf 
wblcdf 

betapdf 
binopdf 
chi2pdf 
exppdf 
evpdf 
fpdf 

geopdf 

lognpdf 
mvnpdf 
nbinpdf 
normpdf 

p o i s  spdf 
raylpdf  

tpdf  
unidpdf 
unifpdf  

wblpdf 

gampdf 

hygepdf 

beitainv 
binoinv 
ch.i2inv 
expinv 
evinv 
:E i n v  

gaminv 
ge o i n v  

hygeinv 
lcgninv  
mvninv 

nbininv 
ncrminv 
p o i s s i n v  
r a y l i n v  

it i n v  
unidinv 
u n i f i n v  
wblinv 

be tarnd  
binornd 
chi2rnd 
exprnd 
evrnd 
f rnd 

gamrnd 
geornd 

hygernd 
lognrnd 
mvnrnd 

nbinrnd 
normrnd 

poiss rnd  
r a y l r n d  

t r n d  
unidrnd 
unif  rnd 
wblrnd 

A.6.2 Distribution Fitting 

betaf  it 
binof it 
evf it 
expf it 
gamf it 
gevf it 
gpf it 
lognf it 
m l  e 
mlecov 
lognf it 
normf it 
poiss f  it 
r a y l f  it 
unif  it 
wblf it 

- Beta parameter es t imat ion .  
- Binomial parameter e s t i m a t i o n .  
- Extreme value parameter e s t i m a t i o n .  
- Exponent ia l  parameter e s t i m a t i o n .  
- Gamma parameter es t imat ion .  
- General ized extreme va lue  parameter es t imat ion .  
- General ized Pare to  parameter es t imat ion .  
- Lognormal parameter e s t i m a t i o n .  
- Maximum l i k e l i h o o d  es t imat ion  (IrILE) . 
- Asymptotic covariance mat r ix  of MLE. 
- Negative binomial parameter e s t i m a t i o n .  
- Normal parameter e s t i m a t i o n .  
- Poisson parameter es t imat ion .  
- Rayleigh parameter e s t i m a t i o n .  
- Uniform parameter e s t i m a t i o n .  
- Weibull parameter e s t i m a t i o n .  

In  addition to  the  command line function listed above, there is also a GUI 
to used for distribution fitting. You can use the  command df ittool to invoke 
this tool (Fig.A.16). 
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>> dfittool 

Fig. A.16 GUI for dfittool. 

A.6.3 Nonparametric Procedures 

kstest - Kolmogorov-Smirnov two-sample test. 
kst e st 2 
mtest - Cramer Von Mises test for normality 
dagosptest 
runs-test - Runs test 
sign-test1 - Two-sample sign test. 
kruskal-wallis - Kruskal-Wallis rank test. 
friedman 
kendall 
spear - Spearman correlation coefficient. 
WmW - Wilcoxon-Mann-Whitney two-sample test. 
tablerxc 
mantel-haenszel- Mantel-Haenszel statistic for $2$x$2$ tables. 

- Kolmogorov-Smirnov one or two-sample test 

- D’Agostino-Pearson’s test for normality 

- Friedman randomized block design test 
- Computes Kendall’s tau correlation statistic 

- test of independence for $r$x$c$ table. 

The listed nonparametric functions that are not distributed with MATLAB 
or its Statistics Toolbox can be downloaded from the book home page. 
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A.6.4 Regression Models 

A.6.4.1 Ordinary Least Squares (OLS) The most straightforward way of im- 
plementing OLS is based on normal equations. 

>> x = rand(20,l); 
>> y = 2 + 3*x + randn(size(x)); 
>> X = [ones(length(x), 1) ,XI ; 
>> b = inv(X’*X)*X’*y % normal equation 

b =  
1.8778 
3.4689 

A better solution uses backslash because it is more numerically stable than 
inv. 

b2 = 

1.8778 
3.4689 

The pseudo inverse function pinv is also an option. It too is numerically 
stable, but it will yield subtly different results when your matrix is singular 
or nearly so. Is pinv better? There are arguments for both backslash and 
pinv. The difference really lies in what happens on singular or nearly singular 
matrixes. pinv will not work on sparse problems, and because pinv relies on 
the singular value decomposition, it may be slower for large problems. 

>> b3 = pinvo()*y 

b3 = 
1.8778 
3.4689 

Large-scale problems where X is sparse may sometimes benefit from a 
sparse iterative solution. lsqr is an iterative solver 

>> b4 = lsqr(X,y,l.e-13,10) 

lsqr converged at iteration 2 to a solution wit.h relative residual 0.33 
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b4 = 

I. 8778 
3.4689 

There is another option, Iscov. lscov is designed to handle problems 
where the data covariance matrix is known. It can also solve a weighted 
regression problem. 

b5 = 
1.8778 
3.4689 

Directly related to the backslash solution is one based on the QR factor- 
ization. If our over-determined system of equations to solve is X b  = y , then 
a quick look at the normal equations, 

b = (X’X)-lX’y 

combined with the qr factorization of X ,  

X = Q R  

yields 
b = (R’Q’QR)-lR’Q‘y. 

Of course, we know that Q is an orthogonal matrix, so Q’Q is an identity 
matrix. 

b = (R’R)-‘R’Q’y 

If R is non-singular, then (R’R)-‘ = R-’R‘-’? so we can further reduce to 

b = R-lQ‘y 

This solution is also useful for computing confidence intervals on the param- 
eters. 

b6 = 
1.8778 
3.4689 

A.6.4.2 Weighted Least Squares (WLS) Weighted Least Squares (WLS) is 
special case of Generalized Least Squares (GLS). It should be applied when 
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there is heteroscedasticity in the regression. i.e. the variance of the error term 
is not a constant across observations. The optimal weights should be inversely 
proportional to the error variances. 

>> x = (1:lO)’; 
>> wgts = l./rand(size(x)); 
>> y = 2 + 3*x + wgts.*randn(size(x)); 
>> X = [ones(length(x) ,1) ,XI ; 
>> b7 = lscov(M,y,wgts) 

b7 = 

-89.6867 
27.9335 

Another alternative way of doing WLS is to transform the independent 
and dependent variables so that we apply OLS to the transformed data. 

coef8 = 
-89.6867 
27.9335 

A.6.4.3 Iterative Reweighted Least Squares (IRLS) IRLS can be used for mul- 
tiple purposes. One is to get robust estimates by r’educing the effect of out- 
liers. Another is to  fit a generalized linear model, as described in Section 
A.6.6. MATLAB provides a function robus t f  it which performs iterative 
reweighted least squares estimation which yield robust coefficient estimates. 

brob = 

10.5208 
-2.0902 

A.6.4.4 
performs nonlinear least squares estimation. 

Nonlinear Least Squares MATLAB provides a function nlinf it which 

>> mymodel = @(beta, x) (beta(l)*x(: ,2) - x ( :  ,3)/beta(5)) . /  . . . 

>> load reaction; 
(l+beta(2)*x(:,l)+beta(3)*~(:,2)+beta(4)*~(:,3)); 
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>> beta = nlinfit(reactants,rate,mymodel,ones(5,1)) 

beta = 

1.2526 
0.0628 
0.0400 
0.1124 
1.1914 

A.6.4.5 Other Regression Functions 

coxphfit 
nlintool 
nlpredci - Confidence intervals for prediction in nonlinear models 
nlparci - Confidence intervals for parameters in nonlinear models 
polyconf 
polyfit - Least-squares polynomial fitting. 
polyval 
rcoplot - Residuals case order plot. 
regress - Multivariate linear regression, also return the 

- Cox proportional hazards regression. 
- Graphical tool for prediction in nonlinear models. 

- Polynomial evaluation and with confidence intervals. 

- Predicted values for polynomial functions. 

R-square statistic, the F statistic and p value for 
the full model, and an estimate of the error variance. 

regstats 
ridge - Ridge regression. 
rstool 
stepwise - Interactive tool for stepwise regression. 
stepwisefit - Non-interactive stepwise regression. 

- Regression diagnostics for linear regression. 

- Multidimensional response surface visualization (RSM). 

A.6.5 ANOVA 

The following function set can be used to perform ANOVA in a parametric 
or nonparametric fashion. 

anoval - One-way analysis of variance. 
anova2 - Two-way analysis of variance. 
anovan - n-way analysis of variance. 
aoctool - Interactive tool for analysis of covariance. 
friedman - Friedman’s test (nonparametric two-way anova). 
kruskalwallis - Kruskal-Wallis test (nonparametric one-way anova) 

A.6.6 Generalized Linear Models 

MATLAB provides the glmf it and glmval functions to fit generalized linear 
models. These models include Poisson regression, gamma regression, and 
binary probit or logistic regression. The functions allow you to specify a link 
function that relates the distribution parameters to the predictors. It is also 



possible to  fit a weighted generalized linear model. Fig. A.17 is a result of 
the following MATLAB commands: 

>> x = [2100 2300 2500 2700 2900 3100 3300 3!500 3700 3900 4100 43001’ ;  
>> n = [48 42 3 1  34 3 1  2 1  23 23 21  16 17 211’ ;  
>> y = [I 2 0 3 8 8 14 17 19 15 17 213’ ;  
>> b = glmfit(x, [y n], ’binomial’, ’link’, ’probit’); 
>> yfit = glmval(b, x, ’probit’, ’size’, n); 
>> plot(x, y./n, ’ o ’ ,  x, yfit./n, ’ - ’ I  

‘ I  
O gl 
0 8- 

I 
I 

07. 

0.6 

0 5- 

- 

0 4 -  -I 

1 0 3 L  

0 2 -  

0 1 -  

Fig. A.17 Probit regression example. 

A.6.7 Hypothesis Testing 

MATLAB also provide a set of functions to  perform some important statistical 
tests. These tests include tests on location or dispersion. For example, t t e s t  
and t t e s t 2  can be used to do a t test. 

Hypothesis Tests. 
ansaribradley - Ansari-Bradley two-sample test for equal dispersions. 
dwtest 
ranksum - Wilcoxon rank sum test (independent samples). 
runstest - R u n s  test for randomness. 
signrank - Wilcoxon sign rank test (paired samples). 
signtest - Sign test (paired samples). 

- Durbin-Watson test for autocorrelation in regression. 
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ztest - Z test. 
ttest - One sample t test. 
ttest2 - Two sample t test. 
vart est - One-sample test of variance. 
vartest2 - Two-sample F test for equal variances. 
vartestn - Test for equal variances across multiple groups. 

Distribution tests, sometimes called goodness of fit tests, are also included. 
For example, k s t e s t  and k s t e s t 2  are functions to perform a Kolmogorov- 
Smirnov test. 

Distribution Testing. 
chi2gof - Chi-square goodness-of-fit test. 
jbtest - Jarque-Bera test of normality. 
kstest - Kolmogorov-Smirnov test for one sample. 
kstest2 - Kolmogorov-Smirnov test for two samples. 
lillietest - Lilliefors test of normality. 

A.6.8 Statistical Learning 

The following function provide tools to develop data mining/machine learning 
programs. 

Factor Models 
factoran - Factor analysis. 
pcacov - Principal components from covariance matrix. 
pcares - Residuals from principal components. 
princomp - Principal components analysis from raw data. 
rotatefactors - Rotation of FA or PCA loadings. 

Decision Tree Techniques. 
treedisp - Display decision tree. 
treefit - Fit data using a classification or regression tree. 
treeprune 
treetest - Estimate error for decision tree. 
treeval 

- Prune decision tree or create optimal pruning sequence. 

- Compute fitted values using decision tree. 

Discrimination Models 
classify - Discriminant analysis with 'linear', 'quadratic', 
'diagLinear', 'diagquadratic', or 'mahalanobis' discriminant function 

A.6.9 Bootstrapping 

In MATLAB, boot and b o o t c i  are used to  obtain boostrap estimates. The 
former is used to draw bootstrapped samples from data and compute the 
bootstrapped statistics based on these samples. The latter computes the 
improved bootstrap confidence intervals, including the BCa interval. 



>> load lawdata gpa lsat 
>> se = std(bootstrp(lOOO,Qcorr,gpa,lsat)) 
>> bca = bootci(lOOO,(Qcorr,gpa,lsat)) 

se = 

0.1322 

bca = 

0.3042 
0.9407 
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Beware: MCMC sampling can be dangerous! (Disclaimer from WinBUGS User Man- 

ual) 

BUGS is freely available software for constructing Bayesian statistical models 
and evaluating them using MCWlC methodology. 

BUGS and WINBUGS are distributed freely and are the result of many 
years of development by a team of statisticians and programmers at  the Med- 
ical research Council Biostatistics Research Unit in Cambridge (BUGS and 
WinBUGS), and from recently by a team at University of Helsinki (Open- 
BUGS) see the project pages: http : //www .mrc-bsii. cam. ac . uk/bugs/ and 
http://mathstat.helsinki.fi/openbugs/. 

Models are represented by a flexible language, and there is also a graphical 
feature, DOODLEBUGS, that allows users to specify their models as directed 
graphs. For complex models the DOODLEBUGS can be very useful. As of May 
2007, the latest version of WinBUGS is 1.4.1 and OpenBUGS 3.0. 

397 
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6.1 USING WINBUGS 

We start the introduction to WinBUGS with a simple regression example. 
Consider the model 

y i lp i ,T  - N(p2,T):  i = 1,. . .  , n  

pi = Q + p ( ~ i  - 2 ) )  

~ ( 0 , 1 0 - ~ )  

p ~ ( 0 , 1 0 - ~ )  

T N ~a7TL7TLU(0.001,0.001). 

The scale in normal distributions here is parameterized in terms of a precision 
parameter T which is the reciprocal of variance, T = l/a2. Natural distribu- 
tions for the precision parameters are gamma and small values of the precision 
reflect the flatness (noninformativeness) of the priors. The parameters Q and 
p are less correlated if predictors zi - 3 are used instead of xi. Assume that 
(z, y)-pairs (1, l), (2 ,3) ,  (3 ,3) ,  (4,3),  and (5,5) are observed. 

Estimators in classical, Least Square regression of y on z - 3, are given in 
the following table. 

Coef LSEstimate SE Coef t P 
ALPHA 3.0000 0.3266 9.19 0.003 
BETA 0.8000 0.2309 3.46 0.041 
S = 0.730297 R-Sq = 80.0% R-Sq(adj) = 73.3% 

How about Bayesian estimators? We will find the estimators by MCMC 
calculations as means on the simulated posteriors. Assume that the initial 
values of parameters are QO = 0.1, = 0.6, and r = 1. Start BUGS and input 
the following code in [File > New]. 

# A simple regression 
model( 
for (i in 1:N) { 
~[i] ,. dnorm(mu[il ,tau); 
mu[i] <- alpha + beta * (x[il - x.bar); 
3 

x.bar <- mean(x[]); 
alpha dnorm(0, 0.0001); 
beta dnorm(0, 0 . 0 0 0 ~ ) ;  
tau - dgamma(0.001, 0.001); 
sigma <- l.O/sqrt (tau) ; 
3 
#----------------------------- 

#these are observations 
list( x=c(1,2,3,4,5), Y=c(1,3,3,3,5), N=5); 
#----------------------------- 

#the initial values 



USING WINBUGS 399 

l i s t (a1pha  = 0.1 ,  be ta  = 0 .6 ,  t a u  = 1); 

Next, put the cursor at an arbitrary position within the scope of model 
which delimited by wiggly brackets. Select the Model menu and open Spec- 
ification. The Specification Tool window will pop-out. If your model is 
highlighted, you may check model in the specification tool window. If the 
model is correct, the response on the lower bar of the BUGS window should 
be: model is syntactically correct. Next, highlight the “list” statement 
in the data-part of your code. In the Specification ‘Tool window select load 
data. If the data are in correct format, you should receive response on the 
bottom bar of BUGS window: data loaded. You will need to compile your 
model on order to  activate inits-buttons. Select compile in the Specification 
Tool window. The response should be: model compiled, and the buttons 
load inits and gen inits become active. Finally, highlight the “list” state- 
ment in the initials-part of your code and in the Specification Tool window 
select load inits. The response should be: model is initialized, and this 
finishes reading in the model. If the response is initial values loaded but 
this or other chain contain uninitialized variables. click on the gen 
inits button. The response should be: initial values generated, model 
initialized. 

Now, you are ready to Burn-in some simulations and at the same time 
check that the program is working. In the Model menu, choose Update ... 
and open Update Tool to check if your model updates. 

From the Inference menu, open Samples .... A window titled Sample 
Monitor Tool will pop out. In the node sub-window input the names of the 
variables you want to  monitor. In this case, the variables are a lpha ,  beta,  
and t a u .  If you correctly input the variable the set button becomes active 
and you should set the variable. Do this for all 3 variables of interest. In fact, 
sigma as transformation of t a u  is available, as well. 

Now choose a lpha  from the subwindow in Samplle Monitor Tool. All of 
the buttons (clear, set, trace, history, density, stats, coda, quantiles, 
bgr diag, auto cor) are now active. Return to  Updlate Tool and select the 
desired number of simulations, say 10000, in the updates subwindow. Press 
the update button. 

Return to  Sample Monitor Tool and check trace for the part of MC 
trace for a ,  history for the complete trace, density for a density estimator 
of a,  etc. For example, pressing stats button will produce something like the 
following table 

I mean sd MCerror va12.5pc median va197.5pc start sample I 
I alpha 3.003 0.549 0.003614 1.977 3.004 4.057 10000 20001 1 

The mean 3.003 is the Bayes estimator (as the mean from the sample from 
the posterior for a. There are two precision outputs, sd and MCerror. The 
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former is an estimator of the standard deviation of the posterior and can be 
improved by increasing the sample size but not the number of simulations. 
The later one is the error of simulation and can be improved by additional 
simulations. The 95% credible set is bounded by va12.5pc and va197.5pc, 
which are the 0.025 and 0.975 (empirical) quantiles from the posterior. The 
empirical median of the posterior is given by median. The outputs start and 
sample show the starting index for the simulations (after burn-in) and the 
available number of simulations. 
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f ig.  6.18 Traces of the four parameters from simple example: (a) a ,  (b) p, (c) T .  

and (d) 0 from WinBUGS. Data are plotted in MATLAB after being exported from 
WinBUGS. 

For all parameters a comparative table is 
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I mean sd MCerror va12.5pc median va197.5pc start  sample I 
alpha 3.003 0.549 0.003614 1.977 3.004 4.057 10000 20001 
beta 0.7994 0.3768 0.002897 0.07088 0.7988 1.534 10000 20001 
tau  1.875 1.521 0.01574 0.1399 1.471 5.851 10000 20001 

sigma 1.006 0.7153 0.009742 0.4134 0.8244 2.674 10000 20001 

If you want to save the trace for cy in a file and process it in MATLAB, 
say, select coda and the data window will open with an information window 
as well. Keep the data window active and select Save As from the File 
menu. Save the as in alphas.txt where it will be ready to be imported to 
MATLAB. 

Kevin Murphy lead the project for communication between WinBUGS and 
MATLAB: 

His suite MATBUGS, maintained by several researchers, communicates with 
WinBUGS directly from MATLAB. 

B.2 BUILT-IN FUNCTIONS AND COMMON DISTRIBUTIONS IN 
BUGS 

This section contains two tables: one with the list of built-in functions and 
the second with the list of available distributions. 

The first-time WinBUGS user may be disappointed by the selection of 
built in functions - the set is minimal but sufficient. The full list of dis- 
tributions in WinBUGS can be found in Help>WinBUGS User Manual 
under The_BUGS_language:_stochastic_nodes>Distributions. BUGS 
also allows for construction of distributions for which are not in default list. 
In Table B.23 a list of important continuous and discrete distributions, with 
their BUGS syntax and parametrization, is provided. BUGS has the capa- 
bility to  define custom distributions, both as likelihood or as a prior, via the 
so called zero-Poisson device. 
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Table 5.22 Built-in Functions in WinBUGS 

1 BUGS Code I function I 
abs (y) 
c log log (y )  
cos (y)  
e q u a l s ( y ,  z )  
exp (y) 
i np rod(y ,  z )  
i n v e r s e  (y) 
l og (y )  
logf  a c t  (y) 
loggam(y) 
l o g i t  (y)  
max(y, z )  
mean(y) 
min(y,  z )  
p h i  (y) 
pow(y, 2 )  

s i n ( y 1  
s q r t  (y) 
r ank(v ,  s)  

ranked(v,  s) 
round(y) 
sd (y )  
s t e p ( y >  
sum(y) 
t r u n c  (y) 

IYI 
In( - ln( 1 - y)) 
COS(Y) 
1 if y = z; 0 otherwise 
exP(Y) 
CZYiZZ 

W Y )  
14Y!) 
W ( Y ) )  
W Y / ( 1  - Y)) 
y if y > z ;  y otherwise 
72-1ciyz, 72 = dim(y) 
y if y < z; z otherwise 
standard normal CDF @(y) 
Y+ 
sin(Y) 
f i  

y-' for symmetric positive-definite matrix y 

number of components of w less than or equal to w, 
the sth smallest component of w 
nearest integer to y 
standard deviation of components of y 
1 if y 2 0; 0 otherwise 

greatest integer less than or equal to  y 
CZYZ 
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D’Agostino-Pearson test, 94 
discrete data, 155 
Lilliefors test, 94 
Shapiro-Wilks test, 93 
two sample test, 86 

Greenwood’s formula, 193 
Gumbel distribution, 76, 113 

112 

Heisenberg’s principle, 264 
Histogram, 206 

Hogmanay, 120 
Hubble telescope, 288 
Huber estimate, 222 
Hypergeometric distribution, 16 
Hypothesis testing, 36 

p-values, 37 
Bayesian, 56 
binomial proportion, 37 
efficiency, 44 
for variances; 148 
null versus alternative, 36 
significanc level, 36 
type I error, 36 
type I1 error, 37 
unbiased, 37 
Wald test, 37 

bins, 206 

Incomplete beta function, 10 
Incomplete gamma function, 10 
Independence, 11, 12 
Indicator function, 34 
Inequalities 
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Chebyshev, 26 
Jensen, 26 
Markov, 26 
stochastic, 26 

Inter-arrival times, 176 
Interpolating splines, 252 
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Inverse gamma distribution. 22 
Isotonic regression, 227 

Jackknife, 295, 325 



SUBJECT lNDEX 41 7 

Joint distributions, 12 

k-out-of-n system, 78 
Kaplan-Meier estimator, 185, 188 

confidence interval. 192 
Kendall’s tau, 125 
Kernel 

beta family, 244 
Epanechikov, 244 

Kernel estimators. 243 
Kolmogorov statistic, 82, 109 

quantiles, 84 
Kolmogorov-Smirnov test, 82-84, 90 
Kruskal-Wallis test, 141, 143. 149, 150 

pairwise comparisons, 144 

L2 convergence. 28 
Laplace distribution. 21 
Law of total probability. 11 
Laws of large numbers (LLN). 29 
Least absolute residuals regression, 222 
Least median squares regression, 224 
Least squares regression, 218 
Least trimmed squares regression, 223 
Lenna image, 281 
Likelihood. 41 

empirical. 43 
maximum likelihood estimation, 

41 
Likelihood ratio. 43 

confidence intervals, 43 
nonparametric, 198 

Lilliefors test, 94 
Linear classification. 326 
Linear discrimination function, 326 
Linear rank statistics, 131 

U-statistics, 131 
Links, 233 

complementary log-log. 234 
logit, 234 
probit, 234 

Local polynomial estimator, 246 
LOESS, 247 
Logistic regression, 327 

Loss functions 
missclassification error, 328 

cross entropy, 325 
in neural networks, 335 
zero-one, 325, 327 

Machine learning, 323 
Mann-Whitney test, 116, 131, 141 

equivalence to Wilcoxon sum rank 

relation to ROC curve, 203 
Mantel-Haenszel test, 167 
Markov chain Monte Carlo (MCMC), 

MATLAB 

test. 132 

61 

ANOVA, 392 
data visualization, 380 
exporting data, 375 
functions, 374 
implementation, 5 
importing data, 375 
matrix operations, 372 
nonparametric functions. 388 
regression, 389 
statistics functions, 386 
windows, 369 

Cramer-Rao lower bound, 42 
delta method, 42 
geometric distribution, 42 
invariance property, 42 
logistic regression; 328 
negative binomial distribution, 42 
nonparametric, 184, 185, 191 
regularity conditions, 42 

McNemar test, 165 
Mean square convergence, 28 
Mean squared error, 34, 36 
Median, 13 

Maximum likelihood estimation, 41 

one sample test, 118 
two sample test, 119 

hlemoryless property, 16, 18 
Meta analysis, 106, 157, 169 

averaging p-values, 108 
Fisher’s inverse x2 method, 107 
Tippet- Wilkinson method, 107 

Misclassification error, 328 
Moment generating functions, 13 
Multinomial distribution, 16, 185 

Multiple comparisons 
central limit theorem, 170 
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Kruskal-Wallis test, 144 
test of variances, 149 

Multivariate distributions 
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Dirichlet, 22 
multinomial, 16 

Nadaraya-Watson estimator, 244 
Natural selection, 154 
Nearest neighbor 

classification, 329 
constructing, 331 

Negative binomial distribution, 15 

Negative Weibull distribution, 76 
Neural networks, 323, 333 

activation function, 334, 336 
back-propagation, 334, 336 
feed-forward, 333 
hidden layers, 334 
implementing, 336 
layers, 333 
MATLAB toolbox, 336 
perceptron, 333 
training data, 335 
two-layer, 334 

maximum likelihood estimator, 42 

Newton’s formula, 11 
Nominal scale data, 4, 153 
Nonparametric 

definition, 1 
density estimation, 205 
estimation, 183 

Nonparametric Bayes, 349 
Nonparametric Maximum likelihood es- 

Nonparametric meta analysis, 106 
Normal approximation 

central limit theorem, 19 
for binomial, 40 

Normal distribution, 18 
confidence intervals, 43 
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kernel function, 209 
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timation, 184, 185, 191 

Normal probability plot, 97 

Order statistics, 69, 115 
asymptotic distributions, 75 
density function, 70 
distribution function, 70 
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extreme value theory, 75 
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joint distribution, 70 
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minimum, 70, 191 
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Overconfidence bias, 5 
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analysis of variance, 142 
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Pareto distribution, 23 
Pattern recognition, 323 
Percentiles 
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Perceptron, 333 
Permutation tests, 298 
Permutations, 9 
Plug-in principle, 193 
Poisson distribution, 15, 32 

in sign test, 120 
relation to binomial, 15 

Poisson process, 176 
Pool adjacent violators algorithm (PAVA), 

230 
Posterior, 49 

odds. 57 
Posterior predictive distribution, 49 
Power. 37. 38 
Precision parameter, 64 
Prior. 49 

noninformative, 353 
odds, 57 

Prior predictive distribution, 49 
Probability 

Bayes formula, 11 
conditional, 11 
continuity theorem, 31 
convergence 

almost sure, 28 
central limit theorem, 1, 29 
delta method, 29 
extended central limit theorem, 

31 
Glivenko-Cantelli theorem. 36. 

197 
in IL2,  28 
in distribution, 28 
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in Mean square, 28 
in probability, 28 
Laws of Large Numbers, 29 
Lindberg’s condition, 31 
Slutsky’s theorem, 29 

density function, 12 
independence, 11 
joint distributions, 12 
law of total probability, 11 
mass function, 12 

Probability density function, 12 
Probability plotting, 97 

normal. 97 
two samples, 98 

Product limit estimator, 188 
Projection pursuit, 337 
Proportional hazards model, 196 

Quade test, 147 
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Quantiles, 13 
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sample, 72 
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Random variables, 12 
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discrete, 12 
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moment generating function, 13 
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variance. 13 

Randomized block design, 116. 145 
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Rank tests, 115, 142 
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Ranks, 116, 141 

in correlation, 122 
linear rank statistics. 118 
properties, 117 

Receiver operating characteristic, 202 
Regression 

change point. 66 
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isotonic, 227 
least absolute residuals, 222 
least median squares, 224 
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logistic. 327 
robust, 221 
Sen-T’heil estimator, 221 
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Relative riisk, 162 
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Robust regression, 221 
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are under curve, 203 
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ROC curve, 202 
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distribution, 72 
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inference, 195 

Sen-Theil estimator, 221 
Series system, 70, 191 
Shapiro-Wilks test. 93 

coefficients, 94 
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Clopper-Pearson Interval. 40 

assumptions, 118 
paired samples, 119 
ties in data, 122 

Signal processing, 323 
Significance level, 36 
Simpson’s paradox, 172 
Slutsky’s theorem. 29 
Smirnov tet8t, 86. 88, 110 

quantiles. 88 
Smoothing splines, 254 

Shrinkage, 53 

Sign test, 116, 118 
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Spearman correlation coefficient, 122 
assumptions, 124 
hypothesis testing, 124 
ties in data, 124 

interpolating, 252 
knots, 252 
natural, 252 
Reinsch algorithm, 255 
smoothing, 254 

Statistical learning, 323 
loss functions, 325 

cross entropy, 325 
zero-one, 325 

Splines 

Sterling‘s formula, 10 
Stochastic ordering 

failure rate, 27, 32 
likelihood ratio, 27, 32 
ordinary, 26 
uniform, 27, 32 

Stochastic process, 197 
Student’s t-distribution, 20 
Supervised learning, 324 
Survival analysis, 196 
Survivor function, 12 

t-distribution, 20 
t-test 
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paired data, 116 

Taylor series, 11, 32 
Ties in data 

sign test, 122 
Spearman correlation coefficient, 

124 
Wilcoxon sum rank test, 131 

Tolerance intervals, 73 
normal approximation, 74 
sample range, 74 
sample size, 75 
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log-log, 327 
logistic, 327 
probit, 327 

Trimmed mean, 291 
Type I error, 36 
Type I1 error, 37 

Unbiased estimators, 34 
Unbiased tests, 37 
Uncertainty 

overconfidence bias, 5 
Voltaire’s perspective, 6 

Uniform distribution, 20, 32, 70, 78 
Universal threshold, 276 
Unsupervised learning, 324 

Variance, 13, 19, 325 
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two sample test, 133 

Wald test, 38 
Wavelets, 263 

cascade algorithm, 271 
Coiflet family, 273 
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soft, 275 

Weak convergence, 28 
Weighted least squares regression, 223 
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normal approximation, 127 
quantiles, 128 
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ties in data, 131 
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Wilcoxon test. 116 

Zero inflated Poisson (ZIP), 313 
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