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Josef Brüderl, University of Mannheim, March 2005

This is an introduction to panel data analysis on an applied level using Stata. The
focus will be on showing the "mechanics" of these methods. This you will find in no
textbook. Panel analysis textbooks are generally full of formulas. For those who see
from formulas the "mechanics" this is fine. But most students will need a more basic
explanation.
That many students did not fully understand the "mechanics" of panel data analysis,
I (also Halaby 2004) infer from many published studies. Researchers use panel
data methods (i.e. RE-models) that are not able to fully exploit the main advantage
of panel data: getting rid of unobserved heterogeneity.
For those who are interested in the statistical details I recommend:

• Wooldridge, J. (2003) Introductory Econometrics: A Modern Approach.
Thomson. Chap. 13, 14. (easy introduction)

• Wooldridge, J. (2002) Econometric Analysis of Cross Section and Panel Data.
MIT Press. (more advanced, but very thorough)

Nice introductions on the main issues are:

• Allison, P.D. (1994) Using Panel Data to Estimate the Effects of Events.
Sociological Methods & Research 23: 174-199.

• Halaby, C. (2004) Panel Models in Sociological Research. Annual Rev. of
Sociology 30: 507-544.

My approach is the "modern" econometric approach. The "classic" approach
("dynamic" panel models) is described in:

• Finkel, S. (1995) Causal Analysis with Panel Data. Sage.
A nice introduction to the increasingly popular "growth curve model" is:

• Singer, J., and J. Willett (2003) Applied Longitudinal Data Analysis. Oxford.

Panel Data
Panel data are repeated measures of one or more variables on one or more
persons (repeated cross-sectional time-series).
Mostly they come from panel surveys, however, you can get them also from
cross-sectional surveys by retrospective questions.
Panel data record "snapshots" from the life course (continuous or discrete
dependent variable). Insofar they are less informative than event-history data.
Data structure ("long" format, T  2):
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i t y x
1 1 y11 x11

1 2 y12 x12

2 1 y21 x21

2 2 y22 x22



N 1 yN1 xN1

N 2 yN2 xN2

Benefits of panel data:

• They are more informative (more variability, less collinearity, more degrees of
freedom), estimates are more efficient.

• They allow to study individual dynamics (e.g. separating age and cohort
effects).

• They give information on the time-ordering of events.

• They allow to control for individual unobserved heterogeneity.
Since unobserved heterogeneity is the problem of non-experimental research, the
latter benefit is especially useful.

Panel Data and Causal Inference
According to the counterfactual approach on causality (Rubin’s model), the causal
effect of a treatment (T) is defined by (individual i, time t0, before treatment C):

Yi,t0
T − Yi,t0

C .

This obviously is not estimable. With cross-sectional data we estimate (between
estimation)

Yi,t0
T − Yj,t0

C .

This only provides the true causal effect if the assumption of unit homogeneity (no
unobserved heterogeneity) holds. With panel data we can improve on this, by using
(within estimation)

Yi,t1
T − Yi,t0

C .

Unit homogeneity here is needed only in an intrapersonal sense! However, period
effects might endanger causal inference. To avoid this, we could use
(difference-in-differences estimator)

Yi,t1
T − Yi,t0

C  − Yj,t1
C − Yj,t0

C .
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Example: Does marriage increase the wage of men?
Many cross-sectional studies have shown that married men earn more. But is this
effect causal? Probably not. Due to self-selection this effect might be spurious.
High-ability men select themselves (or are selected) into marriage. In addition, high
ability-men earn more. Since researchers usually have no measure of ability, there
is potential for an omitted variable bias (unobserved heterogeneity).
I have constructed an artificial dataset, where there is both selectivity and a causal
effect:

. list id time wage marr, separator(6)

------------------------- -------------------------
| id time wage marr | | id time wage marr |
|-------------------------| |-------------------------|

1. | 1 1 1000 0 | 13. | 3 1 2900 0 |
2. | 1 2 1050 0 | 14. | 3 2 3000 0 |
3. | 1 3 950 0 | 15. | 3 3 3100 0 |
4. | 1 4 1000 0 | 16. | 3 4 3500 1 |
5. | 1 5 1100 0 | 17. | 3 5 3450 1 |
6. | 1 6 900 0 | 18. | 3 6 3550 1 |

|-------------------------| |-------------------------|
7. | 2 1 2000 0 | 19. | 4 1 3950 0 |
8. | 2 2 1950 0 | 20. | 4 2 4050 0 |
9. | 2 3 2000 0 | 21. | 4 3 4000 0 |

10. | 2 4 2000 0 | 22. | 4 4 4500 1 |
11. | 2 5 1950 0 | 23. | 4 5 4600 1 |
12. | 2 6 2100 0 | 24. | 4 6 4400 1 |

|-------------------------| -------------------------

We observe four men (N  4) for six years (T  6). Wage varies a little around
1000, 2000, 3000, and 4000 € respectively. The two high-wage men marry between
year 3 and 4 (selectivity). This is indicated by "marr" jumping from 0 to 1. (This
specification implies a lasting effect of marriage).
Note that with panel data we have two sources of variation: between and within
persons.

twoway
(scatter wage time, ylabel(0(1000)5000, grid)

ymtick(500(1000)4500, grid) c(L))
(scatter wage time if marr1, c(L)),

legend(label(1 "before marriage") label(2 "after marriage"))
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Identifying the Marriage Effect
Now, what is the effect of marriage in these data? Clearly there is self-selection: the
high-wage men marry. In addition, however, there is a causal effect of marriage:
After marriage there is a wage increase (whereas there is none, for the "control
group").
More formally, we use the difference-in-differences (DID) approach. First, compute
for every man the mean wage before and after marriage (for unmarried men before
year 3.5 and after). Then, compute for every man the difference in the mean wage
before and after marriage (before-after difference). Take the average of married
and unmarried men. Finally, the difference of the before-after difference of married
and unmarried men is the causal effect:

4500 − 4000  3500 − 3000
2 −

2000 − 2000  1000 − 1000
2  500.

In this example, marriage causally increases earnings by 500 €. (At least this is
what I wanted it to be, but due to a "data construction error" the correct
DID-estimator is 483 €. Do you find the "error"?).
The DID-approach mimics what one would do with experimental data. In identifying
the marriage effect we rely on a within-person comparison (the before-after
difference). To rule out the possibility of maturation or period effects we compare
the within difference of married (treatment) and unmarried (control) men.

The Fundamental Problem of Non-Experimental Research
What would be the result of a cross-sectional regression at T  4

yi4  0  1xi4  ui4?
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
1  2500 (this is the difference of the wage mean between married and unmarried
men). The estimate is highly misleading!
It is biased because of unobserved heterogeneity (also called: omitted variables
bias): unobserved ability is in the error term, therefore ui4 and xi4 are correlated.
The central regression assumption is, however, that the X-variable and the error
term are uncorrelated (exogeneity). Endogeneity (X-variable correlates with the
error term) results in biased regression estimates. Endogeneity is the fundamental
problem of non-experimental research. Endogeneity can be the consequence of
three mechanisms: unobserved heterogeneity (self-selection), simultaneity, and
measurement error (for more on this see below).
The nature of the problem can be seen in the Figure from above: the
cross-sectional OLS estimator relies totally on a between-person comparison. This
is misleading because persons are self-selected. In an experiment we would assign
persons randomly.
With cross-sectional data we could improve on this only, if we would have
measured "ability". In the absence of such a measure our conclusions will be
wrong. Due to the problem of unobserved heterogeneity the results of many
cross-sectional studies are highly disputable.

What to Do?
The best thing would be to conduct an experiment. If this is not possible collect at
least longitudinal data. As we saw above, with panel data it is possible to identify
the true effect, even in the presence of self-selection!
In the following, we will discuss several regression methods for panel data. The
focus will be on showing, how these methods succeed in identifying the true causal
effect. We will continue with the data from our artificial example.

Pooled-OLS
We pool the data and estimate an OLS regression (pooled-OLS)

yit  0  1xit  uit.

1  1833 (the mean of the red points minus the mean of the green points). This
estimate is still heavily biased because of unobserved heterogeneity (uit and xit are
correlated). This is due to the fact that pooled-OLS also relies on a between
comparison. Compared with the cross-sectional OLS the bias is lower, however,
because pooled-OLS also takes regard of the within variation.
Thus, panel data alone do not remedy the problem of unobserved heterogeneity!
One has to apply special regression models.
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Error-Components Model
These regression models are based on the following modelling strategy. We
decompose the error term in two components: A person-specific error  i and an
idiosyncratic error  it,

uit   i   it.

The model is now (we omit the constant, because it would be collinear with  i):
yit  1xit   i   it.

The person-specific error does not change over time. Every person has a fixed
value on this latent variable (fixed-effects).  i represents person-specific
time-constant unobserved heterogeneity. In our example  i could be unobserved
ability (which is constant over the six years).
The idiosyncratic error varies over individuals and time. It should fulfill the
assumptions for standard OLS error terms.
The assumption of pooled-OLS is that xit is uncorrelated both with  i and  it.

First-Difference Estimator
With panel data we can "difference out" the person-specific error (T  2):

yi2  1xi2   i   i2

yi1  1xi1   i   i1.

Subtracting the second equation from the first gives:
Δyi  1Δxi  Δ i,

where "Δ" denotes the change from t  1 to t  2. This is a simple cross-sectional
regression equation in differences (without constant). 1 can be estimated
consistently by OLS, if  it is uncorrelated with xit (first-difference (FD) estimator).
The big advantage is that the fixed-effects have been cancelled out. Therefore, we
no longer need the assumption that  i is uncorrelated with xit. Time-constant
unobserved heterogeneity is no longer a problem.
Differencing is also straightforward with more than two time-periods. For T  3 one
could subtract period 1 from 2, and period 2 from 3. This estimator, however, is not
efficient, because one could also subtract period 1 from 3 (this information is not
used). In addition, with more than two time-periods the problem of serially
correlated Δ i arises. OLS assumes that error terms across observations are
uncorrelated (no autocorrelation). This assumption can easily be violated with
multi-period panel data. Then S.E.s will be biased. To remedy this one can use
GLS or Huber-White sandwich estimators.
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Example
We generate the first-differenced variables:

tsset id time /* tsset the data
generate dwage  wage - L.wage /* L. is the lag-operator
generate dmarr  marr - L.marr

Then we run an OLS regression (with no constant):

. regress dwage dmarr, noconstant
Source | SS df MS Number of obs  20

--------------------------------------- F( 1, 19)  39.46
Model | 405000 1 405000 Prob  F  0.0000

Residual | 195000 19 10263.1579 R-squared  0.6750
--------------------------------------- Adj R-squared  0.6579

Total | 600000 20 30000 Root MSE  101.31
-----------------------------------------------------------------------

dwage | Coef. Std. Err. t P|t| [95% Conf. Interval]
----------------------------------------------------------------------

dmarr | 450 71.63504 6.28 0.000 300.0661 599.9339
-----------------------------------------------------------------------

Next with robust S.E. (Huber-White sandwich estimator):

. regress dwage dmarr, noconstant cluster(id)
Regression with robust standard errors Number of obs  20

F( 1, 3)  121.50
Prob  F  0.0016
R-squared  0.6750

Number of clusters (id)  4 Root MSE  101.31
-----------------------------------------------------------------------

| Robust
dwage | Coef. Std. Err. t P|t| [95% Conf. Interval]

----------------------------------------------------------------------
dmarr | 450 40.82483 11.02 0.002 320.0772 579.9228

-----------------------------------------------------------------------

We see that the FD-estimator identifies the true causal effect (almost). Note that the
robust S.E. is much lower.
However, the FD-estimator is inefficient because it uses only the wage observations
immediately before and after a marriage to estimate the slope (i.e., two
observations!). This can be seen in the following plot of the first-differenced data:

twoway (scatter dwage dmarr)
(lfit dwage dmarr, estopts(noconstant)),
legend(off) ylabel(-200(100)600, grid)
xtitle(delta(marr)) ytitle(delta(wage));
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Within-person change
The intuition behind the FD-estimator is that it no longer uses the between-person
comparison. It uses only within-person changes: If X changes, how much does Y
change (within one person)? Therefore, in our example, unobserved ability
differences between persons no longer bias the estimator.

Fixed-Effects Estimation
An alternative to differencing is the within transformation. We start from the
error-components model:

yit  1xit   i   it.

Average this equation over time for each i (between transformation):
y i  1 x i   i   i.

Subtract the second equation from the first for each t (within transformation):

yit − y i  1xit − x i   it −  i.

This model can be estimated by pooled-OLS (fixed-effects (FE) estimator). The
important thing is that again the  i have disappeared. We no longer need the
assumption that  i is uncorrelated with xit. Time-constant unobserved heterogeneity
is no longer a problem.
What we do here is to "time-demean" the data. Again, only the within variation is
left, because we subtract the between variation. But here all information is used, the
within transformation is more efficient than differencing. Therefore, this estimator is
also called the within estimator.

Example
We time-demean our data and run OLS:

egen mwage  mean(wage), by(id)
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egen mmarr  mean(marr), by(id)
generate wwage  wage - mwage
generate wmarr  marr - mmarr
. regress wwage wmarr

Source | SS df MS Number of obs  24
------------------------------------- F( 1, 22)  183.33

Model | 750000 1 750000 Prob  F  0.0000
Resid | 90000 22 4090.90909 R-squared  0.8929
------------------------------------- Adj R-squared  0.8880

Total | 840000 23 36521.7391 Root MSE  63.96

----------------------------------------------------------------------
wwage | Coef. Std. Err. t P|t| [95% Conf. Interval]

---------------------------------------------------------------------
wmarr | 500 36.92745 13.54 0.000 423.4172 576.5828
_cons | 0 13.05582 0.00 1.000 -27.07612 27.07612

----------------------------------------------------------------------

The FE-estimator succeeds in identifying the true causal effect! However, OLS uses
df  N  T − k. This is wrong, since we used up another N degrees of freedom by
time-demeaning. Correct is df  N  T − 1 − k. xtreg takes regard of this (and
demeans automatically):

. xtreg wage marr, fe

Fixed-effects (within) regression Number of obs  24
Group variable (i): id Number of groups  4
R-sq: within  0.8929 Obs per group: min  6

between  0.8351 avg  6.0
overall  0.4064 max  6

F(1,19)  158.33
corr(u_i, Xb)  0.5164 Prob  F  0.0000

----------------------------------------------------------------------
wage | Coef. Std. Err. t P|t| [95% Conf. Interval]
---------------------------------------------------------------------
marr | 500 39.73597 12.58 0.000 416.8317 583.1683
cons | 2500 17.20618 145.30 0.000 2463.987 2536.013
---------------------------------------------------------------------

sigma_u | 1290.9944
sigma_e | 68.82472

rho | .99716595 (fraction of variance due to u_i)
----------------------------------------------------------------------
F test that all u_i0: F(3, 19)  1548.15 Prob  F  0.0000

The S.E. is somewhat larger. R2-within is the explained variance for the demeaned
data. This is the one that you would want to report. sigma_u is  and sigma_e is
. By construction of our dataset the estimated person-specific error is much
larger. (There is a constant in the output, because Stata after the within
transformation adds back the overall wage mean, which is 2500 €.)
An intuitive feeling for what the FE-estimator does, gives this plot:

twoway (scatter wwage wmarr, jitter(2))
(lfit wwage wmarr),
legend(off) ylabel(-400(100)400, grid)
xtitle(demeaned(marr)) ytitle(demeaned(wage));
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All wage observations of those who married contribute to the slope of the
FE-regression. Basically, it compares the before-after wages of those who married.
However, it does not use the observations of the "control-group" (those, who did not
marry). These are at X  0 and contribute nothing to the slope of the FE-regression.

Dummy Variable Regression (LSDV)
Instead of demeaning the data, one could include a dummy for every i and estimate
the first equation from above by pooled-OLS
(least-squares-dummy-variables-estimator). This provides also the FE-estimator
(with correct test statistics)! In addition, we get estimates for the  i which may be of
substantive interest.

. tabulate id, gen(pers)

. regress wage marr pers1-pers4, noconstant

Source | SS df MS Number of obs  24
--------------------------------------- F( 5, 19)  8550.00

Model | 202500000 5 40500000 Prob  F  0.0000
Residual | 90000 19 4736.84211 R-squared  0.9996
--------------------------------------- Adj R-squared  0.9994

Total | 202590000 24 8441250 Root MSE  68.825

----------------------------------------------------------------------
wage | Coef. Std. Err. t P|t| [95% Conf. Interval]

---------------------------------------------------------------------
marr | 500 39.73597 12.58 0.000 416.8317 583.1683

pers1 | 1000 28.09757 35.59 0.000 941.1911 1058.809
pers2 | 2000 28.09757 71.18 0.000 1941.191 2058.809
pers3 | 3000 34.41236 87.18 0.000 2927.974 3072.026
pers4 | 4000 34.41236 116.24 0.000 3927.974 4072.026

----------------------------------------------------------------------

The LSDV-estimator, however, is practical only when N is small.

Individual Slope Regressions
Another way to obtain the FE-estimator is to estimate a regression for every
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individual (this is a kind of "random- coefficient model"). The mean of the slopes is
the FE-estimator.
Our example: The slopes for the two high-wage men are 500. The regressions for
the two low-wage men are not defined, because X does not vary (again we see that
the FE-estimator does not use the "control group"). That means, the FE-estimator is
500, the true causal effect.
With spagplot (an Ado-file you can net search) it is easy to produce a plot with
individual regression lines (the red curve is pooled-OLS). This is called a "spaghetti
plot":

spagplot wage marr if id2, id(id) ytitle("EURO per month") xlabel(0 1)
ylabel(0(1000)5000, grid) ymtick(500(1000)4500, grid) note("")
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Such a plot shows nicely, how much pooled-OLS is biased, because it uses also
the between variation.

Restrictions
1. With FE-regressions we cannot estimate the effects of time-constant

covariates. These are all cancelled out by the within transformation. This
reflects the fact that panel data do not help to identify the causal effect of a
time-constant covariate (estimates are only more efficient)! The "within logic"
applies only with time-varying covariates.

2. Further, there must be some variation in X. Otherwise, we cannot estimate its
effect. This is a problem, if only a few observations show a change in X. For
instance, estimating the effect of education on wages with panel data is
difficult. Cross-sectional education effects are likely to be biased (ability bias).
Panel methods would be ideal (cancelling out the unobserved fixed ability
effect). But most workers show no change in education. The problem will show
up in a huge S.E.

Random-Effects Estimation
Again we start from the error-components model (now with a constant)
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yit  0  1xit   i   it.

Now it is assumed that the  i are random variables (i.i.d. random-effects) and that
Covxit, i  0. Then we obtain consistent estimates by using pooled-OLS.
However, we have now serially correlated error terms uit, and S.E.s are biased.
Using a pooled-GLS estimator provides the random-effects (RE) estimator.
It can be shown that the RE-estimator is obtained by applying pooled-OLS to the
data after the following transformation:

yit −  y i  01 −   1xit −  x i  1 −  i   it −   i,

where

  1 − 
2

T
2  

2 .

If   1 the RE-estimator is identical with the FE-estimator. If   0 the RE-estimator
is identical with the pooled OLS-estimator. Normally  will be between 0 and 1. The
RE-estimator mixes within and between estimators! If Covxit, i  0 this is ok, it
even increases efficiency. But if Covxit, i ≠ 0 the RE-estimator will be biased. The
degree of the bias will depend on the magnitude of . If 

2  
2 then  will be close

to 1, and the bias of the RE-estimator will be low.

Example
. xtreg wage marr, re theta

Random-effects GLS regression Number of obs  24
Group variable (i): id Number of groups  4
R-sq: within  0.8929 Obs per group: min  6

between  0.8351 avg  6.0
overall  0.4064 max  6

Random effects u_i ~Gaussian Wald chi2(1)  121.76
corr(u_i, X)  0 (assumed) Prob  chi2  0.0000
theta  .96026403

-----------------------------------------------------------------------
wage | Coef. Std. Err. z P|z| [95% Conf. Interval]

----------------------------------------------------------------------
marr | 503.1554 45.59874 11.03 0.000 413.7835 592.5273

_cons | 2499.211 406.038 6.16 0.000 1703.391 3295.031
----------------------------------------------------------------------

sigma_u | 706.54832
sigma_e | 68.82472

rho | .99060052 (fraction of variance due to u_i)
-----------------------------------------------------------------------

The RE-estimator works quite well. The bias is only 3. This is because

  1 − 68.82

6  706.52  68.82  0.96.

The option theta includes the estimate in the output.
One could use a Hausman specification test on whether the RE-estimator is biased.
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This test, however, is based on strong assumptions which are usually not met in
finite samples. Often it does even not work (as with our data).

FE- or RE-Modelling?
1. For most research problems one would suspect that Covxit, i ≠ 0. The

RE-estimator will be biased. Therefore, one should use the FE-estimator to get
unbiased estimates.

2. The RE-estimator, however, provides estimates for time-constant covariates.
Many researchers want to report effects of sex, race, etc. Therefore, they
choose the RE-estimator over the FE-estimator. In most applications, however,
the assumption Covxit, i  0 will be wrong, and the RE-estimator will be
biased (though the magnitude of the bias could be low). This is risking to throw
away the big advantage of panel data only to be able to write a paper on "The
determinants of Y". To take full advantage of panel data the style of data
analysis has to change: One should concentration on the effects of (a few)
time-varying covariates only and use the FE-estimator consequently!

3. The RE-estimator is a special case of a parametric model for unobserved
heterogeneity: We make distributional assumptions on the person-specific
error term and conceive an estimation method that cancels the nuisance
parameters. Generally, such models do not succeed in solving the problem of
unobserved heterogeneity! In fact, they work only if there is "irrelevant"
unobserved heterogeneity: Covxit, i  0.

Further Remarks on Panel-Regression
1. Though it is not possible to include time-constant variables in a FE-regression,

it is possible to include interactions with time-varying variables. E.g., one could
include interactions of education and period-effects. The regression
coefficients would show, how the return on education changed over periods
(compared to the reference period).

2. Unbalanced panels, where T differs over individuals, are no problem for the
FE-estimator.

3. With panel data there is always reason to suspect that the errors  it of a person
i are correlated over time (autocorrelation). Stata provides xtregar to fit
FE-models with AR(1) disturbances.

4. Attrition (individuals leave the panel in a systematic way) is seen as a big
problem of panel data. However, an attrition process that is correlated with  i

does not bias FE-estimates! Only attrition that is correlated with  it does. In our
example this would mean that attrition correlated with ability would not bias
results.

5. Panel data are a special case of "clustered samples". Other special cases are
sibling data, survey data sampled by complex sampling designs
(svy-regression), and multi-level data (hierarchical regression). Similar models
are used in all these literatures.
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6. Especially prominent in the multi-level literature is the "random-coefficient
model" (regression slopes are allowed to differ by individuals). The
panel-analogon where "time" is the independent variable is often named
"growth curve model". Growth curve models are especially useful, if you want
to analyze how trajectories differ between groups. They come in three variants:
the hierarchical linear model version, the MANOVA version, and the LISREL
version. Essentially all these versions are RE-models. The better alternative is
to use two-way FE-models (see below).

7. Our example investigates the "effect of an event". This is for didactical
reasons. Nevertheless, panel analysis is especially appropriate for this kind of
questions (including treatment effects). Questions on the effect of an event are
prevalent in the social sciences However, panel models work also if X is metric!

Problems with the FE-Estimator
The FE-estimator still rests on the assumption that

Covxit, is  0, for all t and s.

This is the assumption of (strict) exogeneity. If it is violated, we have an
endogeneity problem: the independent variable and the idiosyncratic error term are
correlated. Under endogeneity the FE-estimator will be biased: endogeneity in this
sense is a problem even with panel data.
Endogeneity could be produced by:

• After X changed there were systematic shocks (period effects)

• Omitted variables (unobserved heterogeneity)

• Random wage shocks trigger the change in X (simultaneity)

• Errors in reporting X (measurement error)
What can we do? The standard answer to endogeneity is to use IV-estimation (or
structural equation modelling).

IV-estimation
The IV-estimator (more generally: 2SLS, GMM) uses at least one instrument and
identifying assumptions to get the unbiased estimator (xtivreg). The identifying
assumptions are that the instrument correlates high with X, but does not correlate
with the error term. The latter assumption can never be tested! Thus, all
conclusions from IV-estimators rest on untestable assumptions.
The same is true for another alternative, which is widely used in this context:
structural equation modelling (LISREL-models for panel data). Results from these
models also rest heavily on untestable assumptions.
Experience has shown that research fields, where these methods have been used
abundantly, are full of contradictory studies. These methods have produced a big
mess in social research! Therefore, do not use these methods!
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Period Effects
It might be that after period 3 everybody gets a wage increase. Such a "systematic"
shock would correlate with "marriage" and therefore introduce endogeneity. The
FE-estimator would be biased. But there is an intuitive solution to remedy this. The
problem with the FE-estimator is that it disregards the information contained in the
control group. By introducing fixed-period-effects (two-way FE-model) only within
variation that is above the period effect (time trend) is taken into regard.
We modify our data so that all men get 500 € at T ≥ 4. Using the DID-estimator we
would no longer conclude that marriage has a causal effect.
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Nevertheless, the FE-estimator shows 500. This problem can, however, be solved
by including dummies for the time periods (waves!). In fact, including
period-dummies in a FE-model mimics the DID-estimator (see below). Thus, it
seems to be a good idea to always include period-dummies in a FE-regression!

. tab time, gen(t)

. xtreg wage3 marr t2-t6, fe

Fixed-effects (within) regression Number of obs  24
Group variable (i): id Number of groups  4
R-sq: within  0.9498 Obs per group: min  6

F(6,14)  44.13
corr(u_i, Xb)  -0.0074 Prob  F  0.0000

-----------------------------------------------------------------------
wage3 | Coef. Std. Err. t P|t| [95% Conf. Interval]
----------------------------------------------------------------------

marr | -8.333333 62.28136 -0.13 0.895 -141.9136 125.2469
t2 | 50 53.93724 0.93 0.370 -65.68388 165.6839
t3 | 50 53.93724 0.93 0.370 -65.68388 165.6839
t4 | 516.6667 62.28136 8.30 0.000 383.0864 650.2469
t5 | 579.1667 62.28136 9.30 0.000 445.5864 712.7469
t6 | 529.1667 62.28136 8.50 0.000 395.5864 662.7469

_cons | 2462.5 38.13939 64.57 0.000 2380.699 2544.301
----------------------------------------------------------------------

Unobserved Heterogeneity
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Remember, time-constant unobserved heterogeneity is no problem for the
FE-estimator. But, time-varying unobserved heterogeneity is a problem for the
FE-estimator. The hope, however, is that most omitted variables are time-constant
(especially when T is not too large).

Simultaneity
We modify our data so that the high-ability men get 500 at T ≥ 3. They marry in
reaction to this wage increase. Thus, causality runs the other way around: wage
increases trigger a marriage (simultaneity).
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The FE-estimator now gives the wrong result:

. xtreg wage2 marr, fe

Fixed-effects (within) regression Number of obs  24
Group variable (i): id Number of groups  4
R-sq: within  0.4528 Obs per group: min  6

F(1,19)  15.72
corr(u_i, Xb)  0.5227 Prob  F  0.0008

------------------------------------------------------------------------
wage2 | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------
marr | 350 88.27456 3.96 0.001 165.2392 534.7608

_cons | 2575 38.22401 67.37 0.000 2494.996 2655.004
-----------------------------------------------------------------------

An intuitive idea could come up, when looking at the data: The problem is due to
the fact that the FE-estimator uses all information before marriage. The
FE-estimator would be unbiased, if it would use only the wage information
immediately before marriage. Therefore, the first-difference estimator will give the
correct result. A properly modified DID-estimator would also do the job. Thus, by
using the appropriate "within observation window" one could remedy the
simultaneity problem. This "hand-made" solution will, however, be impractical with
most real datasets (see however the remarks below).
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Measurement Errors
Measurement errors in X generally produce endogeneity. If the measurement errors
are uncorrelated with the true, unobserved values of X, then


1 is biased

downwards (attenuation bias).
We modify our data such that person 1 reports erroneously a marriage at T  5 and
person 4 "forgets" the first year of marriage. Everything else remains as above, i.e.
the true marriage effect is 500.
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. xtreg wage marr1, fe

Fixed-effects (within) regression Number of obs  24
Group variable (i): id Number of groups  4
R-sq: within  0.4464 Obs per group: min  6

----------------------------------------------------------------------
wage | Coef. Std. Err. t P|t| [95% Conf. Interval]
---------------------------------------------------------------------
marr1| 300 76.63996 3.91 0.001 139.5907 460.4093
cons | 2537.5 38.97958 65.10 0.000 2455.915 2619.085
---------------------------------------------------------------------

The result is a biased FE-estimator of 300 €. Fortunately, the bias is downwards
(conservative estimate). Unfortunately, with more X-variables the direction of the
bias is unknown.
In fact, compared with pooled-OLS the bias due to measurement errors is amplified
by using FD- or FE-estimators, because taking the difference of two unreliable
measures generally produces an even more unreliable measure. On the other side
pooled-OLS suffers from bias due to unobserved heterogeneity. Simulation studies
show that generally the latter bias dominates. The suggestion is, therefore, to use
within estimators: unobserved heterogeneity is a "more important" problem than
measurement error.

Difference-in-Differences Estimator
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Probably you have asked yourselves, why do we not use simply the DID-estimator?
After all in the beginning we saw that the DID-estimator works.
The answer is that with our artificial data there is really no point to use the within
estimator. DID would do the job. However, with real datasets the DID-estimator is
not so straightforward. The problem is how to find an appropriate "control group".
This is not a trivial problem.
First, I will show how one can obtain the DID-estimator by a regression. One has to
construct a dummy indicating "treatment" (treat). In our case the men who
married are in the treatment group, the others are in the control group. A second
dummy indicates the periods after "treatment", i.e. marriage (after, note that
after has to be defined also for the control group). In addition, one needs the
multiplicative interaction term of these two dummies. Then run a regression with
these three variables. The coefficient of the interaction term gives the
DID-estimator:

. gen treat  id  3

. gen after  time  4

. gen aftertr  after*treat

. regr wage after treat aftertr

--------------------------------------------------
wage | Coef. Std. Err. t P|t|

-------------------------------------------------
after | 16.66667 318.5688 0.05 0.959
treat | 2008.333 318.5688 6.30 0.000

aftertr | 483.3333 450.5244 1.07 0.296
_cons | 1491.667 225.2622 6.62 0.000

--------------------------------------------------

The DID-estimator says that a marriage increases the wage by 483 €. This is less
than the 500 €, which we thought until now as correct. But it is the "true" effect of a
marriage, because due to a "data construction error", there is a 17 € increase in the
control group after T  3 (reflected in the coefficient of after).
Thus, were the FE-estimates reported above wrong? Yes, the problem of the
FE-estimator we saw at several places: it does not use the information contained in
the control group. But meanwhile we know how to deal with this problem: we
include period-dummies (this is a non-parametric variant of a growth curve model):

. xtreg wage marr t2-t6, fe

-------------------------------------------------------
wage | Coef. Std. Err. t P|t|

------------------------------------------------------
marr | 483.3333 61.5604 7.85 0.000

t2 | 50 53.31287 0.94 0.364
t3 | 50 53.31287 0.94 0.364
t4 | 45.83333 61.5604 0.74 0.469
t5 | 70.83333 61.5604 1.15 0.269
t6 | 33.33333 61.5604 0.54 0.597

_cons | 2462.5 37.69789 65.32 0.000
------------------------------------------------------
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The (two-way) FE-estimator provides the same answer as the DID-estimator! Thus
it is more a matter of taste, whether you prefer the DID-estimator or the two-way
FE-estimator. Two points in favor of the FE-estimator:

• With real data the FE-estimator is more straightforward to apply, because you
do not need to construct a control group.

• As the example shows, the S.E. of the DID-estimator is much larger. This is
because there is still "between variance" unaccounted for, i.e. within the two
groups.

But the DID-estimator also has an advantage: By appropriately constructing the
control group, one could deal with endogeneity problems. Before using the
DID-estimator one has to construct a control group. For every person marrying at
T  t, find another one that did not marry up to t and afterwards. Ideally this "match"
should be a "statistical twin" concerning time-varying characteristics, e.g. the wage
career up to t (there is no need to match on time-constant variables, because the
within logic is applied). This procedure (DID-matching estimator) would eliminate
the simultaneity bias in the example from above! (Basically this is a combination of
a matching estimator and a within estimator, the two most powerful methods for
estimating causal effects from non-experimental data that are currently available.)
Usually matching is done via the propensity score, but in the case of matching
"life-courses" I would suggest optimal-matching (Levenshtein distance).

Dynamic Panel Models
All panel data models are dynamic, in so far as they exploit the longitudinal nature
of panel data. However, there is a distinction in the literature between "static" and
"dynamic" panel data models. Static models are those we discussed so far.
Dynamic models include a lagged dependent variable on the right-hand side of the
equation. A widely used modelling approach is:

yit  yi,t−1  1xit   i   it.

Introducing a lagged dependent variable complicates estimation very much,
because yi,t−1 is correlated with the error term(s). Under random-effects this is due
to the presence of  i at all t. Under fixed-effects and within transformation Δyi,t−1 is
correlated with  i. Therefore, both the FE- and the RE-estimator will be biased. If
yi,t−1 and xit are correlated (what generally is the case, because xit and  i are
correlated) then estimates of both  and 1 will be biased. Therefore, IV-estimators
have to be used (e.g., xtabond). As mentioned above, this may work in theory, but
in practice we do not know.
Thus, with dynamic panel models there is no way to use "simple" estimation
techniques like a FE-estimator. You always have to use IV-techniques or even
LISREL. Therefore, the main advantage of panel data - alleviating the problem of
unobserved heterogeneity by "simple" methods - is lost, if one uses dynamic panel
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models!
So why bother with "dynamic" panel models at all?

• These are the "classic" methods for panel data analysis. Already in the 1940ies
Paul Lazarsfeld analyzed turnover tables, a method that later was generalized to
the "cross-lagged panel model". The latter was once believed to be a panacea
for the analysis of cause and effect. Meanwhile several authors concluded that it
is a "useless" method for identifying causal effects.

• You may have substantive interest in the estimate of , the "stability" effect.
This, however, is not the case in "analyzing the effects of events" applications. I
suppose there are not many applications where you really have a theoretical
interest in the stability effect. (The fact that many variables tend to be very
similar from period to period is no justification for dynamic models. This stability
also captured in static models (by  i).)

• Including yi,t−1 is another way of controlling for unobserved heterogeneity. This
is true, but this way of controlling for unobserved heterogeneity is clearly inferior
to within estimation (much more untestable assumptions are needed).

• Often it is argued that static models are biased in the presence of measurement
error, regression toward the mean, etc. This is true as we discussed above
(endogeneity). However, dynamic models also have problems with endogeneity.
Both with static and dynamic models one has to use IV-estimation under
endogeneity. Thus, it is not clear why these arguments should favor dynamic
models.

Our example: The pooled-OLS-, RE-, and FE-estimator of the marriage effect in a
model with lagged wage are 125, 124, and 495 respectively. All are biased. So I
can see no sense in using a "dynamic" panel model.

Conditional Fixed-Effects Models
The FE-methodology applies to other regression models also. With non-linear
regression models, however, it is not possible to cancel the  i by demeaning the
data. They enter the likelihood as "nuisance-parameters". However, if there exists a
sufficient statistic allowing the fixed-effects to be conditioned out of the likelihood,
the FE-model is estimable nevertheless (conditional likelihood). This is not the case
for all non-linear regression models. It is the case for count data regression models
(xtpoisson, xtnbreg) and for logistic regression.
For other regression models one could estimate unconditional FE-models by
including person-dummies. Unconditional FE-estimates are, however, biased. The
bias gets smaller the larger T becomes.

Fixed–Effects Logit (Conditional Logit)
This is a conventional logistic regression model with person-specific fixed-effects  i:
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Pyit  1  exp1xit   i
1  exp1xit   i

.

Estimation is done by conditional likelihood. The sufficient statistic is∑ t1
T yit the

number of 1s. It is intuitively clear that with increasing  i the number of 1s on the
dependent variable should also increase.
Again, we profit from the big advantage of the FE-methodology: Estimates of 1 are
unbiased even in the presence of unobserved heterogeneity (if it is time-constant).
It is not possible to estimate the effects of time-constant covariates.
Finally, persons who have only 0s or 1s on the dependent variable are dropped,
because they provide no information for the likelihood. This can dramatically reduce
your dataset! Thus, to use a FE-logit you need data with sufficient variance both on
X and Y, i.e. generally you will need panel data with many waves!
Remark: If you have multi-episode event histories in discrete-time, you can analyze
these data with the FE-logit. Thus, this model provides FE-methodology for
event-history analysis!

Example
We investigate whether a wage increase increases the probability of further
education. These are the (artificial) data:
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We use the same wage data as above. High-wage people self-select in further
education (because their job is so demanding). At T  3 the high-wage people get a
wage increase. This reduces their probability of participating in further education a
little.
Pooled-logit regression says that with increasing wage the probability of further
education (feduc) increases. This is due to the fact that pooled-logit uses the
between variation.

. logit feduc wage

Logit estimates Number of obs  24
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LR chi2(1)  6.26
Prob  chi2  0.0124

Log likelihood  -13.170762 Pseudo R2  0.1920

-----------------------------------------------------------------------
feduc | Coef. Std. Err. z P|z| [95% Conf. Interval]
----------------------------------------------------------------------

wage | .0009387 .0004238 2.21 0.027 .000108 .0017693
_cons | -2.905459 1.293444 -2.25 0.025 -5.440562 -.3703554
-----------------------------------------------------------------------

A FE-logit provides the correct answer: A wage increase reduces the probability of
further education.

. xtlogit feduc wage, fe

note: multiple positive outcomes within groups encountered.
note: 1 group (6 obs) dropped due to all positive or

all negative outcomes.

Conditional fixed-effects logistic regression Number of obs  18
Group variable (i): id Number of groups  3

Obs per group: min  6
avg  6.0
max  6

LR chi2(1)  1.18
Log likelihood  -7.5317207 Prob  chi2  0.2764

-----------------------------------------------------------------------
feduc | Coef. Std. Err. z P|z| [95% Conf. Interval]
----------------------------------------------------------------------

wage | -.0024463 .0023613 -1.04 0.300 -.0070744 .0021817
-----------------------------------------------------------------------

The first note indicates that at least one person has more than once Y  1. This is
good, because it helps in identifying the fixed-effects. The second note says that
one person has been dropped, because it had in all waves Y  0.
Note that for these effects we can not calculate probability effects, because we
would have to plug in values for the  i. We have to use the sign or odds
interpretation.


